First Insights into Wind Farm Data Analysis

Tobias Braun

Group Seminar AG Guhr

5. Januar 2017

・ロト ・御ト ・ヨト ・ヨト

- E

Motivation

General Facts & Literature Overview

Data Cleansing

First Glance of Qualitative Behaviour

Ideas and Prospect

Motivation

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

• Climate Change:

to achieve $<2^{\circ}\text{C-goal},$ coal demand has to decrease by 40% between 2012 and 2040

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ─ □

Source: IPCC report

• Climate Change:

to achieve $< 2^{\circ}$ C–goal, coal demand has to decrease by 40% between 2012 and 2040

• Today:

 CO_2 -emissions still increasing

イロト 不得下 不良下 不良下

Э

Source: IPCC report

• Climate Change:

to achieve $< 2^{\circ}$ C–goal, coal demand has to decrease by 40% between 2012 and 2040

• Today:

 CO_2 -emissions still increasing

Emissions:

 $20\frac{\rm g}{\rm kWh}$ vs. $1000\frac{\rm g}{\rm kWh}$ of $\rm CO_2$ by wind energy resp. coal

・ロト ・ 日本 ・ 日本 ・ 日本

э

• Climate Change:

to achieve $< 2^{\circ}$ C–goal, coal demand has to decrease by 40% between 2012 and 2040

• Today: CO₂-emissions still increasing

Emissions:

 $20\frac{\rm g}{\rm kWh}$ vs. $1000\frac{\rm g}{\rm kWh}$ of $\rm CO_2$ by wind energy resp. coal

 Highest expansion potential and theoretical effectiveness up to 59%

э

- Single wind turbine: highly complex system with a lot of analysable properties
- Wind farm:

compound complex system with certain synchronicities

Source: Kießing, F. Modellerung des annelastischen Gesanstsystems einer Windsubine mit Hife symbolischer Programmierung, DFULR-Report, DFULR-FE 8410, 1984.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

- Single wind turbine: highly complex system with a lot of analysable properties
- Wind farm:

compound complex system with certain synchronicities

• Time series of several properties have stochastic, non-stationary and quasi-periodical character

(日) (四) (日) (日)

ightarrow Present problems: volatile power output and grid overload

What am I planning to do with wind farm data?

Find quasistationary states of wind farm with methods analogue to *Market States*!

Y. Stepanov: Meta-Stable Stock Market Collective Dynamics with Applications, presentation 2016

General Facts & Literature Overview

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

General Physics of Wind Turbines

An easy estimation of Power Production

Power of wind results from kinetic energy of moved air:

$$E_{
m kin} = rac{m}{2}u^2 \qquad \Leftrightarrow \qquad P_{
m W} = \dot{E}_{
m kin} = rac{m}{2}u^2 \quad {
m with} \quad u = {
m const.}$$

The mass flow $\dot{m} = A\rho u$ gives us

$$P_{\rm W} = \frac{A}{2}\rho u^3$$

Mechanical power can be estimated by including a performance constant $C_{\rm P}$:

$$P_{\mathrm{m}}(u) = C_{\mathrm{P}}P_{\mathrm{W}} = C_{\mathrm{P}}\frac{A}{2}\rho \ u^{3}$$

General Physics of Wind Turbines

Betz's law

Rotor blades are driven by *lift force* \rightarrow **deceleration** of wind

- \rightarrow deceleration of wind
 - Very weak decelaration: weak lift force
 - Very strong decelaration:
 - $\dot{m}
 ightarrow 0 \quad \Rightarrow \quad P_{
 m m}
 ightarrow 0$

Conclusion: There is a best value for $\frac{u_u}{u_d}$ and a limit for aerodynamical efficiency!

$$C_{
m P} \leq 0.59$$

-

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

SCADA and power control

SCADA

Supervisory Control and Data Acquisition

Collects real-time data to control the wind farm (mostly fully automatic)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

SCADA and power control

SCADA

Supervisory Control and Data Acquisition

Collects real-time data to control the wind farm (mostly fully automatic)

Active Power Control

Data is used to limit power within operating range:

