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Econophysics

Two-phase behaviour 
of financial markets

Buying and selling in financial markets is
driven by demand, which can be quan-
tified by the imbalance in the number

of shares transacted by buyers and sellers
over a given time interval. Here we analyse
the probability distribution of demand, 
conditioned on its local noise intensity !,
and discover the surprising existence of a
critical threshold, !c. For !"!c, the most

probable value of demand is roughly zero;
we interpret this as an equilibrium phase in
which neither buying nor selling predomi-
nates. For !#!c, two most probable values
emerge that are symmetrical around zero
demand, corresponding to excess demand
and excess supply1; we interpret this as an
out-of-equilibrium phase in which the mar-
ket behaviour is mainly buying for half of the
time, and mainly selling for the other half.

We use the Trade and Quote database to
analyse each and every transaction of the
116 most actively traded stocks in the two-
year period 1994–95. We quantify demand
by computing the volume imbalance, $(t),
defined as the difference between the num-
ber of shares, QB, traded in buyer-initiated
transactions and the number, QS, traded in
seller-initiated transactions in a short time
interval, %t (refs 2, 3).

N
$(t)&QB'QS(! qiai

i(1

where i(1,…,N labels each of the N trans-
actions in the time interval %t, qi denotes
the number of shares traded in transaction
i, and ai()1 denotes buyer-initiated and
seller-initiated trades, respectively2.

We also calculate, for the same sequence
of intervals, the local noise intensity,
!(t)&*+qiai'*qiai,+,, where *..., denotes the
local expectation value, computed from all
transactions of that stock during the time
interval %t.

We find (Fig. 1a) that for small !, the
conditional distribution, P($+!), is single-
peaked, displaying a maximum at zero
demand, $(0. For ! larger than a critical
threshold, !c, the behaviour of P($+!)
undergoes a qualitative change, becoming
double-peaked with a pair of new maxima
appearing at non-zero values of demand,
$($-, and $($', which are symmetri-
cal around $(0.

Our findings for the financial-market
problem are identical to what is known to
occur in all phase-transition phenomena,
wherein the behaviour of a system undergoes
a qualitative change at a critical threshold, Kc,
of some control parameter K. The change 
in behaviour at Kc can be quantified by 
an order parameter .(K), where .(K)(0
for K"Kc, and .(K)!0 for K#Kc.

For the financial-market problem, we
find that the order parameter .(.(!) is
given by the values of the maxima of $) of
P($). Figure 1b shows that the change in
.(!) as a function of ! is described by

0 [!"!c].(!)({!'!c [!##!c]

We interpret these two market phases as
corresponding to the following two distinct
conditions of the financial market. 

First is the ‘!"!c’ market phase, in
which the distribution of demand, $, is 
single-peaked, with the most probable value
being zero; we interpret this to be the 
market equilibrium phase, because the price
of the stock is such that the probability of a
transaction being buyer-initiated is equal to
the probability of a transaction being seller-
initiated4. In the equilibrium phase, there 
is statistically no net demand, and prices 
fluctuate around their ‘equilibrium’ values,
suggesting that most of the trading is due to
‘noise’ traders who trade from misperceived
information or for idiosyncratic reasons5–7.

Second is the ‘!#!c’ market phase, in
which the distribution of demand is
bimodal. We interpret this to be the out-of-
equilibrium phase, because the price of the
stock is such that there is an excess of either
buyers or sellers and there is a non-zero net
demand for stock. Thus, in the out-of-equi-
librium phase, the prevalent ‘equilibrium’
price has changed, so the stock price is now
being driven to the market’s new evaluation
of a fair value, which is consistent with the
possibility that most of the trading arises
from informed traders who possess superior
information5–7.

