ruhr.paD

UA Ruhr Zentrum fir
partielle Differentialgleichungen

Equilibrium Points of a Singular Cooperative
System with Free Boundary

J. Andersson, H. Shahgholian, N.N. Uraltseva and G.S. Weiss

Preprint 2015-08
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AssTrACT. In this paper we initiate the study of maps minimising the energy

f (IVul? + 2lul) dx,
D
which, due to Lipschitz character of the integrand, gives rise to the singular Euler equations
u
Au = m/\/ﬂubo)’ u=(up, -,y .

Our primary goal in this paper is to set up a road map for future developments of the theory
related to such energy minimising maps.

Our results here concern regularity of the solution as well as that of the free bound-
ary. They are achieved by using monotonicity formulas and epiperimetric inequalities, in
combination with geometric analysis.

1. INTRODUCTION
1.1. Background. In this paper we shall study the singular system
(D Au = 2Ly (a0 w=(up, )

whereu: R" > D - R", n>2,m > 1, and | - | is the Euclidean norm on the respective
spaces. System (1) is a particular example of the equilibrium state of a cooperative system:
the corresponding reaction-diffusion system

u
U — Ay = ————,
Vu? + 12
v
vi—Av=—

Vu? + 12
would mean that, considering the concentrations u and v of two species/reactants, each
species/reactant slows down the extinction/reaction of the other species. The special choice
of our reaction kinetics would assure a constant decay/reaction rate in the case that # and
v are of comparable size.

System (1) may also be seen as one of the simplest extensions of the classical obstacle
problem to the vector-valued case: Solutions of the classical obstacle problem are min-
imisers of the energy fD(%|Vu|2 + max(u, 0)) dx, where u : R" > D — R. Solutions of (1)
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are minimisers of the energy

() f (IVul* + 2ul) dx.
D

It is noteworthy that in the scalar case, i.e. when m = 1, one recovers the two phase free

boundary problem

Al = X(u>0) = X{u<0}s
contained in the analysis of [14]. While [14] as well as the two-phase result [6] relied
essentially on the use of the monotonicity formula by Alt-Caffarelli-Friedman [4], a corre-
sponding formula seems to be unavailable in our vector-valued problem.

There are several results concerning the obstacle problem for systems of various types:
Optimal switching, multi-membranes, control of systems, constrained weakly elliptic sys-
tems, vector-valued obstacle problems, and probably many others. Although not directly
relevant to our work, we refer to some papers that might be of interest for the readers [1],

(21, [7], [8], [9], [10], [11].

1.2. Main Result and Plan of the paper. In this paper we are interested in qualitative
behavior of the minimisers u of the functional (2) as well as of the free boundary d{x :
lu(x)| > 0}; here u = (uy,-- - ,u,,) and m > 1. Note that the part of the free boundary where
the gradient Vu # 0 is, by the implicit function theorem, locally a C'#-surface, so that we
are more concerned with the part where the gradient vanishes.

The main results of this paper (presented in Theorem 5) states that the set of “regular”
free boundary points of the minimisers u to the functional (2) is locally a C'# surface.

In proving this result we need an array of technical tools including monotonicity for-
mulas (Lemma 1 in Section 4), quadratic growth of solutions (Theorem 2), and an epiperi-
metric inequality (Theorem 1), for the balanced energy functional (3).

An epiperimetric inequality has been proved in [19] by one of the authors for the scalar
obstacle problem. See also [12] for a related approach to the scalar obstacle problem with
Dini continuous coefficients.

