Kicked spin chain: dual operator method

P Braun
with M Akila, T Guhr, B Gutkin, D Waltner

Duisburg, 2019

Outline

I. Regular kicked Ising chain of large spins: quantum to classical correspondence

- Classical orbit actions from quantum spectra. Dual approach
- Spectral effects of periodic orbit manifold
II. Disordered Ising chain of spin $1 / 2$: self-dual, close and not so close to self-duality
- "New" RMT universality classes in self-dual chain
- Small deviations from self-duality: effect on form factor
- Transition from ergodicity to localization

Regular chain, large spins: quantum to classical correspondence

Kicked Spin Chain

N-particle quantum system: kicked spin chain consisting of N coupled spin-s-particles:

$$
\hat{H}(t)=\underbrace{\sum_{n=1}^{N} \frac{4 J \hat{s}_{n+1}^{z} \hat{s}_{n}^{z}}{(s+1 / 2)^{2}}}_{\begin{array}{c}
\text { nearest } \\
\text { neighbor Ising } \\
\text { interaction }
\end{array}}+\underbrace{\frac{2}{s+1 / 2} \sum_{n=1}^{N} \mathbf{B} \cdot \hat{\mathbf{s}}_{n}}_{\begin{array}{c}
\text { local kick } \\
\text { part }
\end{array}} \sum_{\tau=-\infty}^{\infty} \delta(t-\tau)
$$

Periodic boundary conditions: $\hat{\mathbf{s}}_{N+1}=\hat{\mathbf{s}}_{1}$
Evolution per period operator

$$
\hat{U}=e^{-i \hat{H}_{\mathrm{I}}} e^{-i \hat{H}_{\mathrm{k}}}
$$

Classical Dynamics

Classical m-th spin represented as unit vector $\mathbf{n}_{m}(t)$ on the Bloch sphere with dynamics:

Rotation: $\quad \mathbf{n}_{m}(t+T)=\left(R_{\mathbf{z}}\left(4 J \chi_{m}\right) R_{\mathbf{B}}(2|\mathbf{B}|)\right)^{T} \mathbf{n}_{m}(t)$
Angle:
$\chi_{m}=n_{m-1}^{z}+n_{m+1}^{z}$

Semiclassics

Trace formula for isolated orbits:

$$
\operatorname{Tr} \hat{U}^{T} \sim \sum_{\gamma(T)} A_{\gamma} \mathrm{e}^{i s S_{\gamma}}
$$

with periodic orbits $\gamma(T)$, stability prefactor A_{γ}, action S_{γ}
Limit: Large spin quantum number $s \gg 1$
Fourier-transform yields action spectrum:

$$
\rho(S) \propto \sum_{s=1}^{s_{\text {cut }}} \mathrm{e}^{-i s S} \operatorname{Tr} \hat{U}^{T} \sim \sum_{\gamma(T)} A_{\gamma} \delta\left(S-S_{\gamma}\right)
$$

For a single kicked spin: Kuś, Haake, Delande, 1993

Duality Relation

Problem specific for many-body system:

$$
\begin{gathered}
\rho(S) \propto \sum_{s=1}^{s_{\text {cut }}} \mathrm{e}^{-i s S} \underset{\substack{(2 s+1)^{N}}}{\operatorname{Tr}} \underbrace{\hat{U}^{T}}_{\gamma(T)} \sim \sum_{\gamma} A_{\gamma} \delta\left(S-S_{\gamma}\right) \\
\text {-dimensional }
\end{gathered}
$$

Example: $s_{\mathrm{cut}}=10, N=20 \rightarrow(2 s+1)^{N}=2.8 \cdot 10^{26}$

Solution: Duality

$$
\operatorname{Tr} \hat{U}^{T}=\operatorname{Tr} \hat{W}^{N}, \quad \operatorname{dim} \hat{W}=(2 s+1)^{T} \times(2 s+1)^{T}
$$

\Rightarrow Dimensional reduction achieved for short times

Action Spectrum. $N=4 m$-peculiarity

Resolution depends on $s_{\text {cut }}$. Peak height is independent of $s_{\text {cut }}$ with orbit isolated, or grows like $s_{\text {cut }}^{\alpha}$ (bifurcation), or exponentially decays (ghost)
Parameters: $T=2, J=0.7, B^{x}=B^{z}=0.9, s_{\text {cut }}=114$

$$
N=3
$$

$$
N=4
$$

For $N=4 m$ the action spectrum is dominated by a single peak

Classical Collective Dynamics

4-dimensional manifold of (nonisolated) periodic orbits for $N=4$ with equal actions: spins perform solid body rotation

Peak height scales like $s_{\text {cut }}^{\alpha_{0} N}, \quad \alpha_{0} \approx 0,2$, instead of naive $s_{\text {cut }}^{2}$
Akila, Waltner, Gutkin, Braun, Guhr, 2017.