Our findings suggest that there is a link
between the dynamics of a human system
with many interacting participants (the
financial market) and the ubiquitous phe-
nomenon of phase transitions that occur 
in physical systems with many interacting
units. Physical observables associated with
phase transitions undergo large fluctua-
tions that display power-law behaviour, so
our results raise the possibility that volatile
market movements and their empirically
identified power-law behaviour are related
to general aspects of phase transitions.
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Figure 1 Empirical evidence supporting the existence of two distinct
phases in a complex financial market. a, Conditional density,
P($+!), for varying ! computed using data for all stocks. For each
stock, $ and ! are normalized to zero mean and unit first centred
moment. The distribution has a single peak for !"!c (solid line).
For !!!c (dotted line), the distribution flattens near to the origin,
and for !"!c, P($+!) displays two peaks (dashed line). b, Order
parameter . (positions of the maxima of the distribution P($+!))
as a function of !. For small !, P($+!) displays a single maximum,
whereas for large !, two maxima are present. To locate the
extremes as accurately as possible, we compute all probability den-
sities using the density estimator of ref. 8. Also shown (by shading)
is a phase diagram representing the two distinct market phases.
Here, %t(15 min; our results hold for %t ranging from 15 min up
to about half a day, beyond which our statistics are insufficient.
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Figure 1 Empirical evidence supporting the existence of two distinct
phases in a complex financial market. a, Conditional density,
P($+!), for varying ! computed using data for all stocks. For each
stock, $ and ! are normalized to zero mean and unit first centred
moment. The distribution has a single peak for !"!c (solid line).
For !!!c (dotted line), the distribution flattens near to the origin,
and for !"!c, P($+!) displays two peaks (dashed line). b, Order
parameter . (positions of the maxima of the distribution P($+!))
as a function of !. For small !, P($+!) displays a single maximum,
whereas for large !, two maxima are present. To locate the
extremes as accurately as possible, we compute all probability den-
sities using the density estimator of ref. 8. Also shown (by shading)
is a phase diagram representing the two distinct market phases.
Here, %t(15 min; our results hold for %t ranging from 15 min up
to about half a day, beyond which our statistics are insufficient.

–3–5 0 3 5
Volume imbalance (   )

0

2.5

5.0

Co
nd

iti
on

al
 d

en
sit

y 
(P

(  
 |  

 ))

a

–1 0 1 2
Local deviation (   ) 

–4

–2

0

2

4

 O
rd

er
 p

ar
am

et
er

 ( 
  (

   
)) 

b

c

Equilibrium
phase

Out-of-equilibrium
phase

Ψ
Ω

Σ
Σ

Σ

Σ

Ω

© 2003        Nature  Publishing Group

Berkeley, California, 1997).
7. Kempf, A. & Korn, O. J. Finan. Mark. 2, 29–48 (1999).
8. Chordia, T., Roll, R. & Subrahmanyam, A. J. Finan. Econ. 65,

111–130 (2002).
9. Plerou, V., Gopikrishnan, P., Gabaix, X. & Stanley, H. E. Phys.

Rev. E 66, 027104 (2002).
10.Lee, C. M. C. & Ready, M. J. J. Finance 46, 733–746 (1991).
11.Daniels, M., Farmer, J. D., Iori, G. & Smith, D. E. Preprint

http://xxx.lanl.gov/cond-mat/0112422 (2001).
Competing financial interests: declared none.

Econophysics

Two-phase behaviour 
of financial markets

Buying and selling in financial markets is
driven by demand, which can be quan-
tified by the imbalance in the number

of shares transacted by buyers and sellers
over a given time interval. Here we analyse
the probability distribution of demand, 
conditioned on its local noise intensity !,
and discover the surprising existence of a
critical threshold, !c. For !"!c, the most

probable value of demand is roughly zero;
we interpret this as an equilibrium phase in
which neither buying nor selling predomi-
nates. For !#!c, two most probable values
emerge that are symmetrical around zero
demand, corresponding to excess demand
and excess supply1; we interpret this as an
out-of-equilibrium phase in which the mar-
ket behaviour is mainly buying for half of the
time, and mainly selling for the other half.

We use the Trade and Quote database to
analyse each and every transaction of the
116 most actively traded stocks in the two-
year period 1994–95. We quantify demand
by computing the volume imbalance, $(t),
defined as the difference between the num-
ber of shares, QB, traded in buyer-initiated
transactions and the number, QS, traded in
seller-initiated transactions in a short time
interval, %t (refs 2, 3).