1.3. Notation. Throughout this paper R",R", R™ etc. will be equipped with the Eu-
clidean inner product x-y and the induced norm |x|, B,(x°) will denote the open n-dimensional
ball of center x°, radius r and volume ' w,, B.(x°) := {x € B,(x°) : x, = (x°),}, BF (x°) :=
{x € B,(x°) : x, > (x%),} and € the i-th unit vector in R¥. If the center x° is not specified,
then it is assumed to be the origin. Given a set A € R”, we denote its interior by A° and its
characteristic function by y4. In the text we use the n-dimensional Lebesgue-measure |A|
of a set A and the k-dimensional Hausdorff-measure /¥ . When considering the boundary
of a given set, v will typically denote the topological outward normal to the boundary and
Vof :=Vf — Vf-vvthe surface derivative of a given function f . Finally, we shall often
use abbreviations for inverse images like {u > 0} :={x € D : u(x) > 0}, {x, >0} :={x €
R" : x, > 0} etc. and occasionally we employ the decomposition x = (x’, x,,) of a vector
x € R". Last,letI'(w) := DN d{x € D : [u(x)| > 0} and T'y(u) := T'(w) N {x : Vu(x) = 0}.

2. THE EPIPERIMETRIC INEQUALITY

Following [19], we prove in this section an epiperimetric inequality, which tells us
that close to half-plane solutions, the minimal energy achieved is lower than that of 2-
homogeneous functions, and the energy difference can be estimated. This will imply in
later sections a certain non-degeneracy of the energy close to half-plane solutions, and ul-
timately lead to regularity of the free boundary. Since the epiperimetric inequality is rather
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an abstract property of the energy, and represents the core of our result, we put this section
at the beginning. Although the proof follows partly the proof in [19], the PDE resulting
from the “linearization” carried out in the proof is different from that in [19] and introduces
new difficulties.

Let
3) Mw)i= [ qvvEean -2 [ whare,
B] aBI
and let
1,0 2
@) H:= {%e : vis a unit vector in R"” and e is a unit vector in R™}.
We define
. 2
5) A - M(max(x v, 0) 0.

2 2

Theorem 1. There exists k € (0, 1) and 6§ > 0 such that if ¢ is a homogeneous function of
degree 2 satisfying |lc — hlly12g,.zm) + ll€ = hl|z=p,mm) < 6 for some h € H, then there is a
v e W2(B,; R™) such that v = ¢ on 8B, and

(6) M) < (1 — M(c) + K%".

Remark: Note that the closeness in L™ is not really necessary and is assumed only in
order to avoid capacity arguments in the proof.

Proof of the Theorem. Suppose towards a contradiction that there are sequences k; —
0,6; — 0, ¢, € W'2(By;R™), and h; € H such that ¢, is a homogeneous function of degree
2 and satisfies

llex — hk||W1~2(Bl;R"l) = Ok, llex — hk||L°°(B,;RM) koo 0
and that

(7 M) > (1= k)M(e) + k5 forall v € e + Wy (Bi: R").

Rotating in R” and in R” if necessary we may assume that

max(x,, 0)? ol
2
where e! = (1,0,...,0) € R”. Subtracting from (7) M(h) = %, we obtain

®)
(1—k)(M(cx) — M(h)) < M(v)— M(h) for every v € W'?(B;;R™) such that v = ¢; on dB.

hy(x) = = h

Observe now that for each ¢ € W'2(B)) and h := %‘O)Z

2| (Vh-V¢+ x>009) — 2f 2h¢ dH" ' =2 (Vh-v-2h)¢ dH"" =0,
B B, 0B
and therefore

I[:=2 | (Vh-V(c, —h)+ x( 0" - (cx —h)) — 2f 2h- (¢, —h)dH" ' =0.
B 0B,
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Subtracting (1 — «;)I from the left-hand side of (8) and subtracting I with ¢; replaced by v
from the right-hand side of (8), we obtain thus

(x| [ e + 210 -2 f P ar™ = [ (VR + 2]+ 2 f B dH!
By

0B, B; 0B,

(Vh-V(c; —h) + yi,50e' - (¢ —h)) +2 f 2h - (¢; —h) d?-{"‘l]

B 0B,

(V> +2)v) = 2 f V2 dH"' = | (IVh]® +2/h)) +2 f lh|? dH""!
By 0B,

B OB,

(Vh-V(v-h)+ yp,-0€' - (v—h) +2 f 2h - (v—h)dH"".

