Price Cross-responses in Correlated Financial Markets

Speaker: Shanshan Wang

AG Prof. Thomas Guhr Faculty of Physics, University of Duisburg-Essen

Nov. 18th, 2016

Contents

1. Background

- price formation
- correlation of trade signs
- price response

2. Empirical results

- cross-responses
- cross-correlation of trade signs

3. A price impact model

- construction of the model
- comparison of simulated and empirical results
- impact functions
- 4. Summary

How to buy and sell stocks in the financial market?

How to buy and sell stocks in the financial market?

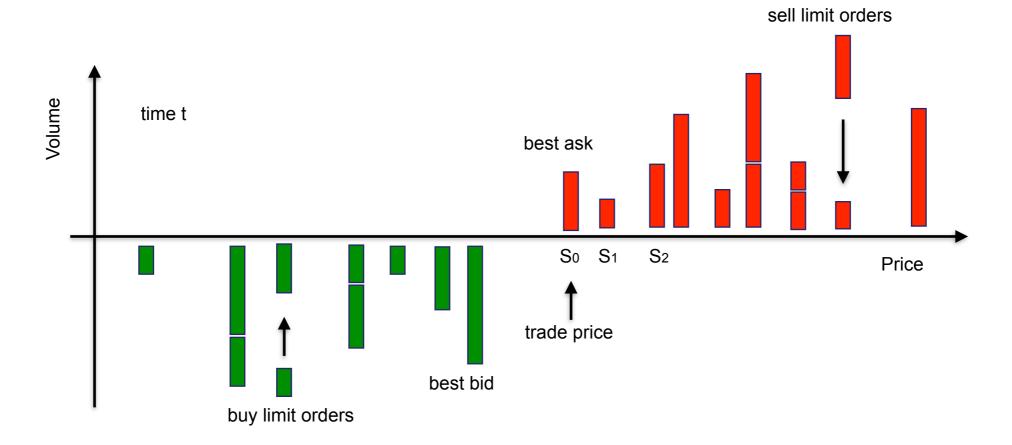
impatient traders → market orders patient traders → limit orders

- · best ask and best bid
- spread
- midpoint price

How to buy and sell stocks in the financial market?

impatient traders → market orders
patient traders → limit orders

- · best ask and best bid
- spread
- midpoint price

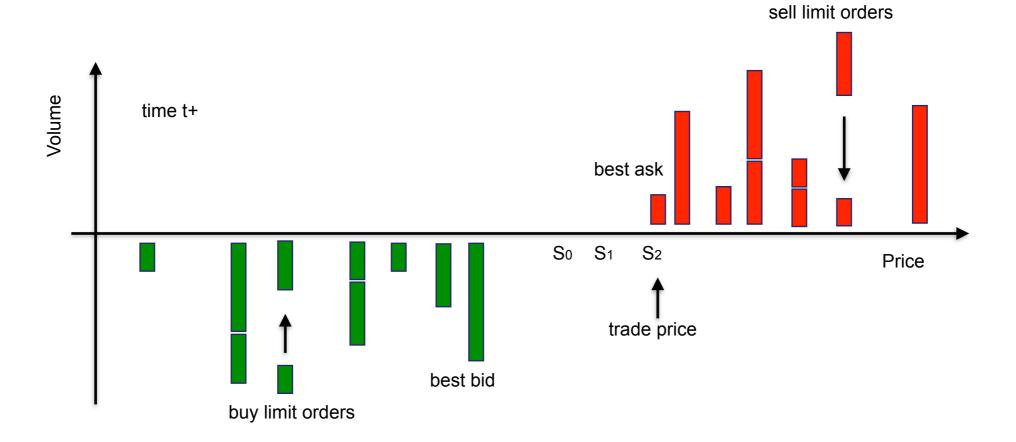

AA	PL	۹	Orde	rs Accepted	Total Volume	
APPL	LE INC COM			27,606	182,604	
	TOP OF B	OOK		LAST 10 TRADES		
	Shares	Price	Time	Price	e Shares	
	100	107.08	09:38:03	107.03	171	
S	200	107.07	09:38:03	107.04	100	
ASKS	400	107.06	09:38:03	107.04	1	
A	200	107.05	09:38:03	107.04	99	
	100	107.04	09:38:03	107.04	1	
	100	107.03	09:38:02	107.06	100	
S	400	107.02	09:38:02	107.05	9	
BIDS	724	107.01	09:38:02	107.05	91	
В	1,546	107.00	09:38:01	107.04	100	
	2,800	106.99	09:38:01	107.03	100	

How to buy and sell stocks in the financial market?

impatient traders → market orders
patient traders → limit orders

- best ask and best bid
- spread
- midpoint price

AA	AAPL Q		Orde	rs Accepted	Total Volume
APPL	E INC COM			27,606	182,604
	TOP OF B	OOK		LAST 10 TRADES	
	Shares	Price	Time	Price	e Shares
	100	107.08	09:38:03	107.03	3 171
S	200	107.07	09:38:03	107.04	100
ASKS	400	107.06	09:38:03	107.04	1
A	200	107.05	09:38:03	107.04	99
	100	107.04	09:38:03	107.04	1
	100	107.03	09:38:02	107.06	i 100
S	400	107.02	09:38:02	107.05	j 9
BIDS	724	107.01	09:38:02	107.05	i 91
В	1,546	107.00	09:38:01	107.04	100
	2,800	106.99	09:38:01	107.03	100

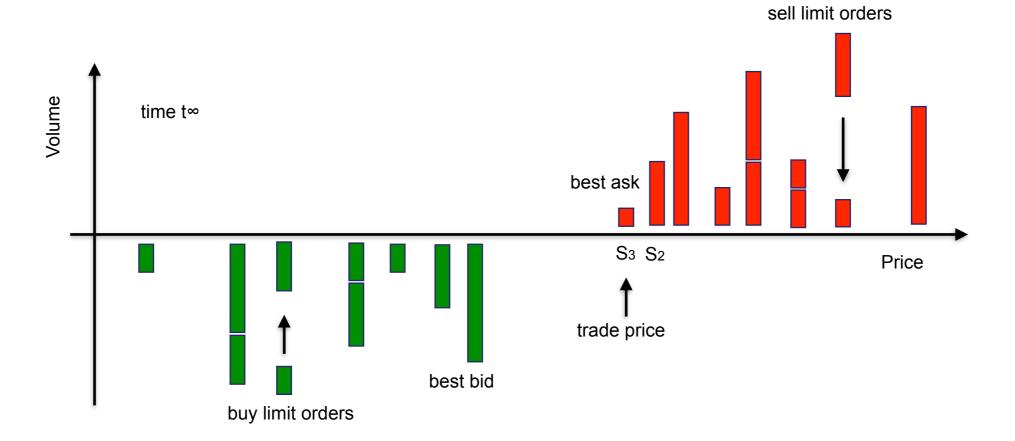


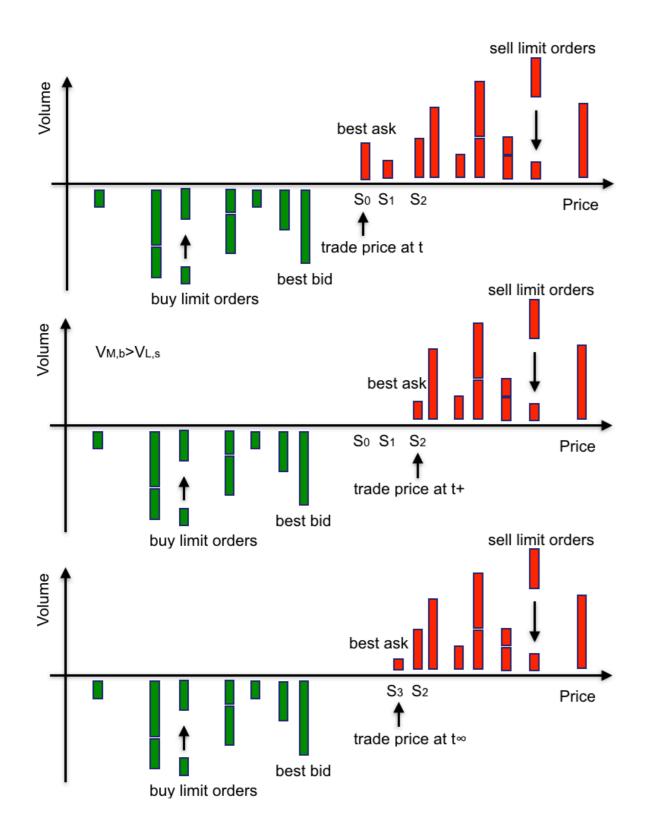
How to buy and sell stocks in the financial market?