How it is realized

Pitch Control

- $u < 3_{rac{\mathrm{m}}{\mathrm{s}}}$ or $u > 25_{rac{\mathrm{m}}{\mathrm{s}}}$: $\phi \approx 90^{\circ}$
- $3\frac{\mathrm{m}}{\mathrm{s}} \leq u \leq 12\frac{\mathrm{m}}{\mathrm{s}}: \qquad \phi = 0^{\circ}$

 $12\frac{m}{s} < u \le 25\frac{m}{s}$:

 $\phi \in [0^\circ, 30^\circ]$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

How it is realized

Pitch Control

 $u < 3\frac{\mathrm{m}}{\mathrm{s}}$ or $u > 25\frac{\mathrm{m}}{\mathrm{s}}$: $\phi \approx 90^{\circ}$

 $3\frac{\mathrm{m}}{\mathrm{s}} \leq u \leq 12\frac{\mathrm{m}}{\mathrm{s}}: \qquad \phi = 0^{\circ}$

 $12\frac{\mathrm{m}}{\mathrm{s}} < u \leq 25\frac{\mathrm{m}}{\mathrm{s}}$: $\phi \in [0^{\circ}, 30^{\circ}]$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Autotracking and Trundeling

Autotracking: within operating range, nacelle rotates so that $\vec{u} \parallel \vec{A}$

Trundeling: beyond operating range, turbine is not shut down immediately but *trundles*

What are the main problems and approaches in wind energy research?

Brief Overview by Keywords

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

What already has been done

• Aggregated windfarm models:

- Reducing complexity & computation times by determining multi machine representations (since ≈ 2000)
- Methods:

Clustering of wind velocities and further data mining methods

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

What already has been done

• Aggregated windfarm models:

- Reducing complexity & computation times by determining multi machine representations (since \approx 2000)
- Methods: Clustering of wind velocities and further data mining methods

• Power forecast:

• Several approaches to predict wind power from empirical or simulated data to e.g. minimize number of shutdowns (well advanced)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

 Methods: mostly sophisticated big data and machine learning methods

What already has been done

• Reliability Assesment:

• Comprehensive analysis of wind energy reliability by including multiple wind farms

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Methods:

 $\text{Correlations} \rightarrow \text{wind velocity simulations}$

What already has been done

• Reliability Assesment:

• Comprehensive analysis of wind energy reliability by including multiple wind farms

うして ふゆう ふほう ふほう うらつ

• Methods:

-

 $\mathsf{Correlations} \to \mathsf{wind} \ \mathsf{velocity} \ \mathsf{simulations}$

- Structural Health Monitoring
- Wind Farm Integration into Power Grid
- Models for Power Fluctuations
- Operational Risk of Wind Farms

What are the main problems and approaches in wind energy research?

Improve grid integration by balancing multiple intermittent power outputs of WTs, especially for offshore wind farms.

Expert Report: SCADA 2014 systems for wind

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

What are the main problems and approaches in wind energy research?

Improve grid integration by balancing multiple intermittent power outputs of WTs, especially for offshore wind farms.

Expert Report: SCADA 2014 systems for wind

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 \rightarrow Learn more about (instationary) correlation structure between single WTs!

ForWind Center for Wind Energy Research

- since 2003
- Oldenburg, Bremen and Hannover
- **Research**: many interdisciplinary topics, including turbulence, power forecast and stochastic modeling

- **Previous collaborations**: Yuriy and Philip Rinn about *Market States*
- Further collaboration with AG Peinke is intended

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ─ □

RIFFGAT

Offshore wind farm near Borkum

- 30 wind turbines with active power of 3.6MW ²120.000 provided homes
- Operating range: $3 25 \frac{\text{m}}{\text{s}}$ and $u \stackrel{!}{<} 70 \frac{\text{m}}{\text{s}}$

<ロ> (四) (四) (三) (三) (三) (三)

RIFFGAT

Offshore wind farm near Borkum

- Operating range: $3 25 \frac{\text{m}}{\text{s}}$ and $u \stackrel{!}{<} 70 \frac{\text{m}}{\text{s}}$

- Distances: 554m in rows and 600m between rows
- Diameter: 120m
- Height: 90m

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Data Cleansing

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

My Dataset

WTs Measured Quantities as Time Series

including values for mean, maximum, minimum and standard deviation always calculated over consecutive *10-minute intervals* (56.593 values per WT).

