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Introduction

We wish to study energy correlations of quantum spec-
tra. Suppose the spectrum of a quantum system has
been measured or calculated. All levels in the total spec-
trum having the same quantum numbers form one par-
ticular subspectrum. Its energy levels are at positions
Tn, N =1,2,...,N, say. We assume that N, the num-
ber of levels in this subspectrum, is large. With a proper
smoothing procedure, we obtain the level density R;(x),
i.e. the probability density of finding a level at the energy
x. As indicated in the top part of Figure 1, the level
density R;(x) increases with 2 for most physics systems.
In the present context, however, we are not so interested
in the level density. We want to measure the spectral cor-
relations independently of it. Hence, we have to remove
the level density from the subspectrum. This is referred
to as unfolding. We introduce a new dimensionless en-
ergy scale & such that d¢ = Ry(x)dx. By construction,
the resulting subspectrum in & has level density unity
as shown schematically in the bottom part of Figure 1.
It is always understood that the energy correlations are
analyzed in the unfolded subspectra.
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FIG. 1. Original (top) and unfolded (bottom) spectrum.

Surprisingly, a remarkable universality is found in the
spectral correlations of a huge class of systems, includ-
ing nuclei, atoms, molecules, quantum chaotic and dis-
ordered systems and even quantum chromodynamics on
the lattice. Consider the nearest neighbor spacing distri-
bution p(s). It is the probability density of finding two
adjacent levels in the distance s. If the positions of the
levels are uncorrelated, the nearest neighbor spacing dis-
tribution can be shown to follow the Poisson law

p)(s) = exp(—s) . (1)

While this is occasionally found, many more systems
show a rather different nearest neighbor spacing distri-
bution, the Wigner surmise

p(w)(s) = gs exp <7252) . (2)

As shown in Figure 2, the Wigner surmise excludes de-
generacies, p(W)(O) = 0, the levels repel each other. This
is only possible if they are correlated. Thus, the Poisson
law and the Wigner surmise reflect the absence or the
presence of energy correlations, respectively.
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FIG. 2. Wigner surmise (solid) and Poisson law (dashed).

Now, the question arises: If these correlation patterns
are so frequently found in physics, is there some simple,
phenomenological model? — Yes, Random Matrix The-
ory (RMT) is precisely this. To describe the absence of
correlations, we choose, in view of what has been said
above, a diagonal Hamiltonian

H = diag (z1,...,zN) , (3)

whose elements, the eigenvalues x,,, are uncorrelated ran-
dom numbers. To model the presence of correlations, we
insert off-diagonal matrix elements,

Hyp -+ Hin
H = : : . (4)
Hyy -+ Hnn

We require symmetry H” = H. The independent ele-
ments H,,, are random numbers. The random matrix
H is diagonalized to obtain the energy levels z,, n =
1,2,...,N. Indeed, a numerical simulation shows that
these two models yield, after unfolding, the Poisson law
and the Wigner surmise for large N, i.e. the absence or
presence of correlations. This is the most important in-
sight into the phenomenology of RMT.

In this article, we setup RMT in a more formal way,
we discuss analytical calculations of correlation functions,
we demonstrate how this relates to supersymmetry and
stochastic field theory, we show the connection to chaos,
we briefly sketch the numerous applications in many-—
body physics, in disordered and mesoscopic systems, in
models for interacting fermions and in quantum chromo-
dynamics. We also mention applications in other fields,
even beyond physics.



Random Matrix Theory

Classical Gaussian Ensembles

For now, we consider a system whose energy levels are
correlated. The N x N matrix H modeling it has no fixed
zeros but random entries everywhere. There are three
possible symmetry classes of random matrices in stan-
dard Schrodinger quantum mechanics. They are labeled
by the Dyson index (. If the system is not time-reversal
invariant, H has to be Hermitean and the random entries
H,, are complex (8 = 2). If time-reversal invariance
holds, two possibilities must be distinguished: If either
the system is rotational symmetric, or it has integer spin
and rotational symmetry is broken, the Hamilton matrix
H can be chosen real symmetric (8 = 1). This is the
case in eqn [4]. If, on the other hand, the system has
half-integer spin and rotational symmetry is broken, H
is self-dual (8 = 4) and the random entries H,,, are 2 x 2
quaternionic. The Dyson index 3 is the dimension of the
number field over which H is constructed.