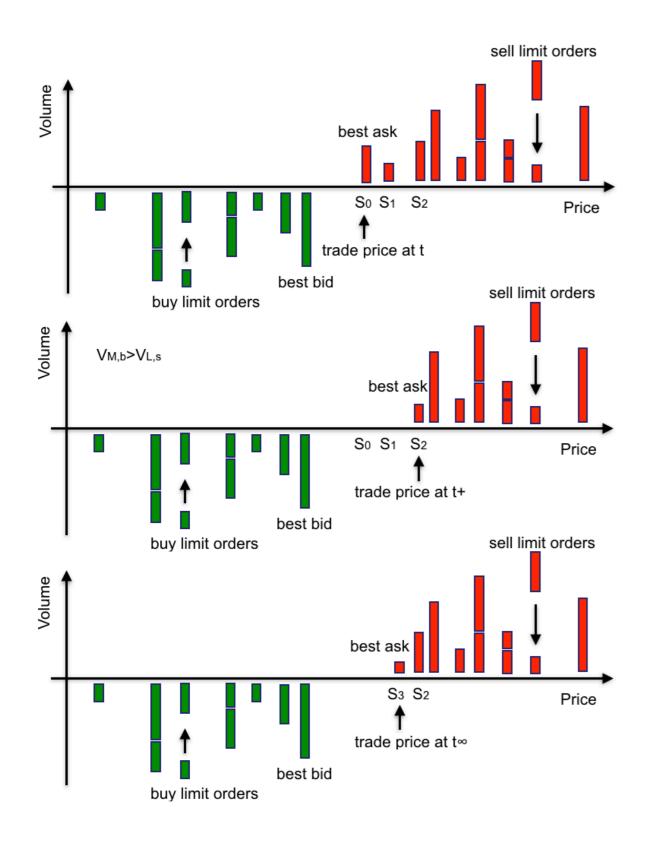
impatient traders → market orders
patient traders → limit orders

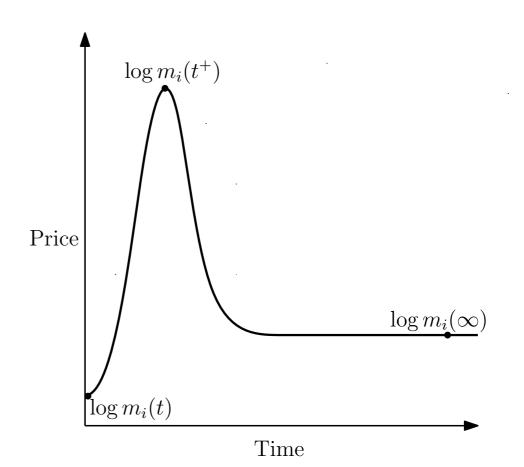
- best ask and best bid
- spread
- midpoint price

AA	AAPL Q		Orde	ers Accepted	Total Volume
APPL	E INC COM			27,606	182,604
	TOP OF B	OOK		LAST 10 TRADES	;
	Shares	Price	Time	Pric	e Shares
	100	107.08	09:38:03	107.0	3 171
S	200	107.07	09:38:03	107.0	4 100
ASKS	400	107.06	09:38:03	107.0	4 1
A	200	107.05	09:38:03	107.0	4 99
	100	107.04	09:38:03	107.0	4 1
	100	107.03	09:38:02	107.0	6 100
S	400	107.02	09:38:02	107.0	5 9
BIDS	724	107.01	09:38:02	107.0	5 91
В	1,546	107.00	09:38:01	107.0	4 100
	2,800	106.99	09:38:01	107.0	3 100

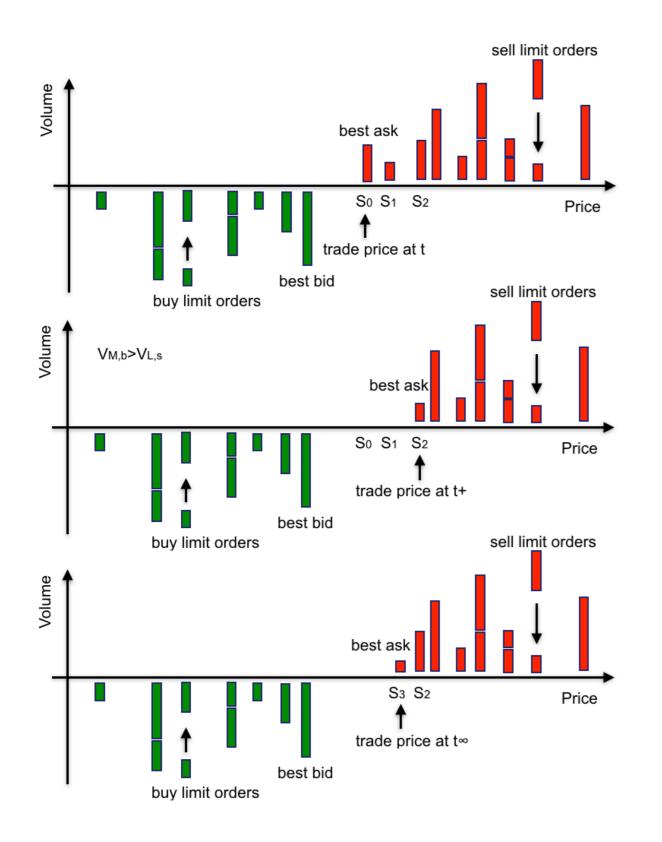


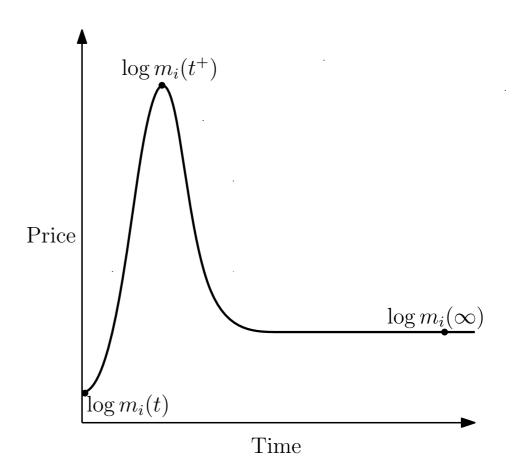

How to buy and sell stocks in the financial market?

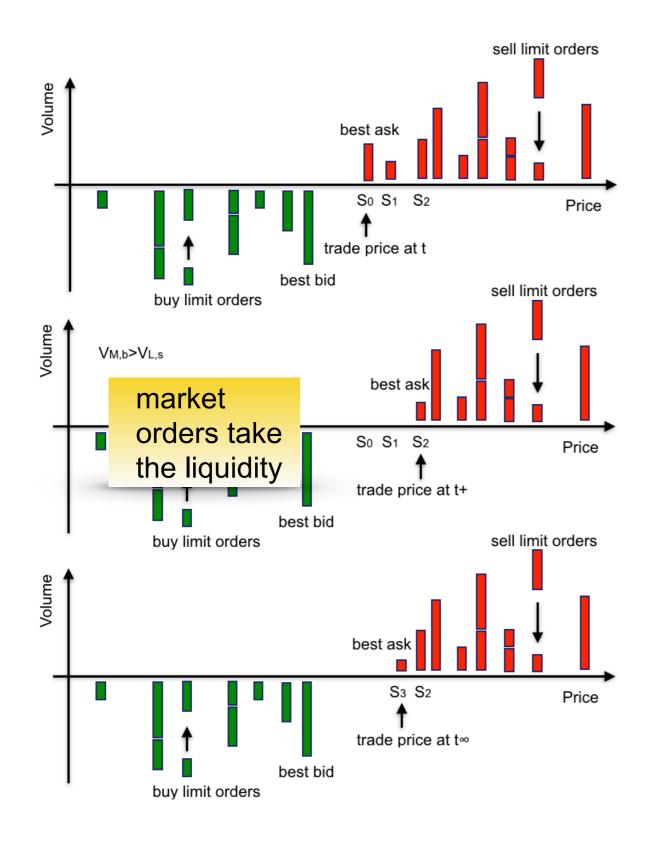

impatient traders → market orders
patient traders → limit orders

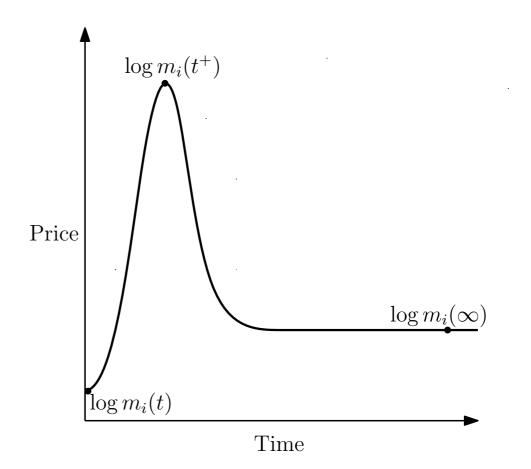

- best ask and best bid
- spread
- midpoint price

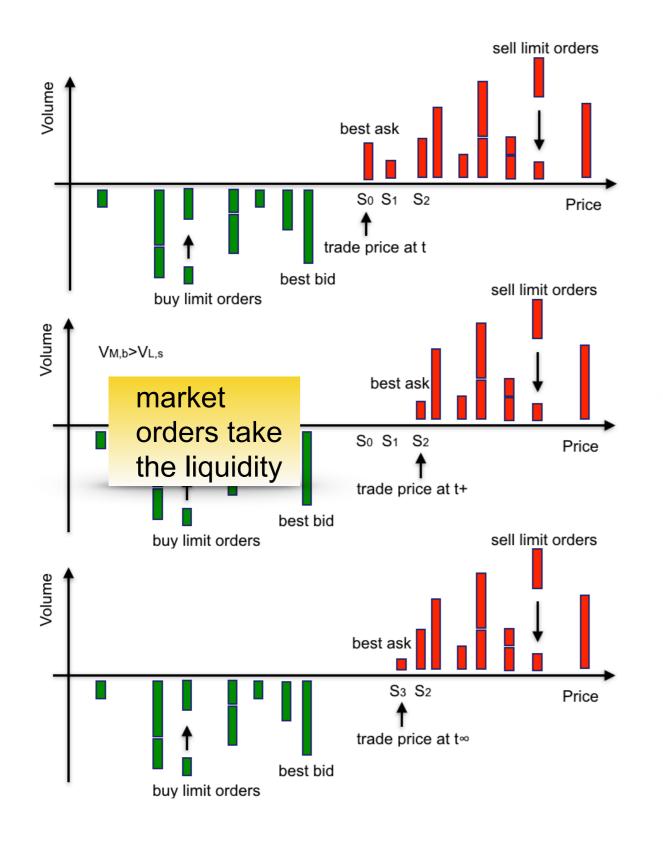
AA	AAPL Q		Orde	rs Accepted	Total Volume
APPL	E INC COM			27,606	182,604
	TOP OF B	OOK		LAST 10 TRADES	
	Shares	Price	Time	Price	e Shares
	100	107.08	09:38:03	107.03	3 171
S	200	107.07	09:38:03	107.04	100
ASKS	400	107.06	09:38:03	107.04	1
A	200	107.05	09:38:03	107.04	99
	100	107.04	09:38:03	107.04	1
	100	107.03	09:38:02	107.06	i 100
S	400	107.02	09:38:02	107.05	j 9
BIDS	724	107.01	09:38:02	107.05	i 91
В	1,546	107.00	09:38:01	107.04	100
	2,800	106.99	09:38:01	107.03	100

