Open-Minded

An Experimental Setup to Generate Ultra-**Short Ion Pulses for Use in Pump-Probe** Experiments

Lukas Kalkhoff, Alexander Golombek, Pawel Kucharczyk, Lars Breuer, Marika Schleberger, Klaus Sokolowski-Tinten and Andreas Wucher

Fakultät für Physik, University Duisburg-Essen, Germany

Motivation

Can we generate ion pulses of picosecond time resolution in the keV-range for observation of ultra-short dynamics via pump-probe technique?

- generation of ultra-short ion pulses: difficult task due to space-charge broadening and velocity distribution of ions at a given temperature
- ⇒ supersonic gas expansion control over number density and temperature distribution in gas beam

Concept

 intersection of supersonic gas beam with intense fs laser pulse and subsequent bunching of generated ions

Goal: ion source with picosecond time resolution ion pulse width at T = 300 Ksimulated flight time distributions

- shortest ion pulse width with ion buncher and backfilled gas at room temperature: 180 ps [1]
- reduction of thermal velocity distribution allows to further compress ion pulses within buncher
- ⇒ combination of ion buncher with ultracold molecular beam leads to a picosecond ion source!

Experimental setup

• 6 piezo motors allow *in-situ* alignment of electrodes for distances $d_{1,2}$ and angular tilt $\phi_{x,y}$

Characterization of fs photoionization laser

- beam properties:
- 800 nm • 50 fs • 1.5 mJ per pulse
- 1 kHz
- symmetrical laser spot profile with diameter < 10 μ m and Rayleigh range of $z_R \approx 300 \ \mu$ m
- measured spot profile leads to a maximum peak intensity I₀ ≈ 3.5×10¹⁰ W/cm²
- \Rightarrow intensity allows in principle to create Ne^{q+} with charge state q = 1, 2, 3

Geometric Boundaries

- horizontal laser beam scan reveals geometric boundary of aperture in E₂ (Ø 80 μm)
- symmetric profile of Neon beam at ionization point defined by skimmer of Ø 1 mm

Delay line for probing laser

- long ion flight times demand delayed probing pulse of < 20 ns and a stability of a few ps
- uncertainty of delay is within the resolution limit of used detector

Results ion flight time spectra

comparison Ne beam & bulk

- Neon ions 20 Ne $^{q+}$ (q = 1&2, 20 Ne $^{2+}$ / 20 Ne $^{+} \approx 0.03$) accessible at modest beam pressure of 2 bar
- thermal velocity distribution can be reduced drastically by cold molecular beam (below 1 K)

In situ alignment of each electrode variation angles ϕ_x

- small extraction field (U = 200 V) between E₁ and E₂ → long ion flight times
- \Rightarrow allows to monitor ion flight time behaviour under variation of angles ϕ_{xy} for E_1 , E_2 and E_3
- \Rightarrow flight time maxima (for E_1) and minima visible (E_2 and E_3) visible \rightarrow optimal buncher alignment

Flight time focus and measureds ion pulse width

flight time vs. laser position eU (Su) 46 $d_1 = 4.5 \text{ mm}$ flight time $d_2 = 4.5 \text{ mm}$ m = 20 amu*U* = 4400 V <u>C</u> 44 43 1.0 3.0 laser position z above E_2 (mm)

- flight time as a function of laser position matches the theoretically expected behaviour
- \Rightarrow allows to extract and align distances d_1 and d_2 in geometric arrangement
- ⇒ shortest Ne pulse measured yields a FWHM of **135 ps** (FWHM) @ 2 keV ion energy
- ⇒ resolution limit of used detector is reached, new technique needed to verify ps pulses