As we are interested in the eigenvalue correlations, we
diagonalize the random matrix, H = U 'a2U. Here,
x = diag(x1,...,xy) is the diagonal matrix of the N
eigenvalues. For 0 = 4, every eigenvalue is doubly degen-
erate. This is Kramers’ degeneracy. The diagonalizing
matrix U is in the orthogonal group O(N) for 8 =1, in
the unitary group U(N) for 8 = 2 and in the unitary—
symplectic group USp(2N) for 8 = 4. Accordingly, the
three symmetry classes are referred to as orthogonal, uni-
tary and symplectic.

We have not yet chosen the probability densities for
the random entries H,,,,,. To keep our assumptions about
the system at a minimum, we treat all entries on equal
footing. This is achieved by rotational invariance of the
probability density P](VB )(H ), not to be confused with the
rotational symmetry employed above to define the sym-
metry classes. No basis for the matrices is preferred in
any way if we construct PJ(VB )(H ) from matrix invariants,
i.e. from traces and determinants, such that it depends
only on the eigenvalues, PJ(VB)(H) = PJ(VB) (). A particu-
larly convenient choice is the Gaussian

PJ(VH) (H) = C](VB) exp (—%tr H2) , (5)
where the constant v sets the energy scale and the con-
stant C](Vﬁ) ensures normalization. The three symme-
try classes together with the probability densities [5] de-
fine the Gaussian ensembles: the Gaussian orthogonal
(GOE), unitary (GUE) and symplectic (GSE) ensemble
for g =1,2,4.

The phenomenology of the three Gaussian ensembles
differs considerably. The higher (3, the stronger the level
repulsion between the eigenvalues x,. Numerical simu-
lation quickly shows that the nearest neighbor spacing
distribution behaves like p(?)(s) ~ s? for small spacings

s. This also becomes obvious by working out the differ-
ential probability PJ(Vﬁ )(H )d[H] of the random matrices
H in eigenvalue—angle coordinates 2 and U. Here, d[H]
is the invariant measure or volume element in the matrix
space. When writing d[-], we always mean the product of
all differentials of independent variables for the quantity
in the square brackets. Up to constants, we have

d[H] = |An (2)|"d[2]du(U) , (6)

where du(U) is, apart from certain phase contribu-
tions, the invariant or Haar measure on O(N), U(N) or
USp(2N), respectively. The Jacobian of the transforma-
tion is the modulus of the Vandermonde determinant

An(x) = H (Tn — Tm) (7)

n<m

raised to the power 8. Thus, the differential probability
P](Vﬁ )(H )d[H| vanishes whenever any two eigenvalues x,,
degenerate. This is the level repulsion. It immediately
explains the behavior of the nearest neighbor spacing dis-
tribution for small spacings.

Additional symmetry constraints lead to new random
matrix ensembles relevant in physics, the Andreev and
the chiral Gaussian ensembles. If one refers to the clas-
sical Gaussian ensembles, one usually means the three
ensembles introduced above.

Correlation Functions

The probability density to find k energy levels at po-
sitions x1,...,x, is the k-level correlation function
R,(f)(xl, ..., x). We find it by integrating out N —k lev-
els in the N-level differential probability P](Vﬁ)(H Yd[H].
We also have to average over the bases, i.e. over the di-
agonalizing matrices U. Due to rotational invariance,
this simply yields the group volume. Thus, we have

R,(f)(xl,...,xk) =

+oo +oo
(NL!W/dmk+1---/dmNmN(x)WP}f)(x). (8)

Once more, we used rotational invariance which implies
that P](Vﬁ )(x) is invariant under permutation of the levels
T,. Since the same then also holds for the correlation
functions [8], it is convenient to normalize them to the
combinatorial factor in front of the integrals. A constant
ensuring this has been absorbed into P](Vﬁ )(x)
Remarkably, the integrals in eqn [8] can be done in
closed form. The GUE case (8 = 2) is mathematically
the simplest and one finds the determinant structure
R,(f)(xl, ce X)) = det[KJ(\?) (@p, ) lp.g=1,..6 - (9)

All entries of the determinant can be expressed in terms
of the kernel K](\?)(xp, x4) which depends on two energy



arguments (xp,z,). Analogous but more complicated
formulae are valid for the GOE (8 = 1) and the GSE
(8 = 4), involving quaternion determinants and integrals
and derivatives of the kernel.