N
$(t)&QB'QS(! qiai

i(1

where i(1,…,N labels each of the N trans-
actions in the time interval %t, qi denotes
the number of shares traded in transaction
i, and ai()1 denotes buyer-initiated and
seller-initiated trades, respectively2.

We also calculate, for the same sequence
of intervals, the local noise intensity,
!(t)&*+qiai'*qiai,+,, where *..., denotes the
local expectation value, computed from all
transactions of that stock during the time
interval %t.

We find (Fig. 1a) that for small !, the
conditional distribution, P($+!), is single-
peaked, displaying a maximum at zero
demand, $(0. For ! larger than a critical
threshold, !c, the behaviour of P($+!)
undergoes a qualitative change, becoming
double-peaked with a pair of new maxima
appearing at non-zero values of demand,
$($-, and $($', which are symmetri-
cal around $(0.

Our findings for the financial-market
problem are identical to what is known to
occur in all phase-transition phenomena,
wherein the behaviour of a system undergoes
a qualitative change at a critical threshold, Kc,
of some control parameter K. The change 
in behaviour at Kc can be quantified by 
an order parameter .(K), where .(K)(0
for K"Kc, and .(K)!0 for K#Kc.

For the financial-market problem, we
find that the order parameter .(.(!) is
given by the values of the maxima of $) of
P($). Figure 1b shows that the change in
.(!) as a function of ! is described by

0 [!"!c].(!)({!'!c [!##!c]

We interpret these two market phases as
corresponding to the following two distinct
conditions of the financial market. 

First is the ‘!"!c’ market phase, in
which the distribution of demand, $, is 
single-peaked, with the most probable value
being zero; we interpret this to be the 
market equilibrium phase, because the price
of the stock is such that the probability of a
transaction being buyer-initiated is equal to
the probability of a transaction being seller-
initiated4. In the equilibrium phase, there 
is statistically no net demand, and prices 
fluctuate around their ‘equilibrium’ values,
suggesting that most of the trading is due to
‘noise’ traders who trade from misperceived
information or for idiosyncratic reasons5–7.

Second is the ‘!#!c’ market phase, in
which the distribution of demand is
bimodal. We interpret this to be the out-of-
equilibrium phase, because the price of the
stock is such that there is an excess of either
buyers or sellers and there is a non-zero net
demand for stock. Thus, in the out-of-equi-
librium phase, the prevalent ‘equilibrium’
price has changed, so the stock price is now
being driven to the market’s new evaluation
of a fair value, which is consistent with the
possibility that most of the trading arises
from informed traders who possess superior
information5–7.

Our findings suggest that there is a link
between the dynamics of a human system
with many interacting participants (the
financial market) and the ubiquitous phe-
nomenon of phase transitions that occur 
in physical systems with many interacting
units. Physical observables associated with
phase transitions undergo large fluctua-
tions that display power-law behaviour, so
our results raise the possibility that volatile
market movements and their empirically
identified power-law behaviour are related
to general aspects of phase transitions.
Vasiliki Plerou, Parameswaran
Gopikrishnan*, H. Eugene Stanley
Center for Polymer Studies and Department of
Physics, Boston University, Boston, 
Massachusetts 02215, USA
e-mail: plerou@cgl.bu.edu
*Present address: Goldman Sachs, 10 Hanover
Square, New York, New York 1005, USA

1. Takayasu, H. & Takayasu, M. Physica A 269, 24–29 (1999).
2. Lee, C. M. & Ready, M. J. J. Finance 46, 733–746 (1991).
3. Plerou, V., Gopikrishnan, P., Gabaix, X. & Stanley, H. E. Phys.

