Open-Minded

An Experimental Setup for Ultra-Short Ion Pulses - Generation of 400 ps Ion Pulses

Alexander Breuers, Marika Schleberger, Klaus Sokolowski-Tinten and **Andreas Wucher**

Fakultät für Physik, University of Duisburg-Essen, Germany

Motivation

- generation of highly localized non-equilibrium states via ion impact onto a surface
- observation of dynamics on a (sub-) picosecond timescale via pump-probe technique

- generation of ultra-short ion pulses: difficult task due to space-charge broadening and velocity distribution of ions at a given temperature
- ⇒ supersonic gas expansion control over number density and temperature distribution
- characterization of such a supersonic gas expansion of Argon via Excimer laser

Characterization of fs laser system via CCD camera

- nearly symmetrical laser spot profile with diameter < 10 μ m and Rayleigh range of $z_R \approx 300 \ \mu$ m
- measured spot profile leads to a peak intensity I₀ ≈ 4.0×10¹⁶ W/cm²
- \Rightarrow intensity allows in principle to create Ar $^{q+}$ with charge state q = 1, ..., 6

Experimental setup

beam properties:

157 nm 5 ns 3.0 mJ up to 200 Hz

exit profile: 3 mm x 6 mm

lens focus: 384 mm

focal profile: 400 μm x 800 μm

Measurement of beam density

background gas signal

measured ion pulses generated by laser induced photoelectrons in ionization volume!

pressure (10⁻⁷ mbar)

- $\Delta x = 1060 \ mm$ • flight time yields a terminal parallel velocity of $v_{\parallel,\infty} = \frac{\Delta x}{\Delta t} = \frac{1000 \text{ mm}}{1640 \text{ µs}} = 646 \frac{m}{s}$
- FWHM of 94 µs yields a (deconvoluted) standard deviation of $\sigma_{\rm r} = 37~\mu {\rm s}$
- \Rightarrow resulting speed ratio of S = 44 leads to parallel temperature of $T_{\parallel,\infty} = 512$ mK
- \Rightarrow combines to a spatial standard deviation of $\sigma_{\rm x} = 24$ cm along flight direction

Measurement of beam profile and temperature distribution

Beam profile and temperature distribution

skimmer position y (mm)

allows to quantify the center beam density with condition

$$N_{Bulk} = N_{Beam} = \iiint \rho_0 f_x(x) f_y(y) f_z(z) dV,$$

$$\underline{y^2}$$

$$z^2$$

$$f_x(x) \cong 1, f_y(y) = e^{-\frac{y^2}{2\sigma_y^2}}, f_z(z) = e^{-\frac{z^2}{2\sigma_z^2}}$$

- yields a center line density of $\rho_0 = (6.0 \pm 0.12) \times 10^{10} \text{cm}^{-3}$
- difference to theoretical prediction of an order of magnitude due to the presence of skimmers blocking the central intensity of the beam
- estimation of the velocity distribution perpendicular to the beam according to

$$e^{-\frac{mv_{\perp}^2}{2k_BT_{\perp}}} = e^{-\frac{z^2}{2\sigma_z^2}}$$
 with the geometric relation $\frac{v_{\perp}}{v_{\parallel \infty}} = \frac{z}{\Delta x}$

- for laser with an estimated Rayleigh range of ≈ 400 μm and distance $\Delta x = 380$ mm between skimmer 3 and plane of detection: $v_{\perp} \le 1 \text{ m/s} \rightarrow T_{\perp} \le 2.3 \text{ mK}$
- upper limit of 10 mK in simulations already leads to a time resolution of sub-picoseconds → <u>unproblematic</u>

Characterization of geometry: Argon background gas

Detection geometry

- 3 piezo motors allow to move the upper electrode twofold: absolute height h and angular tilt $\phi_{x,y}$
- vacuum chamber filled with Argon background gas at $p_0 = 9.0 \times 10^{-1}$ mbar

Time-of-Flight mass spectra

geometric boundaries

- detection of ionized Argon via Time-of-Flight mass spectrometry (ToF)
- allows to quantify absolute flight time, pulse height and pulse width for each mass species
- x-scan of laser allows to image the transmitting hole in electrode E_1
- time of flight as function of height h of electrode E_2 yields starting height $h_0 = 3.75 \text{ mm}$

Time-of-Flight focus and sub-400 ps ion pulses

pulse shape

ToF vs. laser position

FWHM vs. laser position

- the shortest pulse duration yields a FWHM of **370 ps** for the Ar pulse of the bulk gas
- time of flight as a function of laser position matches the theoretically expected behaviour
- \Rightarrow allows to extract distances d_1 , d_2 and z_0 in geometric arrangement
- FWHM of Argon ion pulse is minimized at the Time-of-Flight minimum $\rightarrow \Delta t_{min} \approx 0.25$ ps
- \Rightarrow offset Δt_0 must originate from:
 - thermal starting velocity spread $\rightarrow \approx 200$ ps at T = 300 K
 - temporal measurement jitter / detector time resolution
- FWHM allows to estimate the starting width $\Delta z \approx 100 \ \mu \text{m} \rightarrow \text{expanded laser focus}$

Current status

- distance d_1 can be reduced without altering detection characteristic
- adjusting the laser focus to diameter < 10 μm
- ⇒ reduces the behaviour of the FWHM by an order of magnitude
- \Rightarrow produces charge states for Ar q^+ for q > 1 in mass spectra
- crossing the gas and laser beam for ion signal from gas beam

laser position z (mm)

⇒ reducing thermal broadening to shorten pulse width even further!