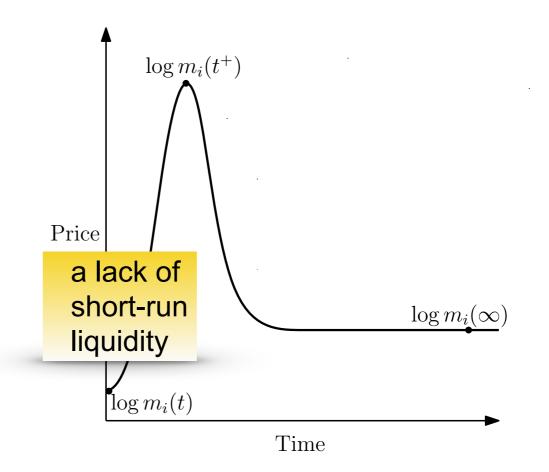


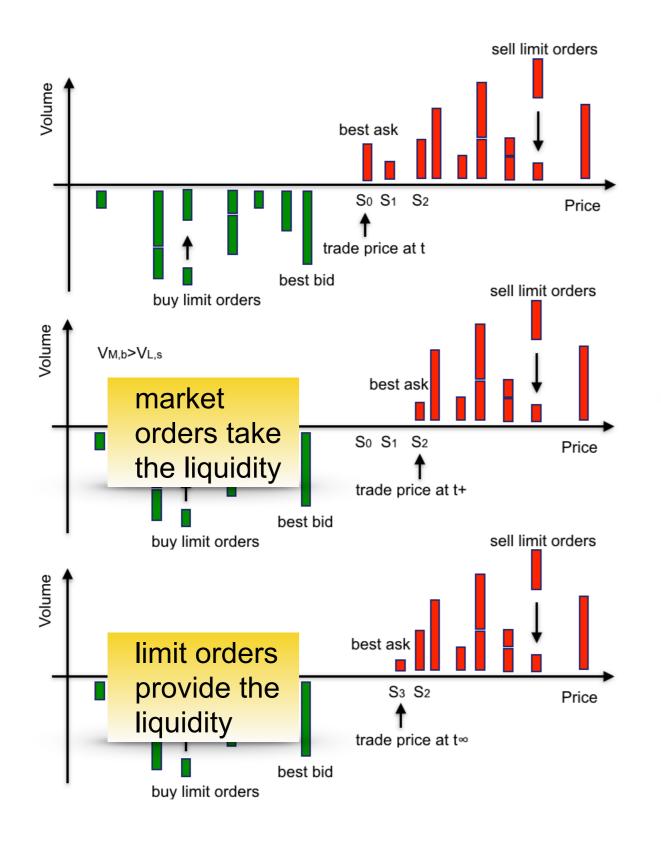


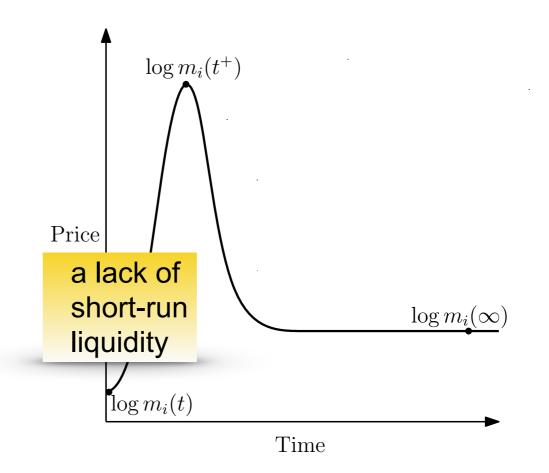


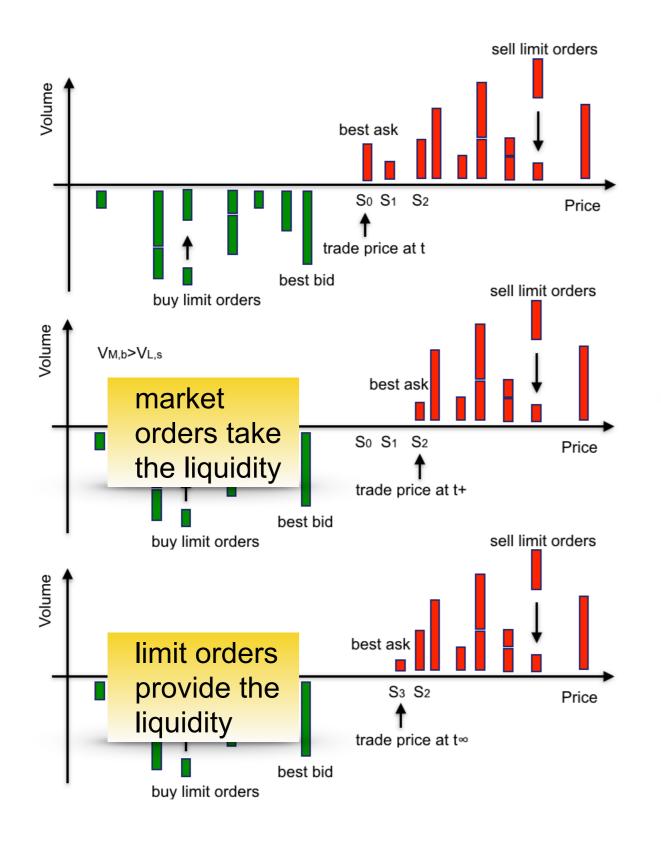

S. Wang, Price cross-responses in correlated financial markets. Faculty of Physics, UDE

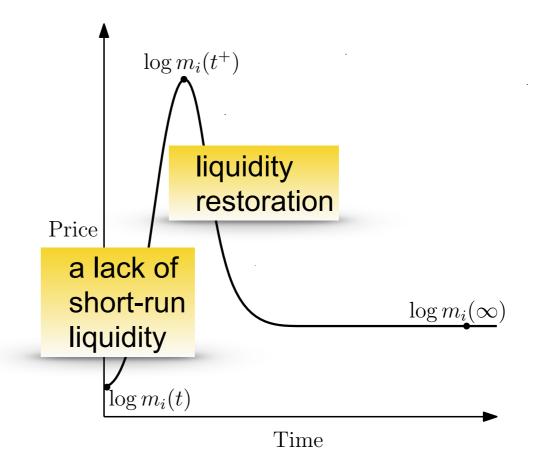



- For a liquid market, the shares of a stock can be rapidly bought or sold with little impact on the stock price.
- The market liquidity can be measured by the spread between the best ask and the best bid



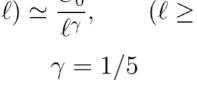

- For a liquid market, the shares of a stock can be rapidly bought or sold with little impact on the stock price.
- The market liquidity can be measured by the spread between the best ask and the best bid

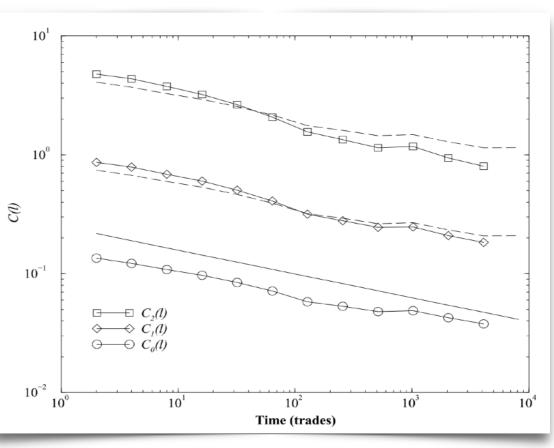



- For a liquid market, the shares of a stock can be rapidly bought or sold with little impact on the stock price.
- The market liquidity can be measured by the spread between the best ask and the best bid

- For a liquid market, the shares of a stock can be rapidly bought or sold with little impact on the stock price.
- The market liquidity can be measured by the spread between the best ask and the best bid

- For a liquid market, the shares of a stock can be rapidly bought or sold with little impact on the stock price.
- The market liquidity can be measured by the spread between the best ask and the best bid


Background—correlation of trade signs


How does the liquidity influence trades?

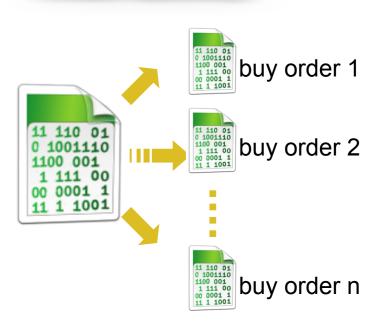
liquidity	volume	price (\$)	cost (\$)	total cost (\$)	liquidity cost (\$)
high	10000	2	20000	20000	0
	5000	2	10000		
low	2000	2.2	4400	21500	1500
	3000	2.5	7500		

Correlation of trade signs in single stocks

 $\begin{aligned} \mathcal{C}_0(\ell) &= \langle \varepsilon_{n+\ell} \varepsilon_n \rangle - \langle \varepsilon_n \rangle^2 \\ \mathcal{C}_1(\ell) &= \langle \varepsilon_{n+\ell} \ \varepsilon_n \ln V_n \rangle \\ \mathcal{C}_2(\ell) &= \langle \varepsilon_{n+\ell} \ln V_{n+\ell} \ \varepsilon_n \ln V_n \rangle \\ \text{fitted by} \\ \mathcal{C}_0(\ell) &\simeq \frac{C_0}{\ell^{\gamma}}, \qquad (\ell \ge 1) \end{aligned}$

Ref. J.-P. Bouchaud, Y. Gefen, M. Potters, M. Wyart. Quantitative Finance, 4(2), 176 (2004).