As argued in the Introduction, we are interested in
the energy correlations on the unfolded energy scale. The
level density is formally the one—level correlation func-
tion. For the three Gaussian ensembles it is, to leading
order in the level number N, the Wigner semicircle

1
R (1) = oo (AN — o (10)

for |z1| < 2v/Nv and zero for |z1| > 2v/Nv. None of
the common systems in physics has such a level density.
When unfolding, we also want to take the limit of in-
finitely many levels N — oo to remove cutoff effects due
to the finite dimension of the random matrices. It suf-
fices to stay in the center of the semicircle where the mean
level spacing is D = 1/R§ﬁ)(0) = v/v/N. We introduce
the dimensionless energies §, = z,/D, p =1,..., k which
have to be held fixed when taking the limit N — oco. The
unfolded correlation functions are given by

X6, 60 = lim DPRP(DE,... Dg) . (11)

As we are dealing with probability densities, the Jaco-
bians dx,/d§, enter the reformulation in the new energy
variables. This explains the factor D*. Unfolding makes
the correlation functions translation invariant, they de-
pend only on the differences &, — &;. The unfolded corre-
lation functions can be written in a rather compact form.
For the GUE (8 = 2) they read

sinm(&p — &q)

(& — &) (12)

XziQ)(Ela---,Ek)Zdet[ ]
p,q=1,....,k

There are similar, but more complicated formulae for the
GOE (8 = 1) and the GSE (6 = 4). By construction,
one has Xl(ﬁ)(gl) =1

It is useful to formulate the case where correlations are
absent, i.e. the Poisson case, accordingly. The level den-
sity Rgp)(xl) is simply N times the (smooth) probability
density chosen for the entries in the diagonal matrix [4].
Lack of correlations means that the k—level correlation
function only involves one—level correlations,

K
P N! P
R (@, mp) = N Zk)INF 1R @) . (3)

p=1

The combinatorial factor is important, since we always
normalize to N!/(N — k)!. Hence, one finds
P
X (e, 8) =1 (14)

for all unfolded correlation functions.

Statistical Observables

The unfolded correlation functions yield all statistical ob-
servables. The two—level correlation function Xy (r) with
r =& — & is of particular interest in applications. If we
do not write the superscript (8) or (P), we mean either
of the functions. For the Gaussian ensembles, XQ(B )(r) is
shown in Figure 3. One often writes Xo(r) = 1 —Ya(r).
The two-level cluster function Ya(r) nicely measures the
deviation from the uncorrelated Poisson case, where one
has XQ(P)(T) =1 and YQ(P)(T) =0.
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FIG. 3. Two-level correlation function XQ(B )(r) for GOE
(solid), GUE (dashed) and GSE (dotted).

By construction, the average level number in an inter-
val of length L in the unfolded spectrum is L. The level
number variance $?(L) is shown to be an average over
the two—level cluster function,

Y (L)=L-2 /(L —7)Ya(r)dr . (15)

We find L £+ 4/32(L) levels in an interval of length L.
In the uncorrelated Poisson case, one has %2(F)(L) = L.
This is just Poisson’s error law. For the Gaussian ensem-
bles ©2(%)(L) behaves logarithmically for large L. The
spectrum is said to be more rigid than in the Poisson
case. As Figure 4 shows, the level number variance
probes longer distances in the spectrum, in contrast to
the nearest neighbor spacing distribution.

SA(L)
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FIG. 4. Level number variance %?(L) for GOE (solid) and
Poisson case (dashed).



Many more observables, also sensitive to higher order
k > 2 correlations, have been defined. In practice, how-
ever, one is often restricted to analyzing two—level cor-
relations. An exception is, to some extent, the nearest
neighbor spacing distribution p(s). It is the two-level
correlation function with the additional requirement that
the two levels in question are adjacent, i.e. that there are
no levels between them. Thus, all correlation functions
are needed if one wishes to calculate the exact nearest
neighbor spacing distribution p®(s) for the Gaussian
ensembles. These considerations explain that we have
Xz(ﬁ)(s) ~ p@(s) for small s. But while XQ(B)(S) satu-
rates for large s, p(ﬁ)(s) quickly goes to zero in a Gaus-
sian fashion. Thus, although the nearest neighbor spac-
ing distribution mathematically involves all correlations,
it makes in practice only a meaningful statement about
the two-level correlations. Luckily, p(®)(s) differs only
very slightly from the heuristic Wigner surmise [2] (cor-
responding to § = 1), respectively from its extensions
(corresponding to 8 =2 and 8 = 4).

