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Experimental Results

Figure 5: (a) Time-dependent ∆XAS at Ni L3 and O K edge with a fit (solid line). 

(b) Pump-induced changes ∆XAS at the indicated time delays from experiment 

(markers) with modelling for both edges and the corresponding values from 

modelling for both fluences (c)

Figure 6: (a) Pumped and unpumped absorption spectra calculated from GW+EDMFT with 

corresponding ∆XAS in panel (b). (c) Values of energy shift and narrowing for different photodoping

GW plus embedded dynamical mean field 

theory (GW+EDMFT) calculations (Ni L3):

• Energy shift from atomic cluster model: 

1. Screening of local coulomb 

interactions

2. Nonlocal Coulomb interactions 

between photo-doped ligand holes 

and electrons (Hartree shifts)

• Calculated spectra from expended 

GW+EDMFT model show redshift (Fig. 6 

(a,b))

➢ Both effects contribute to the redshift 

with the strength depending on the 

contribution of the Hartree shifts (Ucp)

(Fig. 6 (c)) 

➢ Shift increases with photo-doping 

before saturation at 1% (Fig. 6 (c))
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Experimental parameters:

• Pump: ℎ𝜈 = 4.66 eV, 35 fs duration and 0.8 

(𝑑𝑛 = 0.9%) and 4.0 Τ𝑚𝐽 𝑐𝑚2 (𝑑𝑛 = 4.7%)

inc. fluence.

• Probe: Ni: 2𝑝 Τ3 2 (2𝑝 Τ1 2) initial- → 3𝑑 final-

states at the L3 (L2) edge / O: 1𝑠 initial- → 

2𝑝 final- states at the K edge.

Experimental results:

• At Δt = 0.5 ps (Fig. 3): ΔXAS has 

derivative-like shape (Ni L3 :849 – 851.8 

eV / O K: 1st peak  528.5 – 532 eV)

➢ Modelling (Fig. 4 (b)) shows spectral 

redshift and broadening

• Not described: Ni L3 : Pre-edge 

feature/ O K: Reduced intensity at 2nd

and 3rd peak

• Transient ΔXAS (Fig. 4 (a)): builds up 

within the first 2 ps and is maintained over 

longer time

• From 0.5 ps ≤ Δt ≤ 10 ps (Fig. 4 (b)): 

Shape and intensity maintained

• Redshift and broadening increase slightly 

with 𝑑𝑛 (Fig. 4 (c)) → saturation region

• Modelling of ΔXAS shows a spectral redshift as large contribution to induced changes at the Ni L2,3-edge

•Redshift dependents on electronic correlations as screening of local correlation 

and Hartree shifts depend on correlation effects of d and p electrons resp. 

•Ni L3 pre-edge feature indicates photoinduced Hund excitation with a larger 

contribution of the new initial state 2𝑙 (ȁ ۧ↑↓, 𝟎 )

Methode & Setup

Figure 2: Sketch of the time-resolved optical pump, x-ray absorption probe experiment at the Ni L3 (2p3/2 → 3d) and 

O K (1s → 2p) absorption edge with time delay ∆t. [3] (modified).

Time-resolved X-ray Absorption Spectroscopy (tr-XAS) [2]:

• Element-specific study of the unoccupied electronic states in pump-probe scheme

• Pump (optical laser): Excites electrons from the lower to the upper Hubbard band 

(LHB/UHB)

• Probe after ∆t (X-rays): Exciting core electrons into unoccupied electronic states

Spectroscopy and Coherent Scattering (SCS) Instrument of the European XFEL

[4,5,6,7]:

• Special transmission zone plate setup allows simultaneous measurement of ground 

state, pumped and reference signal

• Simultaneous measurement scheme, short monochromatic X-ray pulses, great time 

resolution and high repetition rate allow for previously unprecedent data quality

Figure 3: Schematic depiction of the time-depend X-ray absorption spectroscopy measurement setup at the SCS instrument 

featuring the transmission zone plate with grating setup [4]. 
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Main Question: What influence do electronic correlations have 

during nonequilibrium dynamics in a charge-transfer insulator?

Scientific background:

• Electronic correlations play a large role in band 

formation and deciding between charge-transfer 

or Mott type behavior in insulators [1]

• Understanding role of electronic correlations 

during non-equilibrium dynamics could allow 

finetuning of material properties under optical 

excitation for specific applications

Synopsis: 

• Disentangling modifications at the Ni L3 (L2) edge 

and investigating effects of electronic correlations 

using GW plus embedded dynamical mean field 

theory (GW+EDMFT) calculations

• Relating additional modifications to variations in 

the ground state using a multiplet model Figure 1: Schematic representation of electronic 

correlations in an excited charge-transfer insulator
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Δ𝐸𝑋𝐴𝑆
= Δ𝑈𝑑𝑑 + Δ𝜖𝑑 + Δ𝜖𝑐 + Δ𝑈𝑐𝑑 + Δ𝑁𝑝 𝑈𝑝𝑑 − 𝑈𝑐𝑝

Figure 4: (a) Un-pumped (□), pumped (•) and modelled (green line) absorption 

spectrum at ∆t = 0.5 ps for the O K edge (left) and Ni L3 edge (right), with Pump-
induced change (■) overlayed [3] (modified)

Two-band Hubbard model - multiplet

calculations (Ni L3):

• Multiplet description: Characterized by 

occupation of 3𝑑 band with initial state 2ℎ
(ȁ ۧ↑, ↑ ): two unpaired electrons in two bands

• Equilibrium XAS: main weight in multiplet

from transitions 2ℎ → 3𝑑 (ȁ ۧ↑↓, ↑ ) 

• Following photoexcitation: additional initial 

states available 2𝑙 (ȁ ۧ↑↓, 0 ) , 2𝑠 (ȁ ۧ↑, ↓ ) and 1𝑑
(ȁ ۧ↑, 0 ), allowing for additional transitions

• Transition 2𝑙 → 3𝑑 matches pre-edge feature 

(Fig. 7 (a,b))

Figure 7: (a) Un-pumped (□), pumped (•) and modelled 

(green line) absorption spectrum at ∆t = 0.5 ps for the O 

K edge (left) and Ni L3 edge (right), with Pump-induced 
change (■) overlayed [3] (modified)