B 0B,

Rearranging terms yields

© 1-x) f V(e - )P -2 fa e — h2dH™ 42 f el + 2 f IR
B B BT BT

1

V(v -h)? - 2[ v —hPdH"" + 2f v + 2f (Iv| —e' - v).
B 0B B]_ BT

Define now the sequence of functions wy := (¢ — h)/6;. Then ||Willyi23,rm) = 1 and,
passing to a subsequence if necessary, w;, — w weakly in W'2(B;; R™). In order to obtain
a contradiction, we are going to prove that w; — w strongly in W"2(B;; R™) and that w = 0
in B;(0).

Step 1: w = O in B, and fz;;(lck| -el ¢ <C67

Pluginv := (1 — {)¢; + ¢hin (9), where € Wé’z(Bl) is radial symmetric and satisfies
0 < < 1. Since (v —h)/6; = (1 — {)wy, we obtain

lel leel —e! - ¢
2(1 - &) [f Lhc LI
5 & Jio G

<C1+2f(l—f)w+2f(1—§)|q{| >
By 0

f@ m"" f@— k)'c"' L

Using the homogeneity of ¢; we see that for large &,

|
f (¢ — k)ler] = f () — k)" dpf lex| dH™" > Cof leg| dH" !,
B 0 {x,<0}NB) {%,<0}NAB,

where ¢y > 0 depends only on £ and n. We also get the corresponding estimate in B}. It
follows that

and

(10) lex] < €67 and that f (lexl - €' - ¢) < Co05.

By B}

f— [Wi| < Ca6k,
1
implying the statement of Step 1.
Step 2: A(e!-w)=0in B (0), e/ -w=dhin B (0) for each j > 1, and some constant d;.

In particular,
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Fix a ball B cC B} and plug v := (1 — {)¢; + {(h + §;g) into (9), where { € C(B))
and g € W2(B;;R™ suchthat , = 1in B, = 0 in B and g is a bounded WL2(B1; R™)-
function. Observing that

v -

5 —(1—5)

we obtain —using (10) as well as the fact that supp g CC Bj— that

2
[ ec-wwe s 2 | -t
By O Jay

+§g,

<o(l)+ fB vl 2 fB . (IVZPlg = wil? + (24 = 28)Vw; - Vg)
w2 -0V Twig - w + £ Vg - wo)

2
+§f Z(h+6igl—e' - (h+0,2)).
kBl

Note that 6w — 0 uniformly in B;. Therefore we have on supp ¢

— 2 2 1 2
|ck|—e1.ck=(h+6ke1-wk)[\/ Ll Gl /Yl —1] o(82)+ O Wil = (¢! - wy)?

k (h+ (5kel Wk)2 2 h+ (5ke1 © Wy

and similarly
2
52 1gP - (' - g)
2 h+6el-g
Letting k — co we may then drop the assumption that g is bounded. In particular, for g
such that g = w in B \ B, we arrive at the inequality

fIV i f|W|2 ow)? fw i flgl2 (e' - g)?

for all g € W'2 (B1;R™) coinciding with w on 9B.
Calculation of the first variation yields that

A'-w)=0 in B,

lh + 6gl — e' - (h+ 5;g) = o(5) + =

. J.
A(e’-w):% in B for j>1.
By Lemma 4 as well as the homogeneity of w and the fact that w = 0 in B] we obtain
e/ - w(x) = d;h(x) for each j > 1,

where d; is a constant real number.
Step3: w:=e'-w=0inB,.