Ergodicity and Universality

We constructed the correlation functions as averages over
an ensemble of random matrices. But this is not how we
proceeded in the data analysis sketched in the Introduc-
tion. There, we started from one single spectrum with
very many levels and obtained the statistical observable
just by sampling and, if necessary, smoothing. Do these
two averages, the ensemble average and the spectral av-
erage, yield the same? — Indeed, one can show that
the answer is affirmative, if the level number N goes to
infinity. This is referred to as ergodicity in RMT.

Moreover, as already briefly indicated in the Intro-
duction, very many systems from different areas of
physics are well described by RMT. This seems to be
at odds with the Gaussian assumption [5]. There is
hardly any system whose Hamilton matrix elements fol-
low a Gaussian probability density. The solution for this
puzzle lies in the unfolding. Indeed, it has been shown
that almost all functional forms of the probability density
P](Vﬁ )(H ) yield the same unfolded correlation functions, if
no new scale comparable to the mean level spacing is
present in PJ(vﬁ ) (H). This is the mathematical side of the
empirically found wuniversality.

Ergodicity and universality are of crucial importance
for the applicability of RMT in data analysis.

Wavefunctions

By modeling the Hamiltonian of a system with a ran-
dom matrix H, we do not only make an assumption
about the statistics of the energies, but also about those
of the wavefunctions. Because of the eigenvalue equa-
tion Hu,, = xpu,, n = 1,..., N, the wavefunction be-
longing to the eigenenergy x,, is modeled by the eigen-
vector u,. The columns of the diagonalizing matrix

U = [u1 uz - un] are these eigenvectors. The proba-
bility density of the components u,,, of the eigenvector
u, can be calculated rather easily. For large N it ap-
proaches a Gaussian. This is equivalent to the Porter—
Thomas distribution. While wavefunctions are often not
accessible in an experiment, one can measure transition
amplitudes and widths, giving information about the ma-
trix elements of a transition operator and a projection of
the wavefunctions onto a certain state in Hilbert space.
If the latter are represented by a fixed matrix A or a fixed
vector a, respectively, one can calculate the RMT predic-
tion for the probability densities of the matrix elements
uf, Au,,, or the widths a'u,, from the probability density
of the eigenvectors.

Scattering systems

It is important that RMT can be used as a powerful tool
in scattering theory, because the major part of the exper-
imental information about quantum systems comes from
scattering experiments. Consider an example from com-
pound nucleus scattering. In an accelerator, a proton is
shot on a nucleus, with which it forms a compound nu-
cleus. This then decays by emitting a neutron. More gen-
erally, the ingoing channel v (the proton in our example)
connects to the interaction region (the nucleus), which
also connects to an outgoing channel p (the neutron).
There are A channels with channel wavefunctions which
are labeled v = 1,...,A. The interaction region is de-
scribed by an N x N Hamiltonian matrix H whose eigen-
values z,, are bound state energies labeled n =1,..., N.
The dimension N is a cutoff which has to be taken to
infinity at the end of a calculation. The A x A scattering
matriz S contains the information about how the ingo-
ing channels are transformed into the outgoing channels.
The scattering matrix S is unitary. Under certain and
often justified assumptions, a scattering matrix element
can be cast into the form

Syp = 0yp — i2TWIGTW, . (16)

The couplings W, between the bound states n and the
channels v are collected in the N x A matrix W, W, is
its vth column. The propagator G—! is the inverse of

G=zly—H+ir » W,W]. (17)

v open

Here, z is the scattering energy and the summation is
only over channels which are open, i.e. accessible. For-
mula [16] has a clear intuitive interpretation. The scat-
tering region is entered through channel v, the bound
states of H become resonances in the scattering pro-
cess according to eqn [17], the interaction region is left
through channel p. This formulation applies in many
areas of physics. All observables such as transmission
coefficients, cross sections and others can be calculated
from the scattering matrix S.



We have not made any statistical assumptions yet. Of-
ten, one can understand generic features of a scattering
system by assuming that the Hamiltonian H is a random
matrix, taken from one of the three classical ensembles.
This is one RMT approach used in scattering theory.