Rev. E 66, 027104[1]–027104[4] (2002). 
4. O’Hara, M. Market Microstructure Theory (Blackwell,

Cambridge, 1995).
5. Black, F. J. Finance 41, 529–538(1986).
6. Shleifer, A. Inefficient Markets: An Introduction to Behavioral

Finance (Oxford Univ. Press, New York, 2001).
7. Lux, T. & Marchesi, M. Nature 397, 498–500 (1999).
8. Holy, T. E. Phys. Rev. Lett. 79, 3545–3548 (1997).
Competing financial interests: declared none.

brief communications

130 NATURE | VOL 421 | 9 JANUARY 2003 | www.nature.com/nature

brief communications is intended to provide a forum for both brief, topical reports of general scientific interest and
technical discussion of recently published material of particular interest to non-specialist readers. Priority will be given
to contributions that have fewer than 500 words, 10 references and only one figure. Detailed guidelines are available 
on Nature’s website (www.nature.com) or on request from nature@nature.com.

Figure 1 Empirical evidence supporting the existence of two distinct
phases in a complex financial market. a, Conditional density,
P($+!), for varying ! computed using data for all stocks. For each
stock, $ and ! are normalized to zero mean and unit first centred
moment. The distribution has a single peak for !"!c (solid line).
For !!!c (dotted line), the distribution flattens near to the origin,
and for !"!c, P($+!) displays two peaks (dashed line). b, Order
parameter . (positions of the maxima of the distribution P($+!))
as a function of !. For small !, P($+!) displays a single maximum,
whereas for large !, two maxima are present. To locate the
extremes as accurately as possible, we compute all probability den-
sities using the density estimator of ref. 8. Also shown (by shading)
is a phase diagram representing the two distinct market phases.
Here, %t(15 min; our results hold for %t ranging from 15 min up
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suggesting that most of the trading is due to
‘noise’ traders who trade from misperceived
information or for idiosyncratic reasons5–7.

Second is the ‘!#!c’ market phase, in
which the distribution of demand is
bimodal. We interpret this to be the out-of-
equilibrium phase, because the price of the
stock is such that there is an excess of either
buyers or sellers and there is a non-zero net
demand for stock. Thus, in the out-of-equi-
librium phase, the prevalent ‘equilibrium’
price has changed, so the stock price is now
being driven to the market’s new evaluation
of a fair value, which is consistent with the
possibility that most of the trading arises
from informed traders who possess superior
information5–7.

Our findings suggest that there is a link
between the dynamics of a human system
with many interacting participants (the
financial market) and the ubiquitous phe-
nomenon of phase transitions that occur 
in physical systems with many interacting
units. Physical observables associated with
phase transitions undergo large fluctua-
tions that display power-law behaviour, so
our results raise the possibility that volatile
market movements and their empirically
identified power-law behaviour are related
to general aspects of phase transitions.
Vasiliki Plerou, Parameswaran
Gopikrishnan*, H. Eugene Stanley
Center for Polymer Studies and Department of
Physics, Boston University, Boston, 
Massachusetts 02215, USA
e-mail: plerou@cgl.bu.edu
*Present address: Goldman Sachs, 10 Hanover
Square, New York, New York 1005, USA

1. Takayasu, H. & Takayasu, M. Physica A 269, 24–29 (1999).
2. Lee, C. M. & Ready, M. J. J. Finance 46, 733–746 (1991).
3. Plerou, V., Gopikrishnan, P., Gabaix, X. & Stanley, H. E. Phys.

Rev. E 66, 027104[1]–027104[4] (2002). 
4. O’Hara, M. Market Microstructure Theory (Blackwell,

Cambridge, 1995).
5. Black, F. J. Finance 41, 529–538(1986).
6. Shleifer, A. Inefficient Markets: An Introduction to Behavioral

Finance (Oxford Univ. Press, New York, 2001).
7. Lux, T. & Marchesi, M. Nature 397, 498–500 (1999).
8. Holy, T. E. Phys. Rev. Lett. 79, 3545–3548 (1997).
Competing financial interests: declared none.

brief communications

130 NATURE | VOL 421 | 9 JANUARY 2003 | www.nature.com/nature

brief communications is intended to provide a forum for both brief, topical reports of general scientific interest and
technical discussion of recently published material of particular interest to non-specialist readers. Priority will be given
to contributions that have fewer than 500 words, 10 references and only one figure. Detailed guidelines are available 
on Nature’s website (www.nature.com) or on request from nature@nature.com.