As w is harmonic in B}, homogeneous of degree 2 and satisfies w = 0 in B} we obtain
(using for example odd reflection and the Liouville theorem) that w(x) = 2;:11 AnjX Xy N
Bf. Remember that we have chosen h as the minimiser of infpey llex — hlly12,mm. It
follows that for h,, := e' max(x - v, 0)2/2,

(Wk, hV - h)WLZ(Bl;R’”) < 1 ||h h”wl 2(B an)

< — —0asv— e
lv —e7| 26k lv —e”|
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Therefore
| (x-v)? = (x-e")? (x-e")?
o(l) = 5 Wi - € X{x,,>0}ﬂ{x-v>0}v _/\/{xn>0}ﬁ{x-1/£0]m
(x-v)?
+ X (%, <01n{xv>0) Ve
x-(v+eHv-eH)+x-(v—-eHv+e")
+ I X {x,>0}N{x-v>0} |V — e"I
2x,e" 2x vy v |
_X{xn>0}ﬁ[x-v30}m +X{x,,g0}n{x-v>0}m VW€
Setting & := lim, e %, we see that for v — e”
2 ny2 n n n n
xX-v) —(x-e x-(v+e)(v—e x-(v—e")(v+e
(P m@ey ) r e e) e e)
lv —e?| lv — e v —e?|

On the other hand, on the set ({x, > 0}N{x-v < 0PhU({x, < 0}N{x-v > O}), |x-v| = O(lv—e"|)
and |x - €"| = O(]v — €"]) as v — €". Passing first to the limit v — €” we conclude that

o(1) > 2f [wy - €' x - Emax(x,, 0) + (max(x,, 0) + yir,>0X - £€") - Vwy - e'].
By

Passing next to the limit k — oo, and taking into account that &, = 0 and that

ApjXn
VW:(Zn_]a - ,
=1 AnjXj

we obtain that

n—1
(11D 0> Z anjf [max(x,, 0)2x - &xj + max(x,, 0)2§j + X{x,>00X  EX;].
j=1

By

Since also

f XJ')C,':O fOI‘l.-'ﬁj,
B

we deduce from (11) that
(12) 0> Zanjgj L(xﬁxﬁ +x2+2%)  forevery é = (é1,...,61,0).

Thus a,; =0for j=1,...,n—1, thatisw = 0 in B}.
Step 4: d; = O for each j > 2.

From Step 2-3 we know that wy, = dh + z;, where d - el =0andz, - 0 weakly in
W12(By; R™) as k — oo. It follows that ¢; = h(e! + 6;d) + 5;z;. By assumption,

2 2 2 2
(13) 1= ”dh + Zk||W1~2(Bl;R"’) = |d| “h”Wll(Bl;R’”) + Z(dh9 zk)lez(Bl;]K”‘) + ”Zk“Wl'Z(Bl;R”‘)'



EQUILIBRIUM POINTS OF A SINGULAR COOPERATIVE SYSTEM WITH FREE BOUNDARY 7

Remember that we have chosen h as the minimiser of infreg [lcx — flly12(p,xm. It follows

that for f := h(e' + 5;d)/ /1 + 67|d* € H,

h(e! + 6,d)
St = llex — he'llwiags, o < llex — fllyias, o = |[h(e! + Sid) + 6324 — ———
1+ 62(d2
WI'Z(B];R’")
h(e! + 6,d)
= |61z + — et ({1 + S2dP — 1) < Sellzillwizg, ey + C3071d1%.
Ji+ 82(d2
WLZ(BI;R’“)
(14) Hence, 1 < |1zl (s, 5 + C3ldl*.

Combining (13) and (14), we obtain that

2
|d| ”h”W”(B Rm) + 2(dh’ Zk)lez(Bl;R’”) + ||Zk”W1>2(B];R’")

2
S ”Zk”W]Az(B];Rm) + 0(6/()

Letting k — oo, we conclude that |d|?|||? = 0 and that |d| =

Wl 2(B )
Step 5: w, — w strongly in W'2(B; R™).