S. Wang, Price cross-responses in correlated financial markets. Faculty of Physics, UDE.

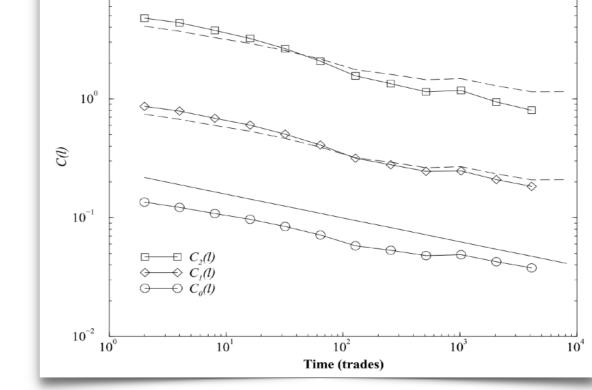

Background / Empirical results / Theoretical Model / Summary

Background—correlation of trade signs

How does the liquidity influence trades?

liquidity	volume	price (\$)	cost (\$)	total cost (\$)	liquidity cost (\$)
high	10000	2	20000	20000	0
	5000	2	10000		
low	2000	2.2	4400	21500	1500
	3000	2.5	7500		

Order splitting



Correlation of trade signs in single stocks

 $\mathcal{C}_{0}(\ell) = \langle \varepsilon_{n+\ell} \varepsilon_{n} \rangle - \langle \varepsilon_{n} \rangle^{2}$ $\mathcal{C}_{1}(\ell) = \langle \varepsilon_{n+\ell} \varepsilon_{n} \ln V_{n} \rangle$ $\mathcal{C}_{2}(\ell) = \langle \varepsilon_{n+\ell} \ln V_{n+\ell} \varepsilon_{n} \ln V_{n} \rangle$

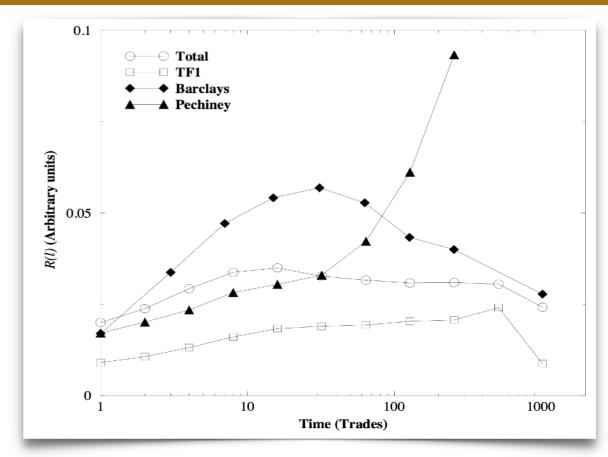
fitted by

$$\mathcal{C}_0(\ell) \simeq \frac{C_0}{\ell^{\gamma}}, \qquad (\ell \ge 1)$$

 $\gamma = 1/5$

 10^{1}

Ref. J.-P. Bouchaud, Y. Gefen, M. Potters, M. Wyart. Quantitative Finance, 4(2), 176 (2004).

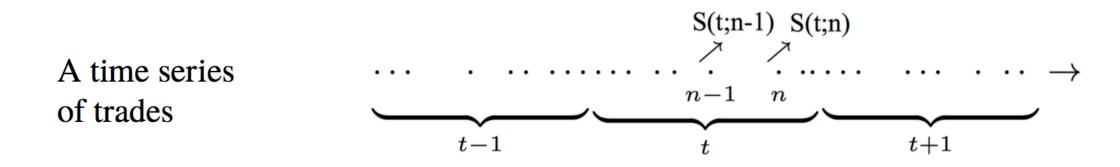

Background—price responses

Price response

measures how much the price change after time τ , on average, conditioned on an initial buy or sell trade.

$$R_{ii}(\tau) = \left\langle \left(S_i(t+\tau) - S_i(t) \right) \varepsilon_i(t) \right\rangle_t$$

Ref. J.-P. Bouchaud, Y. Gefen, M. Potters, M. Wyart. Quantitative Finance, 4(2), 176 (2004).


- The price reversion is contradictory to the long-memory sign correlation.
- To solve the paradox, a decaying quantity, i.e. an impact function, is required to reverse the price.

Some questions

- Is it possible that the price of one stock is impacted by the trades of other stocks?
- Is it the long or short memory for the sign cross-correlation between stocks?

- Our study is based on the Trades and Quotes (TAQ) data set from NASDAQ stock market
- The stocks we used are from S&P 500 index in the year 2008
- We use the intraday data with the trading time from 9:40 to 15:50 of New York time
- For a stock pair, we consider the common trading days that the two stocks have trades

Empirical results—trade signs

The trade sign of n-th trade in time interval t is defined as

$$\varepsilon(t;n) = \begin{cases} \operatorname{sgn} \left(S(t;n) - S(t;n-1) \right) &, & \text{if } S(t;n) \neq S(t;n-1) \\ \varepsilon(t;n-1) &, & \text{otherwise} . \end{cases}$$

The trade sign at time interval t is

$$\varepsilon(t) = \begin{cases} \operatorname{sgn} \left(\sum_{n=1}^{N(t)} \varepsilon(t;n) \right) &, & \text{if } N(t) > 0 , \\ 0 &, & \text{if } N(t) = 0 . \end{cases}$$

$$\varepsilon(t) = \begin{cases} +1, & \text{for a majority of buy market orders,} \\ 0, & \text{for a lack of trading or a balance} \\ & \text{of buy and sell market orders} \\ -1, & \text{for a majority of sell market orders.} \end{cases}$$

Empirical results—response function and sign correlator

The midpoint price at time t is

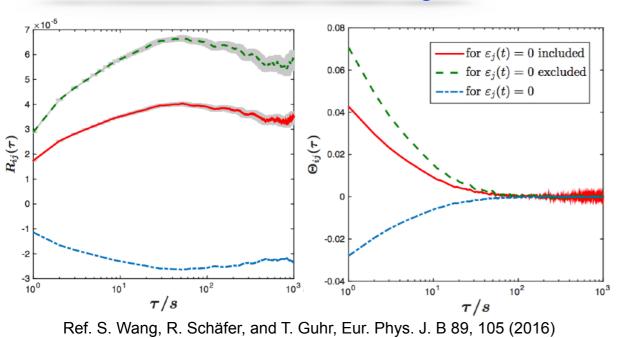
$$m_i(t) = rac{1}{2} \left(a_i(t) + b_i(t) \right) \,.$$

The price change from t to $t + \tau$ is

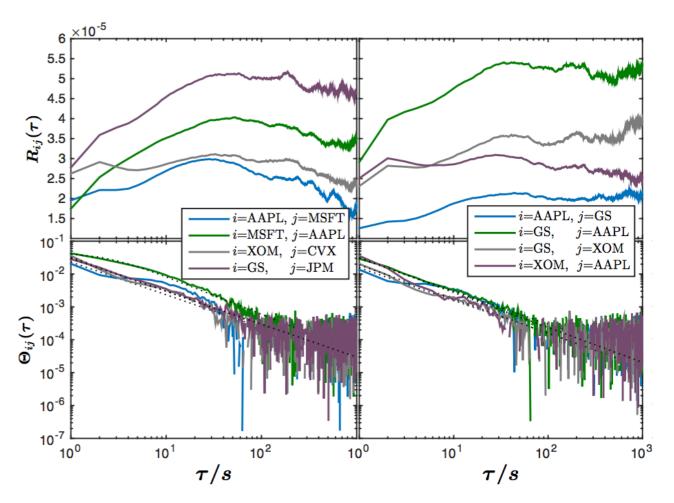
$$r_i(t,\tau) = \log m_i(t+\tau) - \log m_i(t) = \log \frac{m_i(t+\tau)}{m_i(t)} \,.$$

The price cross-response function is defined as

$$R_{ij}(\tau) = \left\langle r_i(t,\tau)\varepsilon_j(t) \right\rangle_t$$

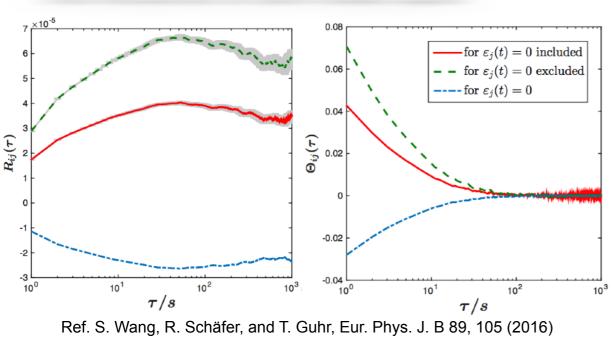

The cross–correlator of trade signs between stocks i and j is

$$\Theta_{ij}(\tau) = \left\langle \varepsilon_i(t+\tau)\varepsilon_j(t) \right\rangle_t,$$


where

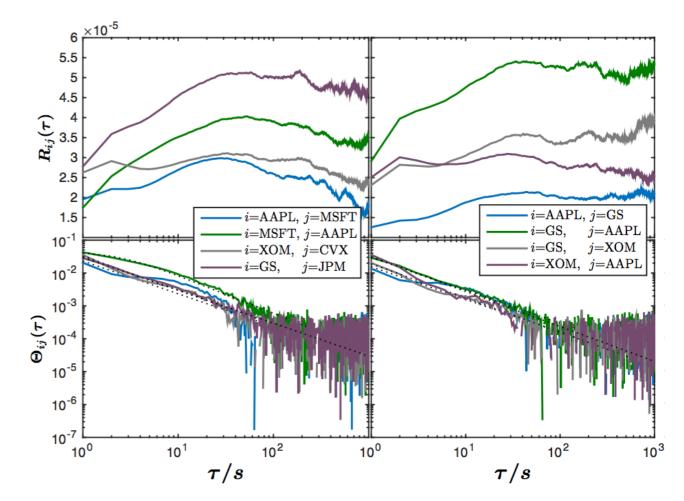
$$\Theta_{ij}(0) = \Theta_{ji}(0)$$
 and $\Theta_{ij}(\tau) = \Theta_{ji}(-\tau)$