Figure 1 Empirical evidence supporting the existence of two distinct
phases in a complex financial market. a, Conditional density,
P($+!), for varying ! computed using data for all stocks. For each
stock, $ and ! are normalized to zero mean and unit first centred
moment. The distribution has a single peak for !"!c (solid line).
For !!!c (dotted line), the distribution flattens near to the origin,
and for !"!c, P($+!) displays two peaks (dashed line). b, Order
parameter . (positions of the maxima of the distribution P($+!))
as a function of !. For small !, P($+!) displays a single maximum,
whereas for large !, two maxima are present. To locate the
extremes as accurately as possible, we compute all probability den-
sities using the density estimator of ref. 8. Also shown (by shading)
is a phase diagram representing the two distinct market phases.
Here, %t(15 min; our results hold for %t ranging from 15 min up
to about half a day, beyond which our statistics are insufficient.
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8
<

:

⌃ < ⌃c , P (⌦|⌃) has a single peak (a single maximum)

⌃ ⇡ ⌃c , P (⌦|⌃) flattens near to the origin

⌃ > ⌃c , P (⌦|⌃) has two peaks (two maxima)
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stock market bubble: 
Dot-com bubble

stock market crash:  
Black Monday (1987)

On Monday, October 19, 1987, the 
Dow Jones Industrial Average (DJIA) 
fell exactly 508 points to 1,738.74 
(22.61%)

figure from: https://upload.wikimedia.org/wikipedia/
commons/a/af/Black_Monday_Dow_Jones.svg

1 Introduction—market collective behavior 

NASDAQ Composite index

The NASDAQ Composite 
index spiked in the late 1990s 
and then fell sharply as a 
result of the dot-com bubble.

figure from: https://upload.wikimedia.org/wikipedia/
commons/8/84/Nasdaq_Composite_dot-com_bubble.svg
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1 Introduction—two issues to be addressed

?

Stock i

Individual 
demand

Stock j

Individual 
demand

?

⌃

Two-phase 
behavior

Two-phase 
behavior

⌃ ⌃
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Joint 
distributions

Copulas

x1 =
p
c⌘ +

p
1 � c⇠1

x2 =
p
c⌘ +

p
1 � c⇠2

c = 0.5

⌘, ⇠1 and ⇠2 are random variables with following distributions

Idea behind the copula is to map all marginal distributions to uniform distributions and 
then to measure the joint distribution density as function of the corresponding quantities.

1 Introduction—why we use copulas instead of joint distributions? 6



2 Copula-based dependence of demands—data set

NASDAQ stock market  

Trades and Quotes (TAQ) data set 

for conditional probability density distributions:  496 available stocks from S&P 500 
index in 2008  

for copula densities: the first 100 stocks with the largest average number of daily 
trades among the 496 stocks. 

excluding the first and the last ten minutes during the intraday trading time to avoid 
the large fluctuations in the market opening and closing and the effect of overnight, 
so that total 370 minutes in each trading day are available 

considering the time interval of one minute to aggregate the volume imbalance and 
calculate the local fluctuation  

for each trading day and each stock, the length of available data points is 370
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2 Copula-based dependence of demands—definitions

Fkl(x1, x2) = Copkl

�
Fk(x1), Fl(x2)

�

F

k

(x1) =

Z
x1

�1
f

k

(s)ds

q1 = Fk(x1) and x1 = F

�1
k (q1)

Copkl(q1, q2) = Fkl

�
F�1
k (q1), F

�1
l (q2)

�

copkl(q1, q2) =

@2

@q1@q2
Copkl(q1, q2)

According to Sklar’s theorem, there exists a  copula satisfying

Fkl(x1, x2) = Copkl

�
Fk(x1), Fl(x2)

�
is a joint cumulative distribution

Fkl(x1, x2) = Copkl

�
Fk(x1), Fl(x2)

�
are marginal cumulative distribution

Using inverse cumulative distribution function, we have

Copula can be expressed as the cumulative joint distribution of quantiles

Copula density is given by
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2 Copula-based dependence of demands—empirical copula

cop(q1, q2) =

2

K(K � 1)