Plug in v := (1 — )¢ + ¢hin (9), where {(x) = min(2 max(1 — |x|,0), 1). Then
v—h
Ok

= =Dwi,

and we obtain that

— ] .
- Kk)[ IVwil* - 2f Iwel* dH" + Zf |c—';| + Zf led € - E ck]
B 4B, J By O

R Y I e
0B, Bl* 61{
f (1 - )Ck+§h| _s (1 =0)er-e +2n

2
By s

Using the definition of £, it follows that
[ wwi < cucr [ (ePwiP - 201 - 9 - Twm).
Bip By

The integral on the left-hand side equals by homogeneity of wy

g2 f VWil
B

(V2PIwi =21 = )V - T - wk)) S Oask - .

so that

|VWk|2 < o2 (C4Kk + f

B By

Altogether we obtain a contradiction from w = 0, the strong convergence of Wy as well as
the fact that ||\Willw1 25, mmy = 1. o
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3. INTRODUCTION TO THE PROBLEM AND TECHNICAL TOOLS

Let D be a bounded Lipschitz domain in R” and let u = (uy, ..., u,,) be a minimiser of
Eu) = f (VP + 2ju)
D

in the affine subspace {v € W'2(D;R™) : v = up on dD}. Note that non-negativity, con-
vexity and lower semicontinuity with respect to weak convergence imply existence of a
minimiser for each up € WH2(D; R™).

In order to compute the first variation of the energy, we compute for ¢ € W(}‘z (D;R™)

(15) OSefZVu-V¢+ezf|V¢|2+2f(|u+5¢|—|u|)
D D D

sef2Vu~V¢+62f|V¢|2+2|6|f|¢|-
D D D

Dividing by € and letting € — 0, it follows that

‘fDVu~V¢

so that Au € L*(D;R™). Applying standard L”- and C“-theory, we obtain that u €
Wz’p(D; R™ N Cl’”(D;R’”) for each p € [1, +00) and each a € (0, 1). We see that Au = 0

loc loc
a.e. in {u = 0}. Moreover, in the open set {ju| > ¢ > 0}, passing to the limit in (15) yields

< 1Bl prmys

Au=in{ul>s> 0.

[ul

Altogether we obtain that u is a strong solution of the equation

u

Au = —

|u|)({\u\>0}

in D.
Note that any other solution v € W'2(D;R™) with the same boundary data up and

satisfying the weak equation

f (VV Vo + ¢|_:][|le|>01) =0 forevery ¢ € Wé’Z(D; R™)
D

must coincide with u: subtracting the equation for u and plugging in ¢ := v — u yields

u v
Vu-v) < - — - — -(u-v)<0.
fDI (u-v)° < fD(lu|X<u|>0} |V|X{v|>0]) (u-v)<

Thus the weak solution is unique and equals the minimiser of the problem, so that it is
sufficient to consider minimisers.

Note that in contrast to the classical (scalar) obstacle problem, it is an open problem
whether u € leo’j’(D; R™).

Remark 1. Using standard elliptic theory combined with the estimate |Au| < 1 we obtain
that

(16) sup [u| + sup |Vu| < C(n, m) (||u||L1(BI;Rm) + 1).

Bsjs Bsjy
Remark 2. If a sequence of solutions of our system w; converges weakly in W'(D;R™) to
u, then Rellich’s theorem together with the fact that D*u = 0 a.e. in {u = 0}, implies that u
is a solution, too.
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Proposition 1 (Non-Degeneracy). Let u be a solution of (1) in D. If X € {ju| > 0} and
B,(x) c D, then

1
sup |u| > —r.

B.(x%) n
Proof. It is sufficient to prove a uniform estimate for x° € {ju| > 0}. Let U(x) := |u(x)|.
Then
A
a7 AU =1+ 7 in {lu| > 0}, where A = [Vu|> — |VU|* > 0.