Another RMT approach is based on the scattering ma-
trix itself, S is modeled by a A x A unitary random ma-
trix. Taking into account additional symmetries, one ar-
rives at the three circular ensembles, circular orthogonal
(COE), unitary (CUE) and symplectic (CSE). They cor-
respond to the three classical Gaussian ensembles and are
also labeled with the Dyson index 8 = 1,2,4. The eigen-
phases of the random scattering matrix correspond to the
eigenvalues of the random Hamiltonian matrix. The un-
folded correlation functions of the circular ensembles are
identical to those of the Gaussian ensembles.

Supersymmetry

Apart from the symmetries, random matrices contain
nothing but random numbers. Thus a certain type of
redundancy is present in RMT. Remarkably, this redun-
dancy can be removed, without losing any piece of infor-
mation by using supersymmetry, i.e. by a reformulation
of the random matrix model involving commuting and
anticommuting variables. For the sake of simplicity, we
sketch the main ideas for the GUE, but they apply to the
GOE and the GSE accordingly.

One defines the k—-level correlation functions by using
the resolvent of the Schrodinger equation,

R(2)($1,...,$k) =

w [ i

The energies carry an imaginary increment x;,t =z, ki€
and the limit ¢ — 0 has to be taken at the end
of the calculation. The k-level correlation functions
R,(f) (21,...,2%) as defined in eqn [8] can always be ob-

tained from the functions [18] by constructing a linear

]t —=—dlH) . (18)

zp — H

combination of the R( )(xl, ..., Zx) in which the signs of
the imaginary 1ncrements are chosen such that only the
imaginary parts of the traces contribute. Some trivial §—
distributions have to be removed. The k—level correlation
functions [18] can be written as the k—fold derivative

2
5 1 9 (2)

R (21, ...,ap) = p =4, (v +J)

@m)* T, 0, J=0
(19)
of the generating function
k +
(xx +J, — H)
7@ +J:/P(2) p__ P d[H] ,

k (+J) ;)1;[1 @z —J, — H) [H]

which depends on the energies and k new source variables

Jp, p=1,...,k ordered in 2k x 2k diagonal matrices
x = diag (1,21, ..., Tk, Tk)
J:diag(+J1,—J1,...,-i—Jk,—Jk) . (21)

We notice the normalization Z]iz)(l‘) =1at J=0. The
generating function [20] is an integral over an ordinary
N x N matrix H. It can be exactly rewritten as an inte-
gral over a 2k x 2k supermatrix o containing commuting
and anticommuting variables,
Z(Q) (x+J) /Q o)sdet N (zF +J — o)dlo] . (22)
The integrals over the commuting variables are of the or-
dinary Riemann—Stiltjes type, while those over the anti-
commuting variables are Berezin integrals. The Gaussian

probability density [5] is mapped onto its counterpart in
superspace

1
Ql(f)( )= c,(f) exp (—ﬁstrUQ) , (23)
where c§€2) is a normalization constant. The supertrace

str and the superdeterminant sdet generalize the cor-
responding invariants for ordinary matrices. The total
number of integrations in eqn [22] is drastically reduced
as compared to eqn [20]. Importantly, it is independent
of the level number N which now only appears as the neg-
ative power of the superdeterminant in eqn [22], i.e. as an
explicit parameter. This most convenient feature makes
it possible to take the limit of infinitely many levels by
means of a saddle point approximation to the generating
function.

Loosely speaking, the supersymmetric formulation can
be viewed as an irreducible representation of RMT which
yields a clearer insight into the mathematical structures.
The same is true for applications in scattering theory and
in models for crossover transitions to be discussed be-
low. This explains why supersymmetry is so often used
in RMT calculations.

It should be emphasized that the role of supersym-
metry in RMT is quite different from the one in high
energy physics where the commuting and anticommut-
ing variables represent physical particles, bosons and
fermions, respectively. This is not so in the RMT con-
text. The commuting and anticommuting variables have
no direct physics interpretation, they appear simply as
helpful mathematical devices to cast the RMT model into
an often much more convenient form.