K�1X

k=1

KX

l=k+1

copkl(q1, q2)

q1(t) = Fk(⌫k(t)) =
1

T

TX

⌧=1

1 {⌫k(⌧ )  ⌫k(t)} �
1

2T

dependence 
of demandsdependence 

of supplies

copkl(q1, q2) =

@2

@q1@q2
Copkl(q1, q2)

⌫k(t) 1.5 �1.2 0.8 2.5 �0.3 1.7 2

rank 4 1 3 7 2 5 6

q(t) 3.5
7

0.5
7

2.5
7

6.5
7

1.5
7

4.5
7

5.5
7

For example

⌫k(t) =

Ntrades(t)X

n=1

vk(t;n)"k(t;n)

Demand: volume imbalance

"k(t;n) =

⇢
1, for a buy trade

�1, for a sell trade

▸ trade sign

▸ t : the index of time interval of one minute 
▸               : trade volumevk(t;n)

9



2 Copula-based dependence of demands—bivariate K-copula density

hgi(r|C,N) =

1

2

N/2+1
�(N/2)

p
det(2⇡C/N)

K(K�N)/2

⇣p
Nr

†C�1
r

⌘

p
Nr

†C�1
r

(K�N)/2

=

1

(2⇡)K�(N/2)
p
detC

Z 1

0
dzz

N
2 �1e�z

r
⇡N

z

K

exp

✓
�

N

4z
r

†C�1
r

◆

r =
�
~r1(t), ...,~rK(t)

�
modified Bessel function 
of the second kind of 
order (K-N)/2 

this distribution results from a 
random matrix average to model 
non-stationary, i.e., fluctuating 
covariance or correlation matrices 
with a mean value C

correlation 
matrices N measures the strength 

of these fluctuations, 1/N 
can be viewed as the 
corresponding variance

Vector

K distribution

Ref. Schmitt, Chetalova, Schäfer and Guhr, EPL, 103, 5 (2013); Wollschläger and Schäfer, arXiv:
1506.08054; Chetalova, Schäfer and Guhr, Journal of Statistical Mechanics, P01029 (2015)
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f(x1, x2) =

1

�(N/2)

Z 1

0
dzz

N
2 �1

e

�z N

4⇡z

1

p
1 � c

2
exp

✓
�

N

4z

x

2
1 � 2cx1x2 + x

2
2

1 � c

2

◆

K = 2

cop

K
c,N(q1, q2) =

f
�
F�1
k (q1), F

�1
l (q2)

�

fk

�
F�1
k (q1)

�
fl

�
F�1
l (q2)

�

F

k

(x1) =

Z
x1

�1
d⇠f

k

(⇠)

C =


1 c
c 1

�

The joint probability density of variables x1 and x2  is

correlation matrix

The marginal distribution density of variable x1

The marginal cumulative distribution function

Analogously for variable x2 . Bivariate K-copula density function

fk(x1) =

Z 1

�1
dx2f(x1, x2)

2 Copula-based dependence of demands—bivariate K-copula density 11
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F (x1, x2) =

Z
x1

�1

Z
x2

�1

1

2⇡

p
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2
exp

✓
�

y

2
1 + y

2
2 � 2cy1y2
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2
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dy2dy1
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exp
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2
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c (q1, q2) =

@2

@q1@q2
F
�
F�1
k (q1), F
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l (q2)

�

=

1

p
1 � c2

exp

 
�

c2F�1
k (q1)2 + c2F�1

l (q2)2 � 2cF�1
k (q1)F

�1
l (q2)

2(1 � c2)

!

The bivariate cumulative normal distribution of variables x1 and x2  is given by

The marginal cumulative normal distribution of variable x1 is

Gaussian copula density 

2 Copula-based dependence of demands—Gaussian copula density 12



cop

G
c̄ (q1, q2)

cop

K
c̄,N(q1, q2)

Fits Errors

Gaussian copula 
density 

K-copula density 
cop(q1, q2) �
cop

K
c̄,N(q1, q2)

cop(q1, q2) �
cop

G
c̄ (q1, q2)