Empirical results—price cross-responses for stock pairs



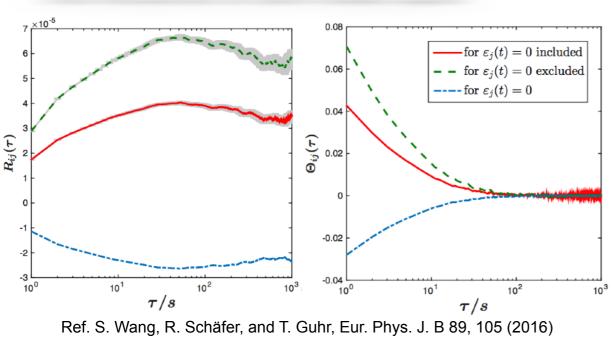
The influence of zero trade signs

Ref. S. Wang, R. Schäfer, and T. Guhr, Eur. Phys. J. B 89, 105 (2016)


Empirical results—price cross-responses for stock pairs

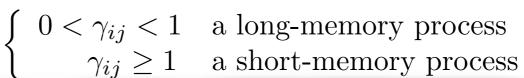
The influence of zero trade signs

Memory properties of sign cross-correlators


$$\Theta_{ij}(\tau) = \frac{\vartheta_{ij}}{\left(1 + (\tau/\tau_{ij}^{(0)})^2\right)^{\gamma_{ij}/2}}$$

Ref. S. Wang, R. Schäfer, and T. Guhr, Eur. Phys. J. B 89, 105 (2016)

 $\begin{cases} 0 < \gamma_{ij} < 1 & \text{a long-memory process} \\ \gamma_{ij} \ge 1 & \text{a short-memory process} \end{cases}$


Empirical results—price cross-responses for stock pairs

The influence of zero trade signs

Memory properties of sign cross-correlators

$$\Theta_{ij}(\tau) = \frac{\vartheta_{ij}}{\left(1 + (\tau/\tau_{ij}^{(0)})^2\right)^{\gamma_{ij}/2}}$$

<u>×10⁻⁵</u>

5.5 5 4.5

 $\overset{4}{R_{ij}(\tau)}$

2.5

2

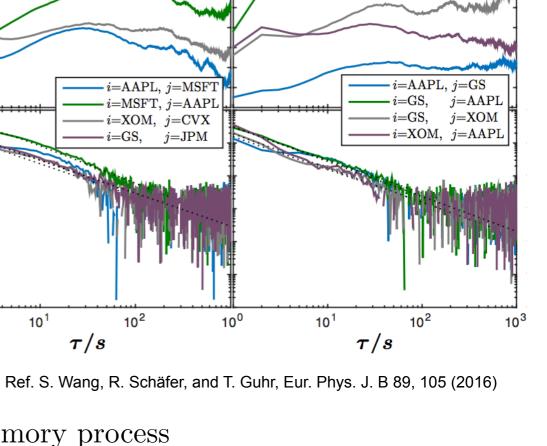
1.5

10-1

10⁻²

10⁻³

10⁻⁵


10⁻⁶

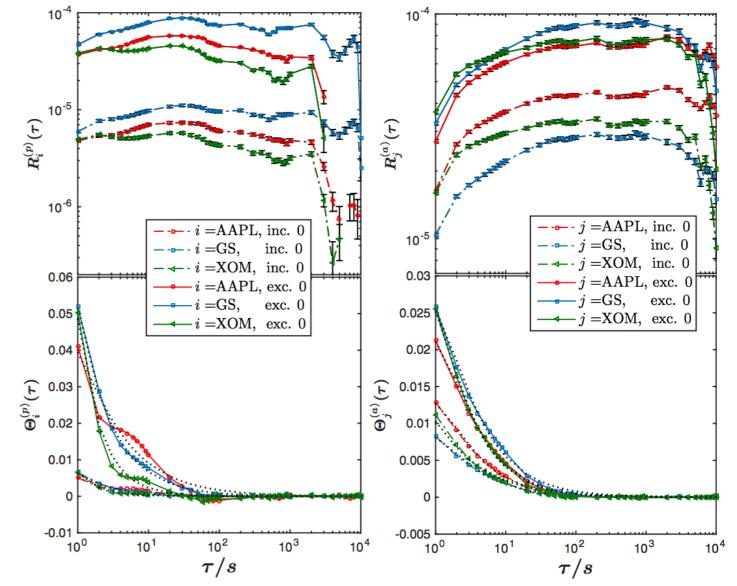
10-7

10⁰

Sign	Stock i	Stock j	θ	ij	$ au_{ij}^{(0)}$	[s]	γ	ij	χ^2_{ij} (×	(10^{-6})
Correlators			inc. 0	exc. 0	inc. 0	exc. 0	inc. 0	exc. 0	inc. 0	exc. 0
	AAPL	MSFT	0.46	0.05	0.05	3.46	1.00	1.35	0.23	1.52
	MSFT	AAPL	0.04	0.07	2.34	2.34	1.15	1.15	0.10	0.27
	XOM	CVX	0.61	0.67	0.06	0.21	1.04	1.16	0.07	0.52
\mathbf{Cross}	\mathbf{GS}	JPM	0.45	0.48	0.07	0.13	1.00	1.00	0.04	0.18
	AAPL	\mathbf{GS}	0.46	0.28	0.03	0.14	1.00	0.91	0.11	0.99
	\mathbf{GS}	AAPL	0.49	0.49	0.06	0.10	1.00	1.00	0.05	0.13
	\mathbf{GS}	XOM	0.61	0.73	0.04	0.08	1.04	1.10	0.04	0.20
	XOM	AAPL	0.76	0.29	0.05	0.34	1.09	1.42	0.12	0.18

S. Wang, Price cross-responses in correlated financial markets. Faculty of Physics, UDE.

12/25


Empirical results—average cross-responses

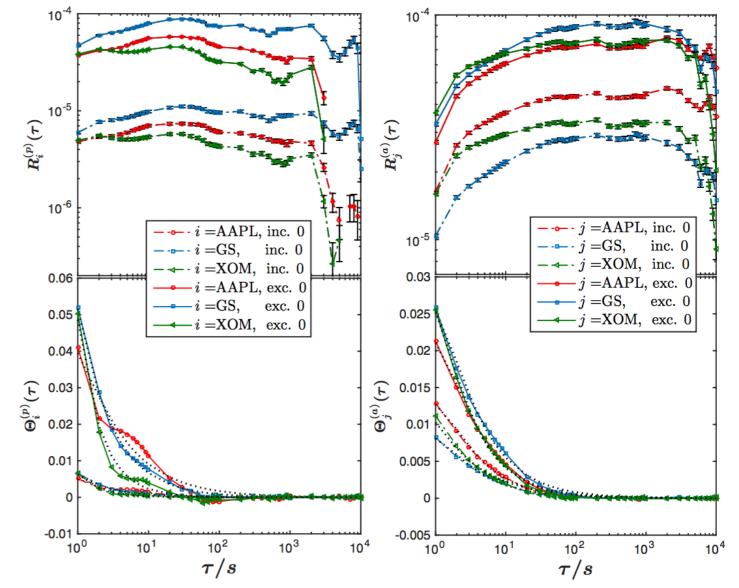
Passive and active average crossresponses

$$R_i^{(p)}(\tau) = \langle R_{ij}(\tau) \rangle_j$$
$$R_j^{(a)}(\tau) = \langle R_{ij}(\tau) \rangle_i$$

Passive and active average crosscorrelators of trade signs

$$\Theta_i^{(p)}(\tau) = \left\langle \Theta_{ij}(\tau) \right\rangle_j$$
$$\Theta_j^{(a)}(\tau) = \left\langle \Theta_{ij}(\tau) \right\rangle_i$$

Ref. S. Wang, R. Schäfer, and T. Guhr, Eur. Phys. J. B 89, 207 (2016)


Empirical results—average cross-responses

Passive and active average crossresponses

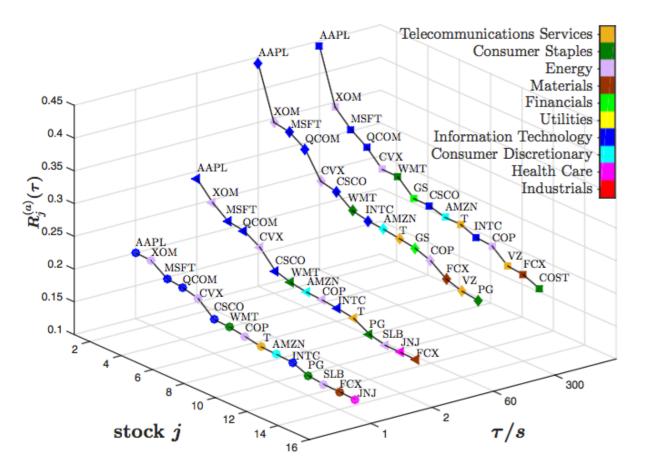
$$R_i^{(p)}(\tau) = \langle R_{ij}(\tau) \rangle_j$$
$$R_j^{(a)}(\tau) = \langle R_{ij}(\tau) \rangle_i$$

