THz conductivity of nanograined Bi, Te, pellets
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« Topological insulators (T1)

- host Dirac carriers at the surface with a very high mobility

- spin—momentum locking == no backscattering between states of opposite momentum which
would otherwise need a spin flip

- transport properties of bulk crystals being dominated by bulk carriers which outnumber
the surface carriers by orders of magnitude

« Material studied

- Bi, Te; nanoparticles (with different Te doping)
compacted by hot pressing to nanograined bulk
samples with a high surface to volume ratio

- glve access to surface properties even in (a) | |
extended dimensions (a) Transmission Electron Microscopy(TEM) (b) Scanning Electron

: _ _ Microscopy(SEM ) and (c) Atomic Force Microscopy(AFM) images
- percolating channel of Dirac carriers along of Bi,Te, nanoparticles (taken from [1])
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Comparison of relative resistivity-change versus magnetic field at
three different temperatures(taken from[1])

« Method

- THz time-domain spectroscopy (TDS) in reflection geometry is the method employed

- two parabolic mirrors guide THz pulse generated by photo-conductive antenna (PCA) to the
sample

- two more parabolic mirrors focus the reflected THz radiation onto the detector

- the detector being gated by near infrared pulse which allows the sampling of electric field
evolution of THz pulse.

Theoretical models

» Fermi Energy Eg is calculated from the relation
[ D(E) f(E,Ef)dE = ny(1.8K) (n-doped system)

fi’o D(E) (1 - f(E, Ef)) dE = ny(1.8K) (p-doped system)

where, D(E) — density of states
f(E,E; ) — Fermi-Dirac distribution
n, (1.8 K) — carrier density from hall measurements at 1.8K
E. — Energy at conduction band minimum
E, — Energy at valence band maximum

« Chemical potential ((T)) is calculated from the concept of particle number conservation

Three different contributions are employed to analyze the reflectivity spectra
- free carrier absorption by bulk carriers (bulk conductivity)

Tp: momentum scattering time of bulk carriers

m™: Effective mass of bulk carriers
p’: scaling factor accounting for the fact that sample 1s not a bulk crystal

- free carrier absorption by surface carriers (surface conductivity)
The Dirac carriers behave as massless fermions, so the Drude formula differs from the bulk as
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q’:surface to volume ratio
Y. scattering rate of surface carriers
Ve: Fermi velocity

- plasmonic contribution of surface carriers (plasmonic conductivity)
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r’ : ratio of surface plasmons to free surface carriers AFM image of compacted Bi,Te; pellet

Orotqr (W) (total conductivity) = og(w) + o5(w) + op(w)

When the frequency of electric field is resonant to the plasmon (associated with strong mobility
offered in the domain of surface carriers), strong light-matter interaction occurs.

Case | (Ec1s 0.078 eV above conduction band minimum)
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Fig.l.1. Reflectivity as a function of temperature and wavenumber from (a) experiment and (b) simulation (taken from [1])

. strong plasmonic response at 45 cm at low temperatures -

- decrease In plasmonic contribution with increase in temperature owing to increased scattering at
high temperatures (y,(T) = yo + AT? ,where A = 3.33x10"* cm™1K~?)
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Fig.l.2. Ratio of contribution of bulk, surface and plasmonic conductivity as a function of frequency at (a) OK, (b) 150K and
(c) 300K (taken from [1])
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- dominance of surface transport below plasmonic frequency accounting for roughly 60 % of the
net conductivity even at room temperature

Case Il (Ec1s 0.052 eV above conduction band minimum)
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Fig I1.1. Reflectivity as a function of temperature and wavenumber from (a) experiment and (b) simulation
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- weaker plasmonic response (compared to case |) even at low temperatures
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Fig 11.2 . Temperature variation of (a) carrier density and (b) mobility of surface carriers
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Fig 11.3 Ratio of contribution of bulk, surface and plasmonic conductivity as a function of frequency at (a) 4K, (b) 100K and
(c) 300K
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Despite high bulk carrier density of the order of 101°-10%° cm- compared to surface carrier density of the
order of 10%3 cm (Fig.11.2.(a)), surface carriers dominate the net conductivity(~80 percent) with a mobility
ebove 103 cm?/Vs (Fig.11.2.(b)) even at room temperature ==p high mobility of surface carriers exploited!

Two samples with different Te doping are studied as discussed in cases | and I1.
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Conclusions and outlook

» Using hot-pressed Bi, Te; nanograined pellets help exploit the properties (high mobility and
thereby, high conductivity) of surface carriers which are otherwise outnumbered by bulk
carriers in bulk crystals.

« Surface carriers with high mobility have a strong frequency dependence unlike bulk carriers
whose reflectivity profiles show a flat response.

* Non-equilibrium carrier dynamics of bulk and surface carriers can be further exploited by
optical pump-THz probe and THz pump-THz probe spectroscopy respectively.