Disordered chain of spin $1 / 2$

Kicked disordered Ising chain, spin 1/2

Setup:

$$
\begin{aligned}
\hat{H}(t) & =\hat{H}_{I}+\hat{H}_{b} \sum_{\tau=-\infty}^{\infty} \delta(t-\tau) \\
\hat{H}_{I} & =\sum_{n=1}^{N}\left(J_{n} \hat{\sigma}_{n}^{z} \hat{\sigma}_{n+1}^{z}+b_{n}^{z} \hat{\sigma}_{n}^{z}\right), \quad \hat{H}_{b}=b^{x} \sum_{n=1}^{N} \hat{\sigma}_{n}^{x}
\end{aligned}
$$

- Spin chain with ring topology, nearest neighbor interaction and disordered local magnetic fields
- Periodic strong and short pulses of transverse magnetic field

Time evolution. Duality

Time evolution operator:

$$
\hat{U}_{N}=\hat{U}_{I} \hat{U}_{b}, \quad \hat{U}_{I}=\exp \left(-i \hat{H}_{I}\right), \quad \hat{U}_{b}=\exp \left(-i \hat{H}_{b}\right)
$$

Dual approach, interchange of evolution in time and in spin number.

$$
\operatorname{Tr}\left(\hat{U}_{N}\right)^{T} \quad=\quad \operatorname{Tr} \hat{W}
$$

Dimensions:

$$
2^{N} \times 2^{N}
$$

$$
2^{T} \times 2^{T}
$$

Dual operator for disordered chain:

$$
\hat{W}=\hat{W}_{N} \hat{W}_{N-1} \ldots \hat{W}_{1}
$$

Operators W_{n} depend on local J_{n}, b_{n}^{z}

Self-duality

Dual operator is unitary if

$$
\text { Ising constants } J_{n}=\frac{\pi}{4}
$$

Transversal magnetic fields $b^{x}=\frac{\pi}{4}$;
Longitudinal magnetic fields b_{n}^{z} : arbitrary
Physical chain, N spins: disordered; pulses regular in time; Dual chain, T spins: regular; disordered sequence of N pulses periodically repeated in "time"

Akila, Waltner, Gutkin, Guhr, 2016; Bertini, Kos, Prosen 2018

Symmetry, general case

- Evolution operator \hat{U} is time reversal covariant with $\hat{T}^{2}=1$;
- Dual spin chain is symmetric with respect to cyclic shifts and reflection. The dual operators \hat{W}_{n} fall into symmetry blocks \hat{W}_{n}^{K} with $K=(0 \pm), 1, \ldots, T-1$.
- Connection between operators with $J=\pi / 4-\Delta J$ (primed) and $J=\pi / 4+\Delta J$ (non-primed):

$$
\begin{array}{rr}
\hat{U}^{\prime}=(-i)^{N} \hat{\Sigma}_{y}^{N} \hat{U}^{*} \hat{\Sigma}_{y}^{N} & \hat{W}_{n}^{\prime}=(-i)^{T} \hat{\Sigma}_{y}^{T} \hat{W}_{n}^{*} \hat{\Sigma}_{y}^{T} \\
\hat{\Sigma}_{y}^{N}=\otimes_{n=1}^{N} \hat{\sigma}_{n}^{y}, & \hat{\Sigma}_{y}^{T}=\otimes_{t=1}^{T} \hat{\sigma}_{t}^{y} .
\end{array}
$$

Form factor: symmetric around self-dual case.

Symmetry of self-dual chain, $\Delta J=0$

Anti-unitary "charge conjugation" operator (\hat{K} is c.c. in standard basis)

$$
\begin{aligned}
\hat{C}^{N, T} & =\hat{\Sigma}_{y}^{N, T} \hat{K}, \\
{\left[\hat{C}^{N, T}\right]^{2} } & =(-1)^{N, T} .
\end{aligned}
$$

Unitary $\hat{U}_{M}:=\hat{U} e^{i N \pi / 4}, \quad \hat{W}_{n, M}:=\hat{W}_{n} e^{i T \pi / 4}$ satisfy

$$
\left[\hat{C}^{N}, \hat{U}_{M}\right]=0, \quad\left[\hat{C}^{T}, \hat{W}_{n, M}\right]=0
$$

Consequences:

- Matrices $\hat{U}_{M}, W_{n, M}$ are unitary symplectic in an appropriate basis set if N resp. T is odd, and orthogonal if N resp. T is even;
- Eigenvalues of $\hat{U}_{M}, \hat{W}_{n, M}$ exist in complex conjugate pairs, eigenphases $\phi=0, \pi$ singled out.