うして ふゆう ふほう ふほう うらつ

My Dataset

WTs Measured Quantities as Time Series

including values for mean, maximum, minimum and standard deviation always calculated over consecutive *10-minute intervals* (56.593 values per WT).

(ロ) (型) (E) (E) (E) (O)

Limiting to Operating Range

Operating Range:

$$3\frac{\mathrm{m}}{\mathrm{s}} \leq u \leq 25\frac{\mathrm{m}}{\mathrm{s}}$$

20kW $\leq P \leq$ 3800kW

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Limiting to Operating Range

Operating Range:

$$3\frac{\mathrm{m}}{\mathrm{s}} \leq u \leq 25\frac{\mathrm{m}}{\mathrm{s}}$$

20kW $\leq P \leq$ 3800kW

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Raw Data:

- 16% of $P_{\rm raw} < 0 {\rm kW!}$ But only 2% of $P_{\rm raw} < -20 {\rm kW}$
- 10% of $u_{\rm raw} < 3\frac{\rm m}{\rm s}!$ But only 0.1% of $u_{\rm raw} > 25\frac{\rm m}{\rm s}$

Limiting to Operating Range

Operating Range:

$$3\frac{\mathrm{m}}{\mathrm{s}} \leq u \leq 25\frac{\mathrm{m}}{\mathrm{s}}$$

20kW $\leq P \leq$ 3800kW

Raw Data:

- 16% of $P_{\rm raw} < 0 {\rm kW}!$ But only 2% of $P_{\rm raw} < -20 {\rm kW}$
- 10% of $u_{\rm raw} < 3\frac{m}{s}!$ But only 0.1% of $u_{\rm raw} > 25\frac{m}{s}$

Further discard redundant values and such with stddev = 0:

$$\Rightarrow$$
 32.42% NAs

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ のへで

Insight into questionable values

Abs. Differenz/3600kW	Relat. Aenderung	P1	P2	Min1	Max1	Min2	Max2	Stddev1	Stddev2
0.9919554	117.7760137	30.3206000	3601.3600000	-718.0000000	2438.0000000	3509.000000	3698.0000000	283.7120000	26.7370000
0.2458506	38.8493541	22.7819000	907.8440000	-95.0000000	1538.0000000	608.0000000	1396.0000000	194.7060000	149.3420000
0.1830456	24.0896190	27.3547000	686.3190000	-40.0000000	161.0000000	576.0000000	745.0000000	38.0380000	31.5924000
0.2426734	37.3410698	23.3958000	897.0200000	-60.0000000	330.0000000	796.0000000	1029.0000000	101.2240000	45.0744000
0.9326092	24.4695460	137.2070000	3494.6000000	-132.0000000	367.0000000	2103.0000000	3697.0000000	163.8960000	291.3220000
0.2235168	39.1688133	20.5434000	825.2040000	-58.0000000	178.0000000	746.0000000	938.0000000	57.0338000	42.0686000
0.2603715	32.5061400	28.8357000	966.1730000	-91.0000000	368.0000000	-97.0000000	2695.0000000	118.2420000	912.9050000

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Possible Explanation & Rejection Criterion

Insight into questionable values

Abs. Differenz/3600kW	Relat. Aenderung	P1	P2	Min1	Max1	Min2	Max2	Stddev1	Stddev2
0.9919554	117.7760137	30.3206000	3601.3600000	-718.0000000	2438.0000000	3509.0000000	3698.0000000	283.7120000	26.7370000
0.2458506	38.8493541	22.7819000	907.8440000	-95.0000000	1538.0000000	608.0000000	1396.0000000	194.7060000	149.3420000
0.1830456	24.0896190	27.3547000	686.3190000	-40.0000000	161.0000000	576.0000000	745.0000000	38.0380000	31.5924000
0.2426734	37.3410698	23.3958000	897.0200000	-60.0000000	330.0000000	796.0000000	1029.0000000	101.2240000	45.0744000
0.9326092	24.4695460	137.2070000	3494.6000000	-132.0000000	367.0000000	2103.0000000	3697.0000000	163.8960000	291.3220000
0.2235168	39.1688133	20.5434000	825.2040000	-58.0000000	178.0000000	746.0000000	938.0000000	57.0338000	42.0686000
0.2603715	32.5061400	28.8357000	966.1730000	-91.0000000	368.0000000	-97.0000000	2695.0000000	118.2420000	912.9050000