Assuming supp (,0) U] < 5- r , we obtain that the function
v(x) = U(x) - UR°) - —|x - xP?
2n

is subharmonic in the connected component of B.(x°) N {|u| > 0} containing x°, that v < 0
on the boundary of that component and that v(x°) = 0, contradiction. O

Proposition 2. Let u be a solution of (1) in B1(0) such that |lu —h||1 g, zm) < € < 1, where
h:= %"’Oyel. Then
Bi;2(0) Nsuppu C {x,, > —Ceﬁ}
with a constant C = C(n, m).
Proof. Suppose that By, N {ju| > 0} 5 x° and that x0 = —p < 0. It follows that
lallzi g, (oymmy < llw—=hllzip gm < €

By the non-degeneracy property Proposition 1 we know that

1
[u()| = sup [u| > 8—p
B,2(x0)

for some y € Bg (x9). From Remark 1 we infer that
1 1
inf |u] > —p —2C(n, m)o'p > —p ,
B,2(7) 16n

provided that o has been chosen small enough, depending only on n and m. Combining
our estimates, we obtain that

1 n
€2 |ullzis, ,mm = (_16 P )'B”(‘sz) ’
a contradiction, if € < C>(n, m)p*™+2. It follows that [u(x)| = 0 for x, < —C(n,m)em=. O

4. MonotoNiciTY FORMULA AND CONSEQUENCES

Lemma 1. Let u be a solution of (1) in B,O(xo) and let

1 2
W, 1%, r) = — f (Vul +2[u) - — f lu® dH" .
" J B0 " JoB,x0)

For0<r <y,
dW(u, x°, r) 3 2[
dr 9B,(0)

where u,(x) = u(rx + x°)/r2.

d?'{n_ 1 ,

—u
dr r
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Proof. The proof of this lemma follows by now standard arguments of G.S. Weiss (see
[18] and [19]). A short proof consists in scaling

d d
—Wu,x%r) = —( f (Vu,* + 2fu,|) - 2 f |u,|2d7{"—‘)
dr dr \Jsg, ) B,1(0)

d ) d
- 2f vu, - Lvu, + 2. —u,)—zf 2u, - Su, dH"!
B1(0) dr lu,| dr 9B,(0) dr

2 :
- —( f (Vu, - V(x-Vu, - 2u,) + —= . (x - Vu, - 2u,))
Bi(0) u,|

r [u,

—2f u,-(x.Vu,—Zur)dﬂ”‘)
dB1(0)

2 :
= —( f (=Au, - (x- Vu, - 20,) + —= - (x - Vu, — 2u,))
B1(0) lu

r ol

+ f (x-Vu,—2u,).(x-Vu,—2u,)d7{"—‘)
0B1(0)

2
= —f Ix - Vu, = 2u,? dH"" = 2rf
r JaB,(0) 9B,(0)

This proves the statement of the lemma. O
Note that for x° € Bipandr < 1/2,

2

)

dr

(18) W, 2%, r) < C(lullwia, ) + 1000, 2
Moreover, we obtain the following properties:

Lemma 2. 1. The function r — W(u, x°, r) has a right limit W(u, x°,0+) € [—o0, +00) and
in the case D = R" it has also a limit W(u, x°, +00) € (—00, +00].
2. Let 0 < r, — 0 be a sequence such that the blow-up sequence

u(x® + rpx)
w() = ——
Ty

converges weakly in WIL’S(R”; R™) to ug. Then uy is a homogeneous function of degree 2.
Moreover

W00 = [l >0,
B1(0)
and W(u, x°,0+) = 0 implies that u = 0 in Bs(x°) for some & > 0.
3. The function x — W(u, x, 0+) is upper-semicontinuous.

Proof. 1. follows directly from the monotonicity formula.