Crossover Transitions

The RMT models discussed up to now describe four ex-
treme situations, the absence of correlations in the Pois-
son case and the presence of correlations as in the three



fully rotational invariant models GOE, GUE and GSE.
A real physics system, however, is often between these
extreme situations. The corresponding RMT models can
vary considerably, depending on the specific situation.
Nevertheless, those models in which the random matrices
for two extreme situations are simply added with some
weight are useful in so many applications that they ac-
quired a rather generic standing. One writes

H(a)=HOY + oH®) | (24)

where H® is a random matrix drawn from an en-
semble with a completely arbitrary probability density
P (H©®). The case of a fixed matrix is included, be-
cause one may choose a product of d—distributions for
the probability density. The matrix H®) is random and
drawn from the classical Gaussian ensembles with prob-
ability density P](VB)(H(B)) for 8 = 1,2,4. One requires
that the group diagonalizing H () is a subgroup of the one
diagonalizing H®. The model [24] describes a crossover
transition. The weight « is referred to as transition pa-
rameter. It is useful to choose the spectral support of
H®© and H® equal. One can then view « as the root—
mean-square matrix element of H®). At a = 0, one has
the arbitrary ensemble. The Gaussian ensembles are for-
mally recovered in the limit o — oo, to be taken in a
proper way such that the energies remain finite.

We are always interested in the unfolded correlation
functions. Thus, a has to be measured in units of the
mean level spacing D such that A = a/D is the physi-
cally relevant transition parameter. It means that, de-
pending on the numerical value of D, even a small effect
on the original energy scale can have sizeable impact on
the spectral statistics. This is referred to as statistical
enhancement. The nearest neighbor spacing distribution
is already very close to p(?) (s) for the Gaussian ensembles
if A is larger than 0.5 or so. In the long range observables
such as the level number variance $?(L), the deviation
from the Gaussian ensemble statistics becomes visible at
interval lengths L comparable to A.

Crossover transitions can be interpreted as diffusion
processes. With the fictitious time ¢ = a?/2, the prob-
ability density Py (z,t) of the eigenvalues x of the total
Hamilton matrix H = H(t) = H(«) satisfies the diffusion
equation

Ay Py(z,t) = éQPN(M) : (25)

where the probability density for the arbitrary ensem-
ble is the initial condition Py (z,0) = P (z). The
Laplacean

lives in the curved space of the eigenvalues x. This dif-
fusion process is Dyson’s Brownian motion in slightly

simplified form. It has a rather general meaning for
harmonic analysis on symmetric spaces, connecting to
the spherical functions of Gelfand and Harish—Chandra,
Itzykson—Zuber integrals and to Calogero—Sutherland
models of interacting particles. All this generalizes to
superspace. In the supersymmetric version of Dyson’s
Brownian motion the generating function of the correla-
tion functions is propagated,

0
AsZk(S;t) - azk(svt) ) (27)

|~

where the initial condition Zj(s,0) = Z](CO)(S) is the gen-
erating function of the correlation functions for the arbi-
trary ensemble. Here, s denotes the eigenvalues of some
supermatrices, not to be confused with the spacing be-
tween adjacent levels. Since the Laplacean A lives in
this curved eigenvalue space, this diffusion process es-
tablishes an intimate connection to harmonic analysis on
superspaces. Advantageously, the diffusion [27] is the
same on the original and on the unfolded energy scales.

Fields of Application

Many—Body Systems

Numerous studies apply RMT to nuclear physics which is
also the field of its origin. If the total number of nucleons,
i.e. protons and neutrons, is not too small, nuclei show
single—particle and collective motion. Roughly speaking,
the former is decoherent out—of—phase motion of the nu-
cleons confined in the nucleus, while the latter is coherent
in—phase motion of all nucleons or of large groups of them
such that any additional individual motion of the nucle-
ons becomes largely irrelevant. It has been shown em-
pirically that the single—particle excitations lead to GOE
statistics, while collective excitations produce different
statistics, often of the Poisson type. Mixed statistics as
described by crossover transitions are then of particular
interest to investigate the character of excitations. For
example, one applies the model [24] with H(® drawn
from a Poisson ensemble and H®) from a GOE. Another
application of crossover transitions is breaking of time—
reversal invariance in nuclei. Here, H®) is from a GOE
and H® from a GUE. Indeed, a fit of spectral data to
this model yields an upper bound for the time-reversal
invariance violating root—mean—square matrix element in
nuclei. Yet another application is breaking of symmetries
such as parity or isospin. In the case of two quantum
numbers, positive and negative parity, say, one chooses
H© = diag (H™), H(7)) block-diagonal with H*+) and
H) drawn from two uncorrelated GOE and H®) from
a third uncorrelated GOE which breaks the block struc-
ture. Again, root—-mean—square matrix elements for sym-
metry breaking have been derived from the data.