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Possible Explanation & Rejection Criterion

Insight into questionable values

Abs. Differenz/3600kW	Relat. Aenderung	P1	P2	Min1	Max1	Min2	Max2	Stddev1	Stddev2
0.9919554	117.7760137	30.3206000	3601.3600000	-718.0000000	2438.0000000	3509.0000000	3698.0000000	283.7120000	26.7370000
0.2458506	38.8493541	22.7819000	907.8440000	-95.0000000	1538.0000000	608.0000000	1396.0000000	194.7060000	149.3420000
0.1830456	24.0896190	27.3547000	686.3190000	-40.0000000	161.0000000	576.0000000	745.0000000	38.0380000	31.5924000
0.2426734	37.3410698	23.3958000	897.0200000	-60.0000000	330.0000000	796.0000000	1029.0000000	101.2240000	45.0744000
0.9326092	24.4695460	137.2070000	3494.6000000	-132.0000000	367.0000000	2103.0000000	3697.0000000	163.8960000	291.3220000
0.2235168	39.1688133	20.5434000	825.2040000	-58.0000000	178.0000000	746.0000000	938.0000000	57.0338000	42.0686000
0.2603715	32.5061400	28.8357000	966.1730000	-91.0000000	368.0000000	-97.0000000	2695.0000000	118.2420000	912.9050000

Possible Explanation & Rejection Criterion

Already discarded values could cause large changes \rightarrow partially verified

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Abs. Differenz/3600kW	Relat. Aenderung	P1	P2	Min1	Max1	Min2	Max2	Stddev1	Stddev2
0.9919554	117.7760137	30.3206000	3601.3600000	-718.0000000	2438.0000000	3509.0000000	3698.0000000	283.7120000	26.7370000
0.2458506	38.8493541	22.7819000	907.8440000	-95.0000000	1538.0000000	608.0000000	1396.0000000	194.7060000	149.3420000
0.1830456	24.0896190	27.3547000	686.3190000	-40.0000000	161.0000000	576.0000000	745.0000000	38.0380000	31.5924000
0.2426734	37.3410698	23.3958000	897.0200000	-60.0000000	330.0000000	796.0000000	1029.0000000	101.2240000	45.0744000
0.9326092	24.4695460	137.2070000	3494.6000000	-132.0000000	367.0000000	2103.0000000	3697.0000000	163.8960000	291.3220000
0.2235168	39.1688133	20.5434000	825.2040000	-58.0000000	178.0000000	746.0000000	938.0000000	57.0338000	42.0686000
0.2603715	32.5061400	28.8357000	966.1730000	-91.0000000	368.0000000	-97.0000000	2695.0000000	118.2420000	912.9050000

Insight into questionable values

Possible Explanation & Rejection Criterion

Criterion: discard all values with $|\rho| > 10$ that show jump $P_{\min}(t_2) - P_{\max}(t_1) > 360 \text{kW} \cong 0.1 P_{\text{WT}}$

but only

0.6% of
$$|\Delta P_{\rm WF}| > 0.2 P_{\rm WF}$$

Remaining Data

We arrive at

 $\widehat{=}$ 38.246 values per WT.

• Did we sort out *relevant* data?

 \Rightarrow

• How *reliable* is the remaining data set?

 \rightarrow How can we deal with all this missing data?