2. By the assumption of convergence (Uy)ien is bounded in Wllo’cz(R"; R™) and the limit

W(u, x°, 0+) is finite. From the monotonicity formula we obtain for all 0 < p < o < +c0
that

71
f 7y f X - Vug(x) = 2up(0)> dH" " dr — 0,k — oo,
o T Jos, o)

proving the homogeneity of u.
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We calculate, using the homogeneity of ug as well as Remark 2,

W(u, x°,0+) = f (IVuol* + 2Jug)) - 2 f laol* dH"!
B (0) 0B (0)

=f (—u0~Au0+2|u0|)+f (x-Vuo-uo—2|u0|2)d7-(”_1=f [ug| > 0.
B1(0) 0B, (0) B1(0)

In the case W(u, x°,0+) = 0 we obtain a contradiction to the non-degeneracy Lemma 1
unless u = 0 in some ball Bs(x).
3. For € > 0, M < 4+c0 and x € D we obtain from the monotonicity formula that

€+ W, 1°,0+), W, x°, 0+) > —co,

€ 0
W, x,0+) < W, x,p) < 5 + W(u, x7, p) < { M. W(u, x°,04) = —oo,

if we choose first p and then |x — x°| small enough. O

5. A QUADRATIC GROWTH ESTIMATE
Theorem 2. Any solution u to the system (1) in B1(0) satisfies
[u(x)| < Cdistz(x, Io(u)) and |Vu(x)| < Cdist(x,I'o(u)) for every x € By 2(0),

where the dist denotes the Euclidean distance in R" and constant C depends only on n and
E(u,0,1) := f (IVul* + 2ul).
B1(0)

Proof. The statement of the theorem is equivalent to

sup |ul < C,r* and sup |Vu| < C;r for every e I'o(w) N By 2(0) and every r € (0, 1/4),
B.(x%) B.(x%)

which in turn can be readily derived by standard elliptic theory from
1

(19) — f lu| < C»r? for all x° and r as above.
™ JB,oo0)

Thus, our goal here is to show that (19) holds. To that end, notice first that by the mono-
tonicity formula,
W(u, %, r) < W, x°,1/2) < 2"2E(u,0, 1) for every x° € B 2(0) N To(u) and r < 1/2.

Therefore
2

1 2
0 2 2 -1
Mf lu| = W(u, x°,r) - Mf IVul” + Mf luf” dH"
r B, (x") r B, (x0) = JoB,(x0)

1 2
V(u-S0p)f + — S opl? dH™!
J1+2 jl;,(xo)| (u Op)l 73 ~L‘B,-(x0) lu °p|

2
<2"?E(,0,1) + — f lu—S opl>dH"!
0B,(x0)

=Wu,x%,r) -

pnt3

for each p = (p1,..., pn) € H; here the set H is the set of all p = (py,..., pm) such that
each component p; is a homogeneous harmonic polynomial of second order, S of(x) :=
f(x — x9).

Let x° € T and p,0, be the minimiser of fa 5,(0) lu—S opl> dH"" in H. It follows that

(20) 0= f (u—S,(op,(o,r)~S,£uqd7-[”_l for every q € H.
OB,(x)
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We maintain that there is a constant C; depending only on the dimension n as well as
E(u, 0, 1) such that for each x° € Bi(0)NTpand r < 1/4,

1
3f u—S opo,>dH"" <C.
"2 Jog,(x0) ’

Suppose towards a contradiction that there is a sequence of solutions uy (to equation (1) in
B1(0)) and a sequence of points x* € B12(0)NTo(uy) as well as ry, — 0 such that (uy, 0, 1)
are uniformly bounded,

1 2 —1
My = 3 f |llk - Sxkpxk’rkl dH"™ — 0.
e~ JoB,

For vi(x) := up(x* + rkx)/r,%, and wi(x) := (v;< - pxk,,k) /My, we have ||Will258,0)yrm = 1
and

f VWil -2 f wil? = M2 ( f V(e = pus )P — 2 f Vi — P, P dw"-l)
B (0) 0B (0) B,(0) 0B;(0)
= M;? ( f IVvil* -2 f [vi? d?-{”“)
B1(0) 0B (0)

< MPW(uy, &, 1) < Mi2Cy — 0, k — oo.

