Open-Minded

SFB1242

Topology in Plasmonic Fields Analyzed Using Vector Polarimetry

D. Janoschka¹, P. Dreher¹, A. Neuhaus¹, A. Rödl¹, T. Davis^{1,2,3}, B. Frank², H. Gießen², F.-J. Meyer zu Heringdorf¹

¹ Department of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany

- ² 4th Physics Institute, University of Stuttgart, 70569 Stuttgart, Germany
- ³ School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia

CENTER FOR NANO INTEGRATION DUISBURG ESSEN

CENIDE

Introduction

- Investigating near fields of Surface Plasmon Polaritons (SPPs) with sub-wavelength resolution on a femtosecond timescale is challenging.
- Time-resolved two-photon photoemission microscopy measures the projection of the SPP field onto a probing laser pulse.
- Performing the experiment with different probe polarizations allows reconstructing the SPP's electric field vector in time and space.

- Recent work: Reconstruction of a SPP skyrmion lattice by vector microscopy.
- Here: Determination of the electric field vectors of topological SPP fields by vector polarimetry. Analysis of the spin angular momentum using topological concepts.

Experimental Details & General Idea

Experimental Setup

- Time-resolution well below one femtosecond is achieved in a pump-probe setup using a Pancharatnam's phase-stabilized Mach-Zehnder interferometer.
- By inserting wave plates into the two interferometer arms, different polarization states for pump- and probe- pulses are prepared.
- All polarizations are verified using a polarimeter in an equivalent sample plane.

■ Femtosecond laser pulses of controlled polarisation impinge on an atomically flat Gold island.

- SPPs are excited at grooves in the shape of Archimedean spirals that are cut into the island using focused ion beam milling.
- Photoemitted electrons are imaged in an **ELMITEC Low Energy Electron Microscope** upgraded with a TVIPS F216 detector.

Vector Polarimetry Data Pipeline

Raw Photoemission Microscopy Data

Correction of Temporal Overlap

Vector Reconstruction

- A time-resolved PEEM dataset is recorded for the same pump- but for different probe-polarizations.
- The contrast in the images is rather complex. The average electron emission rate is described by

$$\begin{aligned} \overline{\Gamma}_{2PPE} &\propto \left| \vec{E}_{SPP}(\vec{r}) \right|^4 + \left| \vec{E}_L(\vec{r}) \right|^4 + 4 \left| \vec{E}_L \right|^2 \left| \vec{E}_{SPP} \right|^2 \\ &+ 4 \left| \vec{E}_L \right|^2 Re \left\{ \vec{E}_L^{\ *} \cdot \vec{E}_{SPP} \cdot e^{-i\omega t + i\vec{k}_{SPP} \cdot \vec{r}} \right\} \\ &+ 4 \left| \vec{E}_{SPP} \right|^2 Re \left\{ \vec{E}_L^{\ *} \cdot \vec{E}_{SPP} \cdot e^{-i\omega t + i\vec{k}_{SPP} \cdot \vec{r}} \right\} \\ &+ 2 Re \left\{ \vec{E}_L^{\ *} \cdot \vec{E}_{SPP} \cdot e^{-2i\omega t + 2i\vec{k}_{SPP} \cdot \vec{r}} \right\} \end{aligned}$$

- Fourier-filtering to the 1ω and the 1|k|component produces a signal that is linear in \vec{E}_{SPP} , as long as \vec{E}_{SPP} is weak compared to \vec{E}_{L} .
- Changing the probe-polarization in the interferometer affects the relative time-delay.
- Spectral interferences provide the phase of the Jones-vector of the probe pulses.
- The in-plane component of the field vectors can then be calculated from the data.
- The z-component of the field vector can be reconstructed (above the surface) using the Maxwell equation $\nabla \cdot \vec{E} = 0$. The numerical integration is easily possible since the SPP is an evanescent wave.
- The result is a full vector reconstruction with sub-wavelength spatial and sub-femtosecond temporal resolution.

Fully Reconstructed Vectors

Analysis of Topological Fields

Nanoplasmonic topology can be described by C-points and L-lines in the spin-angular momentum density

$$\vec{S} = \frac{1}{2\omega} \cdot \operatorname{Im}(\varepsilon \vec{E}^* \times \vec{E} + \mu \vec{H}^* \times \vec{H})$$

- \blacksquare C-points are isolated locations where \vec{S} points directly into (p=-1/2) or out of the surface $(p=+\frac{1}{2})$.
- L-lines are closed loops whereon \vec{S} lies within the surface plane.
- The vorticity *v* depends on how often and with what handedness \vec{S} rotates along an L-line. The vorticity is connected to the C-points within the region.
- The Chern number C = p v follows from both polarity and vorticity.

Plasmonic Meron

- Exciting an L=2 Archimedean spiral with linear polarized light yields a SPP Meron.
- \blacksquare 1 ω -filtering of data recorded with different probe polarizations yields the projection of the SPP on the probe pulse.
- Polarimetry reconstructs the electric and magnetic fields and the spin angular momentum density.
- Here, the reconstruction is shown at a delay-time of 69.83 fs.

- lacksquare To visualize the topology, \vec{S} is plotted in a HSV color scale:
- \blacksquare H: azimuth angle of \vec{S}
- S: sine of polar angle $(|\vec{S}_{\perp}| / |\vec{S}|)$
- V: relative length $|\vec{S}|$

- With a polarity $p=+\frac{1}{2}$ and a vorticity v=1the Meron's Chern number is C=0.5.
- The Meron is stable for more than 20 fs.

Calculation (static)

Plasmonic Meron Pair

- The same analysis can be applied to a SPP Meron pair, where two Merons with the same polarity and vorticity are next to each other.
- Such Meron pair can be created by exciting an L=1 spiral with linearly polarized light.
- The polarity is $p=+\frac{1}{2}$ for both Merons comprising the Meron pair.
- The total vorticity is v=2 resulting in C=1.
- The Meron pair is stable for more than 10 fs.

Conclusion

- Vector polarimetry is an excellent tool to reconstruct the electric and magnetic field of SPPs.
- Using vector polarimetry it is possible to measure the spin angular momentum of an SPP even in complex field situations with femtosecond time and deep-subwavelength spatial resolution.
- After calculating the spin angular momentum it is possible to determine L-lines and C-points for SPP Merons and Meron pairs and verify experimentally that they are topologically different.