Symmetry of self-dual chain, $\Delta J=0$

Evolution operators \hat{U}_{M} and symmetry blocks of dual operators $\hat{W}_{M}=\prod_{n=1}^{N} \hat{W}_{n, M}$ belong to one of "new" universality classes depending on parity of N, T,
(Verbaarschot, Zahed, 1993; Altland, Zirnbauer, 1997)
Eigenphase density non-uniform:

$$
\begin{aligned}
& \hat{U}_{M}, \quad N=9 \\
& \hat{W}_{M}^{0+}, \quad T=5, N=13
\end{aligned}
$$

Analytic averaging over disorder

From Bertini, Kos, Prosen=BKP, 2018:
Analytic averaging over disorder of $|\operatorname{Tr} W|^{2}$ gives form factor as

$$
K(T)=\operatorname{Tr} \mathcal{A}(T)^{N}
$$

where \mathcal{A} is $2^{2 T} \times 2^{2 T}$. In the limit of strong disorder

$$
\mathcal{A}=\mathcal{P}\left(\bar{W} \times \bar{W}^{*}\right) \mathcal{P}
$$

with \mathcal{P} a projector.
In self-dual case \mathcal{A} has $2 T$ or $2 T+1$ eigenvalues 1 ; all other eigenvalues have modulus smaller than 1 . Taking to power $N \gg 1$ leads to form factor $2 T$ resp. $2 T+1$ similar to COE at small times.

Small deviations from self-duality

Degenerate eigenvalue $\lambda=1$ of \mathcal{A} splits into a fan of levels when $J=\pi / 4+\Delta J, \quad \Delta J \neq 0$. Example, $T=9$:

For level λ_{K} associated with symmetry block \hat{W}^{K} with size m_{K} we have

$$
\begin{array}{r}
\lambda_{K}(T, \Delta J)=1+B_{K}(\Delta J)^{2}+O\left((\Delta J)^{4}\right), \\
B_{K}(T)=\frac{\partial^{2} \operatorname{Tr}\left[\hat{W}^{K}\left(\hat{W}^{K}\right)^{\dagger}\right]}{2 m_{K} \partial J^{2}}
\end{array}
$$

Perturbation theory, Form Factor

For T prime, analytic B_{K} found; all of them but B_{0+} are negative
\Longrightarrow only level λ_{0+} grows with ΔJ
Form factor in limit $\Delta J \rightarrow 0, \quad N \rightarrow \infty, \quad x=(\Delta J)^{2} N=$ const:

$$
K_{N}(T, \Delta J)=e^{x B_{0+}}+e^{x B_{0-}}+2(T-1) e^{x B_{1}}
$$

Example: fixed time $T=7$, function of $\Delta J ; N=40(\mathrm{a}), 80(\mathrm{~b})$ and 160 (c); dots numerical

Braun, Waltner, Akila, Gutkin, Guhr, 2019

Perturbation theory, Thouless Time

For fixed $x=N(\Delta J)^{2}$ and time growing, $K_{N}(T, \Delta J)$ first undergoes strong non-monotonic changes and then stabilizes. Demanding that its difference from $2 T$ is much smaller than $2 T$ we get the Thouless time $T_{T h}$. If $x \gtrsim 0.3$ the condition simplifies to,

$$
\frac{\log 2 T}{B_{0+}(T)} \gtrsim N \Delta J^{2}, \quad B_{0+}(T)=\frac{2 T(T-1)}{2^{(T-1) / 2}-1}
$$

Large deviations from self-duality

Senior eigenvalue λ_{0+} of $\mathcal{A}(\Delta J, T)$ changes with T approximately periodically with period 4

Curves form doublets with partner swapping close to $\Delta J=0.6$ where transition to localization is suspected

Entanglement entropy

Symmetric splitting of the chain into subsystems A and B, entanglement entropy

$$
S(\Delta J)=-\operatorname{Tr} \rho_{A} \ln \rho_{A}
$$

Transition to localization at $\Delta J \approx 0.6$

Form factor, large deviations from self-duality

10 spins, $T_{H}=1024,5000$ disorder realizations; Red: $K_{C O E}$

Form factor extrapolated to $T / T_{H}=0_{+}$takes values $\eta \in\{0,1\}$
(Wigner-Dyson: $\eta=0$, Poisson: $\eta=1$)

Senior BPK eigenvalue at start of localization

Example: form factor at $N=10, \Delta J=0.4$

Critical times
$T>T_{1}$, form factor smooth, $T_{1} \sim N$
$T>T_{2}$, form factor coincides with COE (Thouless time), $0<T_{2}<2^{N}$
At $T \geq T_{1}$, for given proportion of Poisson statistics η :

$$
\eta=K_{T / T_{H} \rightarrow 0}=\frac{\left.\left.\langle | \operatorname{Tr} U^{T}\right|^{2}\right\rangle}{T_{H}}=\left(\frac{\lambda_{0+}}{2}\right)^{N}
$$

Senior BPK eigenvalue at start of localization

Criterion of localization

$$
\lambda_{0+}\left(T \geq T_{1}\right)=2 \eta^{1 / N}
$$

In the example $T_{1} \sim 16-20, \quad \eta \sim 0.2 \Longrightarrow \lambda_{0+} \sim 1.7$
$\lambda_{0+}(T)$, average over quadruplet $T=15,16,17,18:$

Conclusion

- Classic orbits distilled from quantum spectra of many-body system
- "New" symmetry classes observed for kicked Ising spin-1/2 chain
- Form factor explosion at small times caused by deviation from self-duality
- Transition from ergodicity to localization witnessed by senior eigenvalue of BKP operator \mathcal{A}