Nuclear excitation spectra are extracted from scatter-
ing experiments. An analysis as described above is only
possible if the resonances are isolated. Often, this is not
the case and the resonance widths are comparable to or
even much larger than the mean level spacing, making
it impossible to obtain the excitation energies directly
from the cross sections. One then analyzes the latter and
their fluctuations as measured and applies the concepts
sketched above for scattering systems. This approach has
also been successful for crossover transitions.

Due to the complexity of the nuclear many—body prob-
lem, one has to use effective or phenomenological interac-
tions when calculating spectra. Hence, one often studies
whether the statistical features found in the experimen-
tal data are also present in the calculated spectra which
result from the various models for nuclei.

Other many—body systems, such as complex atoms and
molecules, have also been studied with RMT concepts,
but the main focus has always been on nuclei.

Quantum Chaos

Originally, RMT was intended for modeling systems with
many degrees of freedom such as nuclei. Surprisingly,
RMT proved useful for systems with few degrees of free-
dom as well. Most of these studied aim at establishing a
link between RMT and classical chaos. Consider as an
example the classical motion of a point—like particle in a
rectangle billiard. Ideal reflection at the boundaries and
absence of friction are assumed, implying that the parti-
cle is reflected infinitely many times. A second billiard is
built by taking a rectangle and replacing one corner with
a quarter circle as shown in Figure 5. The motion of
the particle in this Sinai billiard is very different from the
one in the rectangle. The quarter circle acts like a convex
mirror which spreads out the rays of light upon reflection.
This effect accumulates, because the vast majority of the
possible trajectories hit the quarter circle infinitely many
times under different angles. This makes the motion in
the Sinai billiard classically chaotic, while the one in the
rectangle is classically regular. The rectangle is separa-
ble and integrable, while this feature is destroyed in the
Sinai billiard. One now quantizes these billiard systems,
calculates the spectra and analyzes their statistics. Up
to certain scales, the rectangle (for irrational squared ra-
tio of the side lengths) shows Poisson behavior, the Sinai
billiard yields GOE statistics.

FIG. 5. The Sinai billiard.

A wealth of such empirical studies led to the Bohigas—
Giannoni—Schmit conjecture. We state it here not in its
original, but in a frequently used form: Spectra of systems
whose classical analogues are fully chaotic show correla-
tion properties as modeled by the Gaussian ensembles.
The Berry-Tabor conjecture is complementary: Spec-
tra of systems whose classical analogues are fully reg-
ular show correlation properties which are often those
of the Poisson type. As far as concrete physics appli-
cations are concerned, these conjectures are well-posed.
From a strict mathematical viewpoint, they have to be
supplemented with certain conditions to exclude excep-
tions such as Artin’s billiard. Due to the definition of
this system on the hyperbolic plane, its quantum version
shows Poisson—like statistics, although the classical dy-
namics is chaotic. Up to now, no general and mathemat-
ically rigorous proofs of the conjectures could be given.
However, semiclassical reasoning involving periodic orbit
theory and, in particular, the Gutzwiller trace formula,
yields at least a heuristic understanding.

Quantum chaos has been studied in numerous systems.
An especially prominent example is the Hydrogen atom
put in a strong magnetic field which breaks the integra-
bility and drives the correlations towards the GOE limit.

Disordered and Mesoscopic Systems

An electron moving in a probe, a piece of wire, say, is
many times scattered at impurities in the material. This
renders the motion diffusive. In a statistical model, one
writes the Hamilton operator as a sum of the kinetic part,
i.e. the Laplacean, and a white—noise disorder potential
V(7) with second moment

VAV (") = evd D (i =) . (28)

Here, 7 is the position vector in d dimensions. The con-
stant ¢y determines the mean free time between two scat-
tering processes in relation to the density of states. It is
assumed that phase coherence is present such that quan-
tum effects are still significant. This defines the meso-
scopic regime. The average over the disorder potential
can be done with supersymmetry. In fact, this is the
context in which supersymmetric techniques in statisti-
cal physics were developed, before they were applied to
RMT models. In the case of weak disorder, the result-
ing field theory in superspace for two—level correlations
acquires the form