2 Copula-based dependence of demands—results of fitting

Conclusion 1: Empirical copula densities can be described well by a bivariate K-copula 
density function, especially for the dependencies in the tails
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3 Influence of local fluctuations on dependencies
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Conditional copula densities exclude 50 data points of the largest or smallest local fluctuations
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Local fluctuations: local noise intensity
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Conditional copula densities
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Conditional copula densities
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3 Influence of local fluctuations on dependencies
Influence on the dependence structure
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Influence of local fluctuations
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3 Influence of local fluctuations on dependencies
Influence on the dependence structure
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Conclusion 2: Large local fluctuations in either stock of a pair are important to cause the 
strong positive dependencies
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3 Influence of local fluctuations on dependencies
Influence on the asymmetries of tail dependencies
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3 Influence of local fluctuations on dependencies
Influence on the asymmetries of tail dependencies

Price change in the order book for market orders to buy. 
Left:  order book at t=0; right: order book at t=T

Chapter 1. Introduction

Price Ask Volume
17.125 5,921
17.120 24,544
17.115 9,181
17.110 30,558
17.105 11,160
17.100 17,315
17.095 19,150
17.090 19,235
17.085 19,316
17.080 10,173
17.075

14,798 17.070
16,195 17.065

24,836 17.060
13,850 17.055

16,220 17.050
10,057 17.045

21,033 17.040
6,002 17.035

18,455 17.030
10,647 17.025
Bid Volume

Price Ask Volume
17.125 5,921
17.120 24,544
17.115 9,181
17.110 30,558
17.105 11,160
17.100 17,315
17.095 19,150
17.090 18,724
17.085
17.080
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14,798 17.070
16,195 17.065

24,836 17.060
13,850 17.055
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10,057 17.045

21,033 17.040
6,002 17.035

18,455 17.030
10,647 17.025
Bid Volume

Figure 1.3: Price change in the order book due to a large market order to buy.

1.4 Features in market microstructures

In computerized financial markets, the presence of high-frequency trading and the mech-
anism of continuous double auction have given rise to a lot of statistical features. Here,
we focus on three features that matter for the market microstructure. In Sec. 1.4.1, we
introduce the correlation of order flow, which is found to be long memory. In Sec. 1.4.2,
we present the impact of trades on the price, a non-trivial feature that is closely related
to trading costs. In Sec. 1.4.3, we show a two-phase behavior in demands, induced by the
large local fluctuations.

1.4.1 Correlation of order flow

In recent years, as one of stylized facts, a high auto-correlation of order flow has been
found empirically and analyzed theoretically [26, 27, 42, 63, 80–82]. The order flow is
indicated by a time series of trade signs. The sign is defined as +1 for a buy trade and
as �1 for a sell trade. Thus, the correlation of trade signs is always a replacement for the
correlation of order flow. Importantly, the order flow displays a remarkable persistence
that buy (sell) orders are often followed by more buy (sell) orders [26, 42]. Such behavior
is termed as the long memory of order flow.

For the long-memory correlation of order flow, the possible reasons include order split-
ting [15, 42, 63] and herding behavior [63]. The order splitting refers to that a large order
is chopped into pieces, which are executed one by one with the same trade sign. As in-
troduced in Sec. 1.3.2, a large market order will move the trade price largely, leading to
an extra cost for trading. Taking advantage of order splitting, traders can avoid the large
trading costs. The herding behavior in financial markets refers to that di↵erent traders
place orders with the same trade sign. It could be yielded by public information or the
imitations between traders. By comparing, Ref. [63] reveals that the persistence in order
flow is mainly due to the order splitting rather than the herding behavior.
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Trade price

Trade price

A bull market is a period of 
generally rising prices.