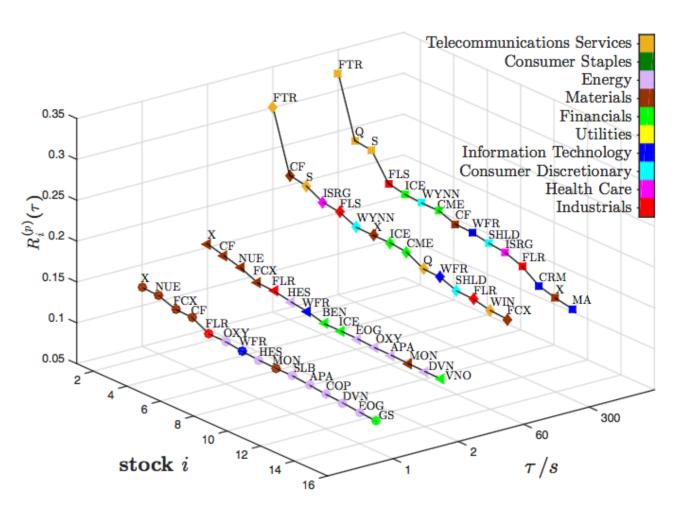
Passive and active average crosscorrelators of trade signs

$$\Theta_i^{(p)}(\tau) = \left\langle \Theta_{ij}(\tau) \right\rangle_j$$
$$\Theta_j^{(a)}(\tau) = \left\langle \Theta_{ij}(\tau) \right\rangle_i$$

Ref. S. Wang, R. Schäfer, and T. Guhr, Eur. Phys. J. B 89, 207 (2016)

Sign cross-	Stock i, j	$artheta_i$ o	or ϑ_j	$ au_i^{(0)}$ or $ au_i$	$ au_i^{(0)} ext{ or } au_j^{(0)} ext{ [s]}$		or γ_j	$\chi^2_i ext{ or } \chi^2_j ext{ (} imes 10^{-6} ext{)}$	
correlators		inc. 0	exc. 0	inc. 0	exc. 0	inc. 0	exc. 0	inc. 0	exc. 0
	AAPL	0.01	0.05	0.47	0.88	0.68	0.73	0.07	4.59
$\Theta_i^{(p)}(au)$	GS	0.03	0.22	0.23	0.20	0.92	0.90	0.01	0.38
	XOM	0.27	0.83	0.06	0.12	1.32	1.33	0.02	1.20
	AAPL	0.02	0.03	1.44	1.44	0.90	0.91	0.03	0.08
$\Theta_{i}^{(a)}(au)$	GS	0.01	0.03	1.31	1.27	0.85	0.83	0.02	0.18
	XOM	0.02	0.03	0.55	1.08	0.71	0.95	0.11	0.08

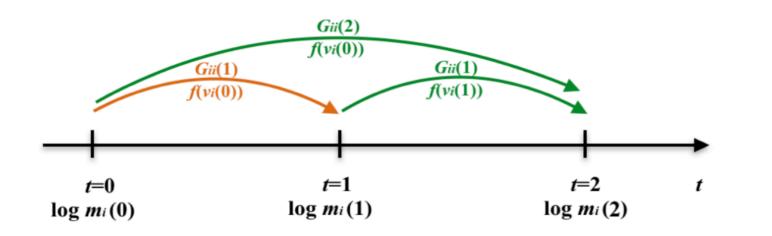

S. Wang, Price cross-responses in correlated financial markets. Faculty of Physics, UDE.


Background / Empirical results / Theoretical Model / Summary

Empirical results——identifying the influencing and influenced stocks

Influencing stocks

Influenced stocks


Ref. S. Wang, R. Schäfer, and T. Guhr, Eur. Phys. J. B 89, 207 (2016)

- The calculation is based on 99 stocks from 10 economic sectors in 2008.
- For each sector, we select the first 9 or 10 stocks with the largest average market capitalization. $R_{ii}(\tau)$
- The responses are normalized by $\frac{R_{ij}(\tau)}{\max(|R_{ij}(\tau)|)}$

• How to understand the cross-responses between stocks?

- How to understand the cross-responses between stocks?
- What's the relation between the cross-response and sign correlators?

- How to understand the cross-responses between stocks?
- What's the relation between the cross-response and sign correlators?
- Why the active and the passive average cross-responses have different behaviours?

 $\log m_i(1) = \log m_i(0) + G_{ii}(1)f(v_i(0))\varepsilon_i(0) + \eta_{ii}(0)$

Price $\log m_i(t^+)$ $G_{ii}(\tau)$ $f(v_i(t))$ $\log m_i(\infty)$ $\log m_i(t)$ Time

$$\log m_{i}(2) = G_{ii}(1)f(v_{i}(1))\varepsilon_{i}(1) + \eta_{ii}(1) + G_{ii}(2)f(v_{i}(0))\varepsilon_{i}(0) + \eta_{ii}(0) + \log m_{i}(0).$$

$$\log m_i(t) = \sum_{t' < t} G_{ii}(t - t') f(v_i(t')) \varepsilon_i(t') + \sum_{t' < t} \eta_{ii}(t')$$

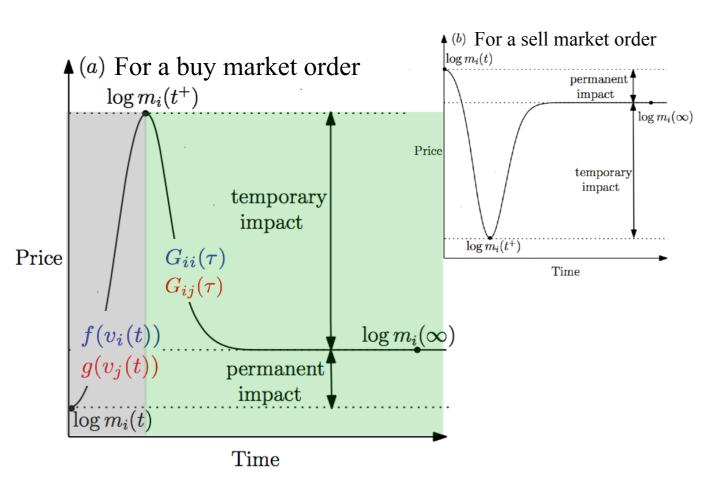
+
$$\log m_i(-\infty).$$

Note that the price is changed only by the stock *i* itself

Equation: ref. J.-P. Bouchaud, Y. Gefen, M. Potters, M. Wyart. Quantitative Finance, 4(2), 176 (2004).

S. Wang, Price cross-responses in correlated financial markets. Faculty of Physics, UDE.

Background / Empirical results / Theoretical Model / Summary


The price is changed by the stock *i* itself and another stock *j*

$$\log m_{i}(t) = \sum_{t' < t} \left[G_{ii}(t - t')f(v_{i}(t'))\varepsilon_{i}(t') + \eta_{ii}(t') \right] \\ + \sum_{t' < t} \left[G_{ij}(t - t')g(v_{j}(t'))\varepsilon_{j}(t') + \eta_{ij}(t') \right] \\ + \log m_{i}(-\infty) \\ \log m_{i}(t) \\ \log m_{$$

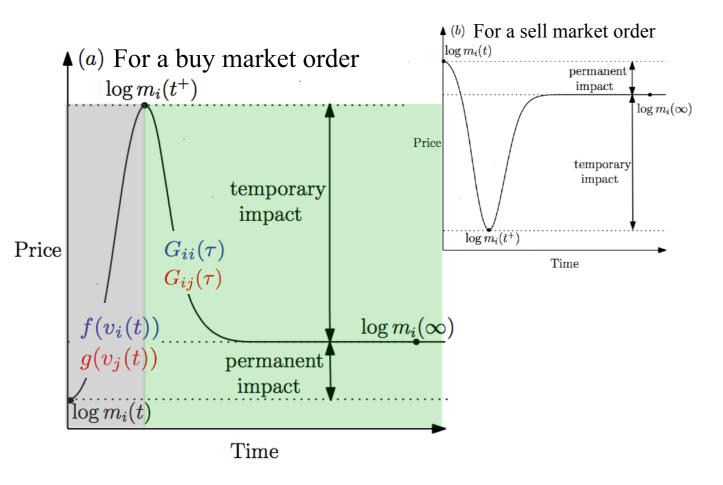
Time

The price is changed by the stock *i* itself and another stock *j*

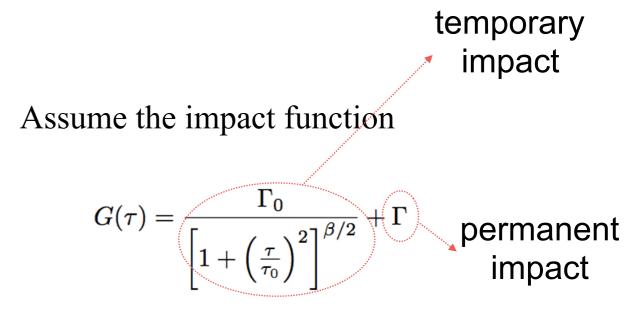
$$\log m_i(t) = \sum_{t' < t} \left[G_{ii}(t - t')f(v_i(t'))\varepsilon_i(t') + \eta_{ii}(t') \right] + \sum_{t' < t} \left[G_{ij}(t - t')g(v_j(t'))\varepsilon_j(t') + \eta_{ij}(t') \right] + \log m_i(-\infty)$$