First Glance of Qualitative Behaviour

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

990

Power and Velocity

Power

- sharply massed around actual rated output
- lower output approx. equally distributed

ж

Power and Velocity

Power

- sharply massed around actual rated output
- lower output approx. equally distributed

Velocity

- not Weibull-distributed, bimodal!
- second maximum because WTs mostly run at nominal power at around $\approx 12 \frac{m}{s}$

Power and Velocity

Power

- sharply massed around actual rated output
- lower output approx. equally distributed

Velocity

- not Weibull-distributed, bimodal!
- second maximum because WTs mostly run at nominal power at around $\approx 12 \frac{m}{s}$

Power and Velocity - Seasons of the Year

Power

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Power and Velocity - Seasons of the Year

Velocity

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへの

Nacelle direction

Nacelle direction

ト 目 のへの

Relative Changes of Power

◆□▶ ◆□▶ ◆注▶ ◆注▶ ─ 注 ─ のへで

Relative Changes of Power

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで

Relative Changes of Power

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Relative Changes of Power

- Non-Gaussian but not heavy tailed!
- Roughly symmetric around zero
- pprox 13% of $ho \in$ [-0.0125,0.0125]
- QQ–Plot: really strong deviations for large values

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Relative Changes of Power

- Non-Gaussian but not heavy tailed!
- Roughly symmetric around zero
- pprox 13% of $ho \in$ [-0.0125,0.0125]
- QQ–Plot: really strong deviations for large values

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Power Curve

$$P_{\rm m}(u) = \frac{C_{\rm P}A\rho}{2} u^3$$

Averaged over all Wind Turbines

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Activity

1. Quarter

Activity

3. Quarter

Activity

How high is the probability for n WTs being out of operating range or failing from another reason?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Scatter Plots

Velocity and Power

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Scatter Plots

Velocity and Power

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへ⊙

Scatter Plots

Relative Changes of Power

メロト メポト メヨト メヨト

æ

Ideas and Prospect

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Find a way to treat missing data (without introducing any statistical bias!)

- 1. Find a way to treat **missing data** (without introducing any statistical bias!)
- 2. **Finish** first insight into data (failures, "volatility", relat. changes of velocities, autocorrelations, ...)

ション ふゆ アメリア メリア しょうくの

- Find a way to treat missing data (without introducing any statistical bias!)
- 2. **Finish** first insight into data (failures, "volatility", relat. changes of velocities, autocorrelations, ...)
- 3. Calculate cross-correlation-matrices and get first insights again

ション ふゆ アメリア メリア しょうくの

- Find a way to treat missing data (without introducing any statistical bias!)
- 2. **Finish** first insight into data (failures, "volatility", relat. changes of velocities, autocorrelations, ...)
- 3. Calculate cross-correlation-matrices and get first insights again

ション ふゆ アメリア メリア しょうくの

4. Start with cluster-computation etc.

Idea of my Master Thesis

• First Approach:

- Calculate $\underline{\underline{C}}$ for *locally normalized* values of $\rho(t) = \frac{P(t+\Delta t)-P(t)}{P(t)}$
- Build clusters of instationary <u>C</u>(t) by bisecting k-means ("Wind Farm States")
- Extend analysis by stochastic description of dynamics via *potential functions*

$$V(\overline{c},t)=-\int^{\overline{c}}f(x,t)dx$$

with empirically estimated drift function f(x, t)

Y. Stepanov: Meta-Stable Stock Market Collective Dynamics with Applications, presentation 2016

Y. Stepanov et al: Stability and Hierarchy of Quasi-Stationary States: Financial Markets as an Example, 2015

Idea of my Master Thesis

• Advanced Approach:

• Use all measured data in

$$30 \times \begin{pmatrix} P \\ u \\ \alpha_{\text{nac}} \\ \phi_{\text{rot}} \\ \Omega_{\text{T}} \\ \vdots \end{pmatrix}_{t}$$

- Derive only state of **one** WT first with the same methods
- Compare structure and stability of all single-WT-states

Y. Stepanov: Meta-Stable Stock Market Collective Dynamics with Applications, presentation 2016

Y. Stepanov et al: Stability and Hierarchy of Quasi-Stationary States: Financial Markets as an Example, 2015

Thank you for your attention!

・ロト ・個ト ・ヨト ・ヨト 三日

References: Feel free to ask me!