/ dp(Q)£(Q) exp (—S(Q)) (29)

where f(Q) projects out the observable under considera-
tion and where S(Q) is the effective Lagrangean

S(Q) = — / str (D(VQ(P)? +i2rMQ(R) d'r . (30)



This is the supersymmetric non-linear o model. Tt is
used to study level correlations, but also to obtain infor-
mation about the conductance and conductance fluctua-
tions when the probe is coupled to external leads. The
supermatrix field Q(7) is the remainder of the disorder
average, its matrix dimension is four or eight, depending
on the symmetry class. This field is a Goldstone mode.
It does not directly represent a particle as often the case
in high energy physics. The matrix Q(7) lives in a coset
space of certain supergroups. A tensor M appears in the
calculation, and r is the energy difference on the unfolded
scale, not to be confused with the position vector 7.

The first term in the effective Lagrangean involving a
gradient squared is the kinetic term, it stems from the
Laplacean in the Hamiltonian. The constant D is the
classical diffusion constant for the motion of the elec-
tron through the probe. The second term is the ergodic
term. In the limit of zero dimensions, d — 0, the ki-
netic term vanishes and the remaining ergodic term yields
precisely the unfolded two—level correlations of the Gaus-
sian ensembles. Thus, RMT can be viewed as the zero—
dimensional limit of field theory for disordered systems.
For d > 0, there is a competition between the two terms.
The diffusion constant D and the system size determine
an energy scale, the Thouless energy E., within which
the spectral statistics is of the Gaussian ensemble type
and beyond which it approaches the Poisson limit. In
Figure 6, this is schematically shown for the level num-
ber variance ¥?(L) which bends from Gaussian ensemble
to Poisson behavior when L > E.. This relates to the
crossover transitions in RMT. Gaussian ensemble statis-
tics means that the electron states extend over the probe,
while Poisson statistics implies their spatial localization.
Hence, the Thouless energy is directly the dimensionless
conductance.
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FIG. 6. Level number variance ZQ(L)A In this example,
the Thouless energy is FE. ~ 10 on the unfolded scale. The
Gaussian ensemble behavior is dashed.

A large number of issues in disordered and mesoscopic
systems has been studied with the supersymmetric non—
linear o model. Most results have been derived for quasi—
one—dimensional systems. Through a proper discretiza-
tion, a link is established to models involving chains of
random matrices. As the conductance can be formulated
in terms of the scattering matrix, the experience with

RMT for scattering systems could be applied and led to
numerous new results.

Quantum Chromodynamics

Quarks interact by exchanging gluons. In quantum chro-
modynamics, the gluons are described by gauge fields.
Relativistic quantum mechanics has to be used. Ana-
lytical calculations are only possible after some drastic
assumptions and one must resort to lattice gauge theory,
i.e. to demanding numerics, to study the full problem.

The massless Dirac operator has chiral symmetry,
implying that all non—zero eigenvalues come in pairs
(=An, +An) symmetrically around zero. In chiral RMT,
the Dirac operator is replaced with block off-diagonal
matrices

(31)

el W]

w0

where W}, is a random matrix without further symme-
tries. By construction, W has chiral symmetry. The as-
sumption underlying chiral RMT is that the gauge fields
effectively randomize the motion of the quark. Indeed,
this simple schematic model correctly reproduces low—
energy sum rules and spectral statistics of lattice gauge
calculations. Near the center of the spectrum, there is
a direct connection to the partition function of quan-
tum chromodynamics. Furthermore, a similarity to dis-
ordered systems exists and an analogue of the Thouless
energy could be found.

Other Fields

Of the wealth of further investigations, we can mention
but a few. RMT is in general useful for wave phenomena
of all kinds, including classical ones. This has been shown
for elastomechanical and electromagnetic resonances.

An important field of application is quantum gravity
and matrix model aspects of string theory. We decided
not to go into this, because the reason for the emergence
of RMT concepts there is very different from everything
else discussed above.

RMT is also successful beyond physics. Not surpris-
ingly, it always received interest in mathematical statis-
tics, but, as already said, it also relates to harmonic anal-
ysis. A connection to number theory exists as well. The
high-lying zeros of the Riemann ¢ function follow the
GUE predictions over certain interval lengths. Unfortu-
nately, a deeper understanding is still lacking.

As the interest in statistical concepts grows, RMT
keeps finding new applications. Recently, one even
started using RMT for risk management in finance.
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