Ref. S. Wang and T. Guhr, arXiv:1609.04890, 2016

Assume the impact function

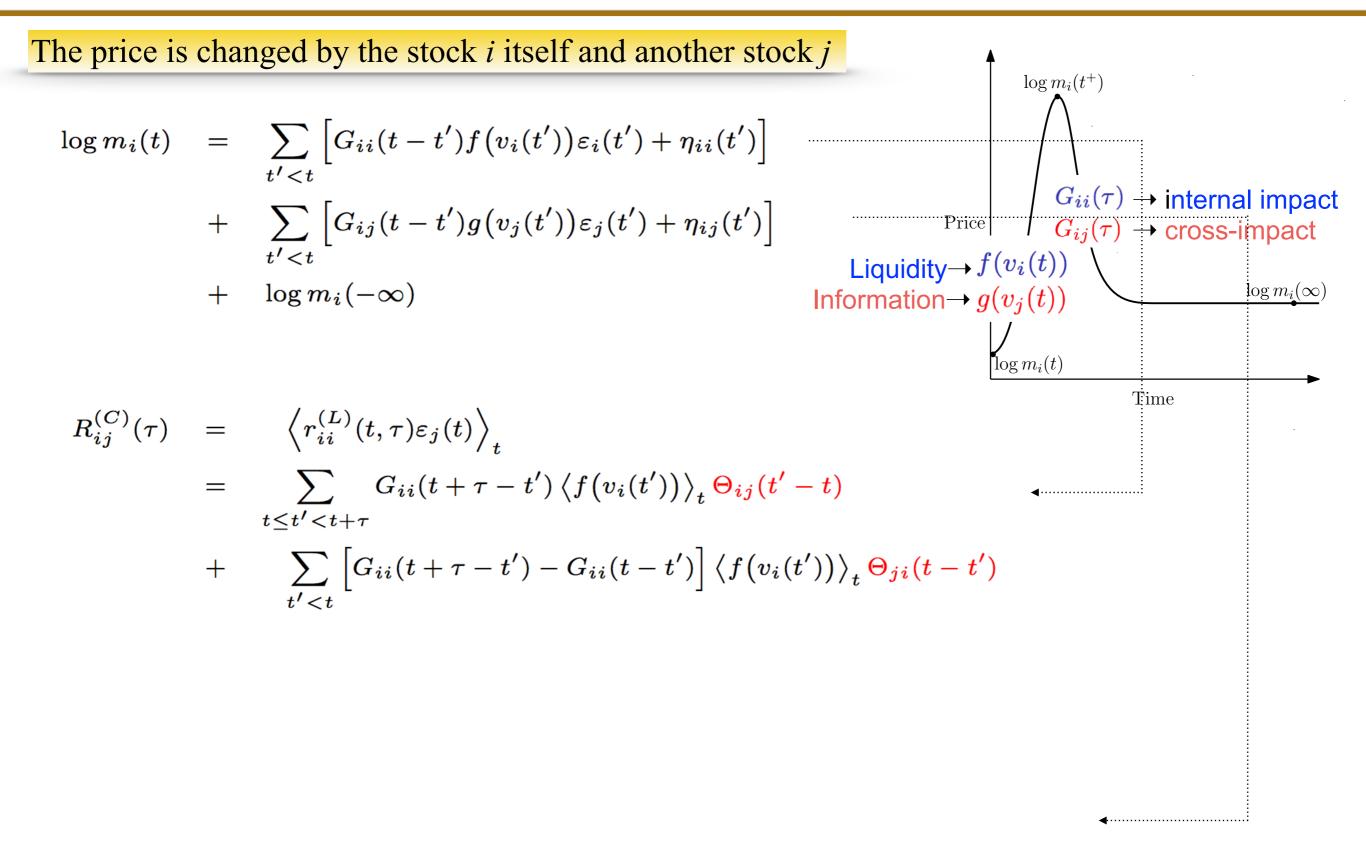

$$G(au) = rac{\Gamma_0}{\left[1 + \left(rac{ au}{ au_0}
ight)^2
ight]^{eta/2}} + \Gamma$$

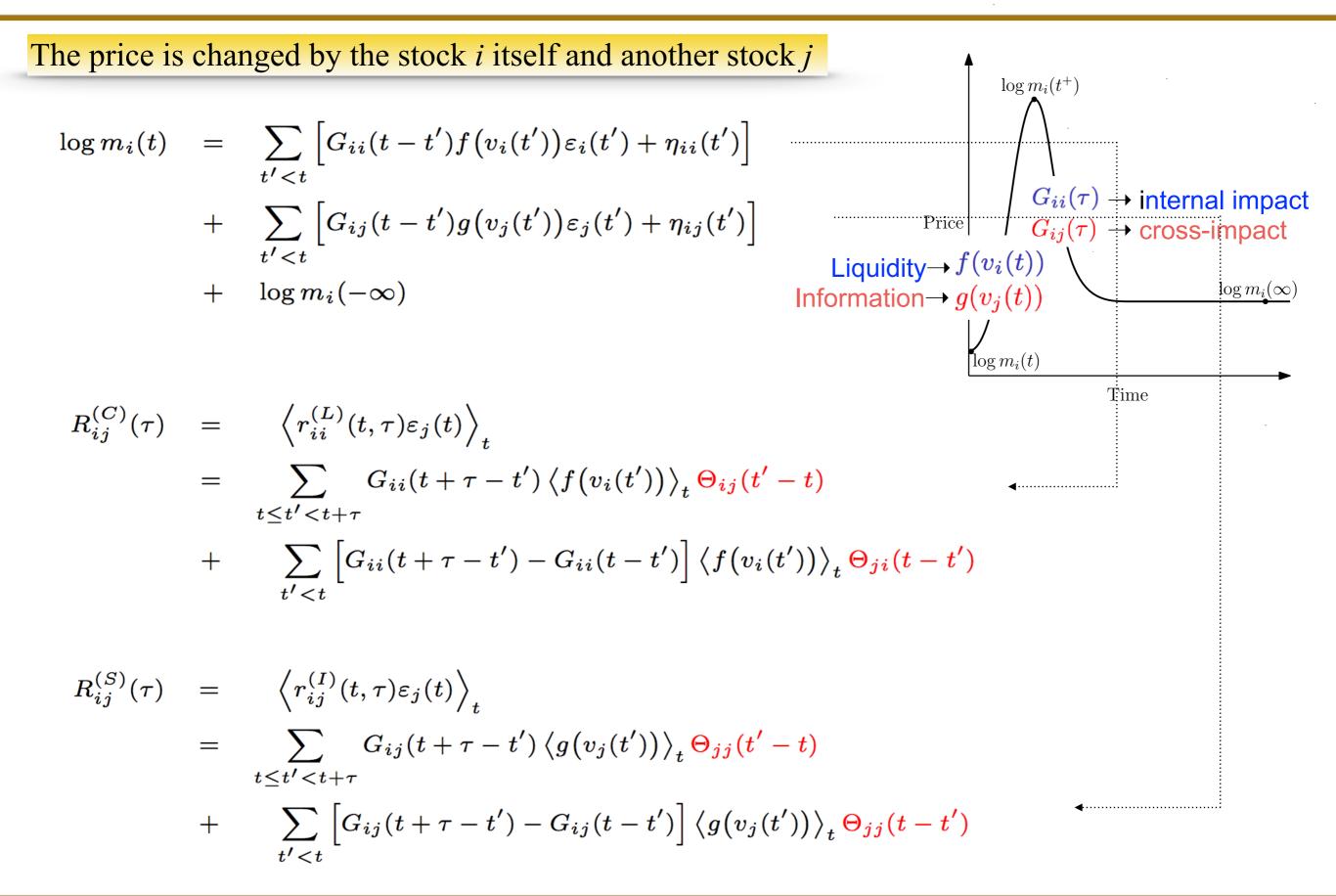
The properties of impact function, e.g.


- positive or negative impact
- temporary or permanent impact are decided by the fitted parameters

The price is changed by the stock *i* itself and another stock *j*

$$\log m_i(t) = \sum_{t' < t} \left[G_{ii}(t - t')f(v_i(t'))\varepsilon_i(t') + \eta_{ii}(t') \right] + \sum_{t' < t} \left[G_{ij}(t - t')g(v_j(t'))\varepsilon_j(t') + \eta_{ij}(t') \right] + \log m_i(-\infty)$$


Ref. S. Wang and T. Guhr, arXiv:1609.04890, 2016



The properties of impact function, e.g.