Conclusion 3: Large local fluctuations cause the stronger dependence of 
demands than the dependence of supplies, which implies price raising of 
most stocks, resulting in a bull market if this state persists.
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Influence on the asymmetries of tail dependencies

-4 -2 0 2 4

β
(ss)
kl

×10
-3

0

100

200

300

p
(β

(s
s)

k
l
)

-4 -2 0 2 4

β
(ll)
kl

×10
-3

0

100

200

300

p
(β

(l
l)

k
l
)

-4 -2 0 2 4

β
(sl)
kl ×10

-3

0

100

200

300

p
(β

(s
l)

k
l
)

-4 -2 0 2 4

β
(ls)
kl

×10
-3

0

100

200

300

p
(β

(l
s)

k
l
)

↵kl =

Z 1

0.8
dq1

Z 1

0.8
dq2 copkl(q1, q2) �

Z 0.2

0
dq1

Z 0.2

0
dq2 copkl(q1, q2)

�kl =

Z 0.2

0
dq1

Z 1

0.8
dq2 copkl(q1, q2) �

Z 1

0.8
dq1

Z 0.2

0
dq2 copkl(q1, q2)

2. Asymmetry of negative dependencies in tail

dependence of supply and demand — dependence of demand and supply

skewness
=-0.0373

skewness
=-0.0473

skewness
=-0.0186

skewness
=-0.0140

skewness =
E(x � µ)3

�

3

22



�kl =

⇣ Z 1

0.8
dq1

Z 1

0.8
dq2 copkl(q1, q2) +

Z 0.2

0
dq1

Z 0.2

0
dq2 copkl(q1, q2)

⌘

�
⇣ Z 0.2

0
dq1

Z 1

0.8
dq2 copkl(q1, q2) +

Z 1

0.8
dq1

Z 0.2

0
dq2 copkl(q1, q2)

⌘

cop

(ss)

(q
1

, q
2

) = cop

�
q
1

, q
2

��
⌃k < ⌃k,max

,⌃l < ⌃l,max

�

cop

(ll)

(q
1

, q
2

) = cop

�
q
1

, q
2

��
⌃k > ⌃k,min

,⌃l > ⌃l,min

�

cop

(sl)

(q
1

, q
2

) = cop

�
q
1

, q
2

��
⌃k < ⌃k,max

,⌃l > ⌃l,min

�

cop

(ls)

(q
1

, q
2

) = cop

�
q
1

, q
2

��
⌃k > ⌃k,min

,⌃l < ⌃l,max

�

cop

(ss)

(q
1

, q
2

) = cop

�
q
1

, q
2

��
⌃k < ⌃k,max

,⌃l < ⌃l,max

�

cop

(ll)

(q
1

, q
2

) = cop

�
q
1

, q
2

��
⌃k > ⌃k,min

,⌃l > ⌃l,min

�

cop

(sl)

(q
1

, q
2

) = cop

�
q
1

, q
2

��
⌃k < ⌃k,max

,⌃l > ⌃l,min

�

cop

(ls)

(q
1

, q
2

) = cop

�
q
1

, q
2

��
⌃k > ⌃k,min

,⌃l < ⌃l,max

�

3. Asymmetry of positive and negative dependencies in tail:

positive dependencies — negative dependencies

Influence on the asymmetries of tail dependencies

3 Influence of local fluctuations on dependencies 23



-1 -0.5 0 0.5 1

c

-0.4

-0.2

0

0.2

0.4

γ
k
l

0 10 20 30 40 50

N

0.03065

0.03070

0.03075

0.03080

0.03085

0.03090

γ
k
l

N = 6.72 c = 0.10

cop

K
c,N(q1, q2) =

f
�
F�1
k (q1), F

�1
l (q2)

�

fk

�
F�1
k (q1)

�
fl

�
F�1
l (q2)

�

K-copula density

Conclusion 4: Large local fluctuations are more likely to induce the strong correlation, 
leading to the change of tailed dependencies, and further to the strong dependence 
of demands
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4 Summary

▸ Empirical copula densities can be described well by a 
bivariate K-copula density function 

▸ Influence on dependence structures: large local 
fluctuations in either stock of a pair are important to 
cause the strong positive dependencies, including the 
dependence of supplies and the dependence of 
demands 

▸ Influence on asymmetries: Large local fluctuations cause 
the stronger dependence of demands than the 
dependence of supplies, which implies price raising of 
most stocks, resulting in a bull market if this state persists. 

▸ The mechanism of influences: Large local fluctuations are 
more likely to induce the strong correlation, leading to 
the change of tailed dependencies, and further to the 
strong dependence of demands
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