- positive or negative impact
- temporary or permanent impact are decided by the fitted parameters

The price is changed by the stock *i* itself and another stock *j* $\log m_i(t^+)$ $\log m_i(t) = \sum_{t' < t} \left[G_{ii}(t - t') f(v_i(t')) \varepsilon_i(t') + \eta_{ii}(t') \right]$ + $\sum_{t' < t} \left[G_{ij}(t - t')g(v_j(t'))\varepsilon_j(t') + \eta_{ij}(t') \right]$ $G_{ii}(\tau) \rightarrow \text{internal impact}$ $G_{ij}(\tau) \rightarrow \text{cross-impact}$ Price Liquidity $\rightarrow f(v_i(t))$ $+ \log m_i(-\infty)$ Information $\rightarrow g(v_j(t))$ $\log m_i(\infty)$ $\log m_i(t)$ Time

The cross-response functions

$$R_{ij}(\tau) = R_{ij}^{(C)}(\tau) + R_{ij}^{(S)}(\tau)$$

The passive and active average cross-response functions

$$R_i^{(p)}(\tau) = R_{i,0}^{(p,C)}(\tau) \left\langle f_i^{(p)}(v_i) \right\rangle + R_{i,0}^{(p,S)}(\tau) \left\langle g_i^{(p)}(v_j) \right\rangle_i$$

$$R_i^{(a)}(\tau) = R_{i,0}^{(a,C)}(\tau) \left\langle f_i^{(a)}(v_j) \right\rangle_j + R_{i,0}^{(a,S)}(\tau) \left\langle g_i^{(a)}(v_i) \right\rangle$$

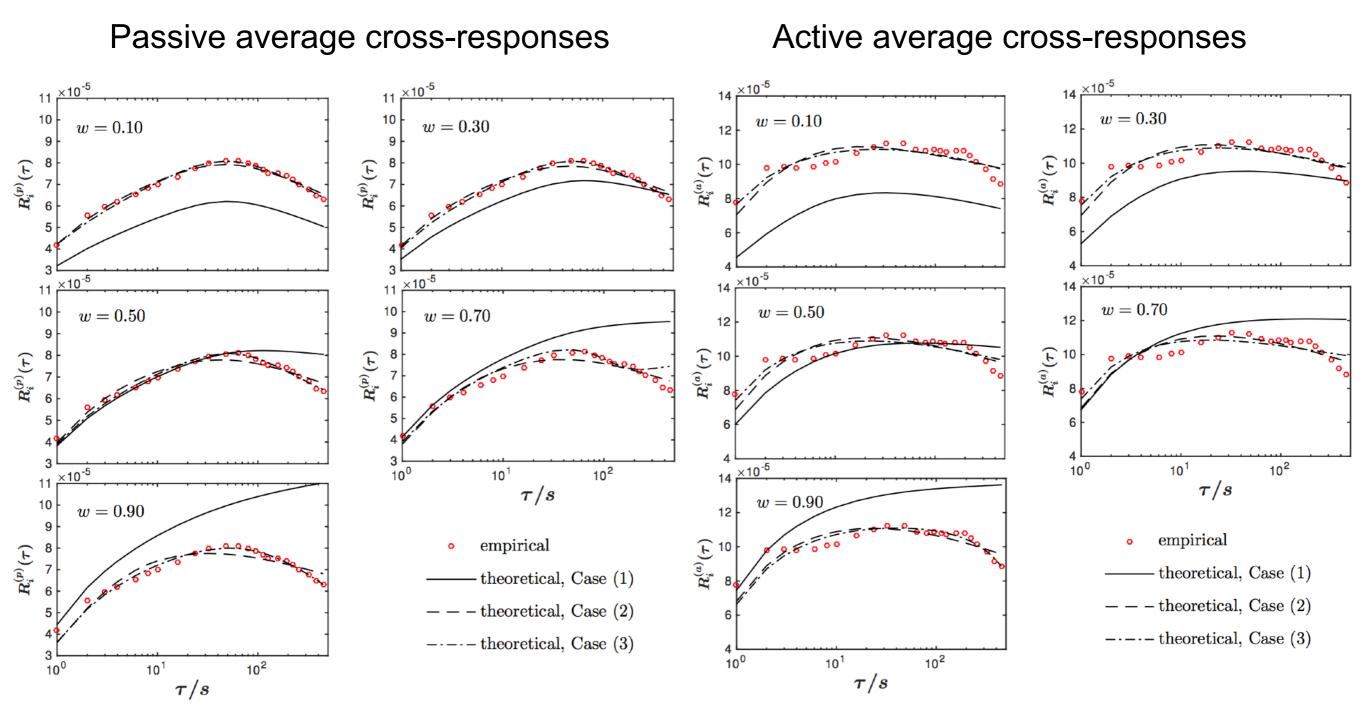
According to the empirical analysis,

$$\langle f(v_i(t)) \rangle_t = v_i^{\delta_i}(t) , \langle g(v_j(t)) \rangle_t = v_j^{\delta_j}(t)$$

$$\langle f_i^{(p)}(v_i(t)) \rangle_t, \langle f_i^{(a)}(v_i(t)) \rangle_{t,j}, \langle g_i^{(p)}(v_j(t)) \rangle_{t,j}, \langle g_i^{(a)}(v_i(t)) \rangle_t \to \text{constant}$$

$$\langle P_{i}(t) \rangle_t = \langle P_{i}(t) \rangle_t$$

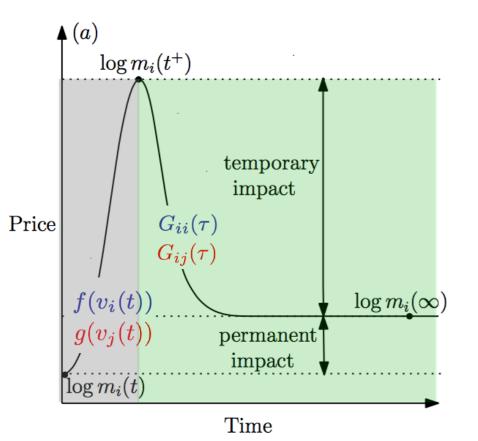
 $\frac{\langle R_{ij}(\tau) \rangle_{i \text{ or } j}}{\text{corresponding average impact of traded volumes}} \to R_{i,0}^{(p,C)}, R_{i,0}^{(p,S)}, R_{i,0}^{(a,C)}, R_{i,0}^{(a,S)}$


Definitions of average crossresponses and sign correlators

$$R_{i}^{(p)}(\tau) = \langle R_{ij}(\tau) \rangle_{j}$$
$$R_{i}^{(a)}(\tau) = \langle R_{ji}(\tau) \rangle_{j}$$

$$\Theta_i^{(p)}(\tau) = \left\langle \Theta_{ij}(\tau) \right\rangle_j$$

$$\Theta_i^{(a)}(\tau) = \langle \Theta_{ji}(\tau) \rangle_j$$

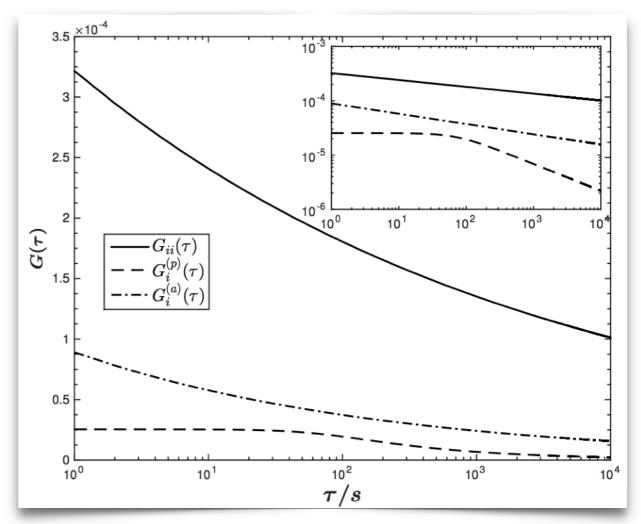

A price impact model—simulations of responses

Ref. S. Wang and T. Guhr, arXiv:1609.04890, 2016

The stock *i* is MSFT in 2008, and the pairwise stocks *j* are other 30 stocks with the largest average number of daily trades in S&P 500 index of 2008.

A price impact model—impact functions

Sketch of price impacts


After averaging,

$$G_{ij}(\tau) \rightarrow G_i^{(p)}(\tau), \ G_i^{(a)}(\tau)$$

The simulated impact function

$$G(\tau) = \frac{\Gamma_0}{\left[1 + \left(\frac{\tau}{\tau_0}\right)^2\right]^{\beta/2}} + \Gamma$$

Simulations of impact functions

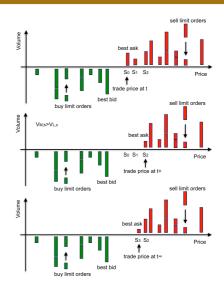
The stock *i* is MSFT in 2008

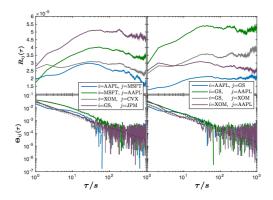
impact function	Г	Γ_0	$ au_0$	β
	$(\times 10^{-10})$	$(\times 10^{-4})$	[s]	
$G_{ii}(au)$	0.5	5.12	0.025	0.13
$G_i^{(p)}(au)$	0	0.25	70.873	0.49
$G_i^{(a)}(au)$	0	2.57	0.004	0.19

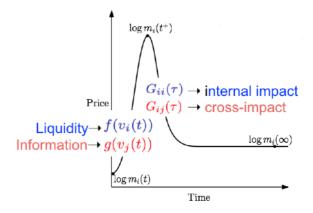
Ref. S. Wang and T. Guhr, arXiv:1609.04890, 2016

S. Wang, Price cross-responses in correlated financial markets. Faculty of Physics, UDE

Summary


- The price formation:
 - due to the interaction of market orders and limit orders, where the liquidity plays an important role.


• Empirical results:


- for cross-responses of stock pairs
- for average cross-responses
- the influencing and influenced stocks.

• A price impact model:

- an internal and a cross-impact function
- two response components related to the cross- and the self-correlators, respectively
- the comparison of empirical and simulated results
- the internal, active and passive impact functions.

- [1] Jean-Philippe Bouchaud, Yuval Gefen, Marc Potters, and Matthieu Wyart. Fluctuations and response in financial markets: the subtle nature of 'random' price changes. *Quantitative Finance* 4, 176 (2004).
- [2] Shanshan Wang, Rudi Schäfer, and Thomas Guhr. Cross-response in correlated financial markets: individual stocks. *The European Physical Journal B* **89**, 105 (2016)
- [3] Shanshan Wang, Rudi Schäfer, and Thomas Guhr. Average cross-responses in correlated financial market. *The European Physical Journal B* **89**, 207 (2016)
- [4] Shanshan Wang and Thomas Guhr. Microscopic understanding of cross-responses between stocks: a two-component price impact model. *arXiv preprint arXiv:1609.04890*, 2016

Thank you for your attention! Any questions?