It follows that (Wi )iew is bounded in WH2(B;; R™) such that —passing to a subsequence
if necessary— w; converges weakly in W'"2(B;; R™) to wo € W'2(B;R™). By Rellich’s
theorem, w; converges strongly in L2(0B(0); R™), ||wo|| 208,©xrm = 1 and (by (20)) 0 =
faB, oWo-d dH"! for every q € H. Hence we obtain that

1) f IVwo|? < 2f Iwol> dH™ ! = 2.
B1(0) 0B, (0)

Moreover,

(&
AW, < — — 0,k — oo,
My

such that wy is harmonic in B;(0) and (by C Le_estimates) [wo|(0) = [Vwol(0) = 0. Now by
[17, Lemma 4.1], each component z; of w must satisfy

2 [ zares [
4B, (0) B1(0)
Summing over j we obtain

2f [wol? dH"! Sf IVwol?,
0B;(0) B(0)

2 f \wol? dH" = f IVwol’.
9B, (0) B1(0)

2f z?d?—(”‘lzf IVz,?
9B, (0) 81(0)

for each j, implying by [17, Lemma 4.1] that z; is a homogeneous harmonic polynomial

of second order. But then 0 = ](;Bl o Vo 4 dH"™ ! for every q € H implies that wy = 0 on

0B(0), contradicting ||Woll;2p,:zm) = 1. O
The next section follows closely the procedure in [19] and [16].

implying by (21) that

Thus
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6. AN ENERGY DECAY ESTIMATE AND UNIQUENESS OF BLOW-UP LIMITS

In this section we show that an epiperimetric inequality always implies an energy decay
estimate and uniqueness of blow-up limits. More precisely:

Theorem 3 (Energy decay and uniqueness of blow-up limits). Let x° € Ty(w), and suppose
that the epiperimetric inequality holds with « € (0, 1) for each

2
) X [ x] A
¢ (x) := |x| ur(m) = r—zll(x + mx)

and for all r < ry < 1. Finally let uy denote an arbitrary blow-up limit of w at x°. Then

(n+2)k
1-x

|W(u, X0, r) — W, x°, 0+)| < |W(u, X", r9) = W(u, 2, 0+)| (rL
0

for r € (0, ry), and there exists a constant C depending only on n and k such that

\[0‘3 1(0)

forr € (0,2), and ug is the unique blow-up limit of u at x° .

Proof. We define

(n+2)k

1 T 21-0)
ro

0
+
u(x r.X) d7_{n—1 < C |W(ll, )CO, rO) _ W(ll, )CO, O+)

= up(x)

72

e(r):=r"" f (Vul® + 2u) - 2,777 f > dH"™" = W(u,x°,0+).
B,(x") 9B,(x")

Up to a constant e(r) is the function of the monotonicity identity, so that we have already
computed ¢’(r). Here however, we need a different formula for ¢’(r):

2 2 2
() = [ - - W@, 04) + S f jul? dH"!

9B, (x0)

2n—1
_ g3 f 2y Vu-uarrt = 207D s f ul? dH"!
9B,(x%) 9B, (x%)

r

+r f (Vul* + 2|u|)d7-{”‘1] = r-'[ f (Vu, [
OB,(x0) 0B (0)

2] — 4v-Vu,-u, + 4w, + 4wl - 20+ )P dH = (n+ 2)W(u, x°,0+)

n+2

e(r) 2 r_l[f (Vou,* + 20w, + 4ju, > - 2(n+2)u, ) dH""
0B;(0)

n+2
r

—(n+2)W(u,x0,O+)] - e(r) = r-l[ f (Vee, > + 2lc,| + |v- Ve, |?) dH™!
0B, (0)

n+2€(r)

- (n+2)2 f le, > dH"™" — (n+2)W(u,xo,O+)] -
0B1(0)

r

+2
= T2 M(e,) - W, 2%, 04) — e(r)] -
-
Here we employ the minimality of u as well as the assumption that the epiperimetric in-
equality M(v) < (1 — «)M(c,) + « W(u, x%,0+) holds for some v € W'2(B;;R™) with

c¢,-boundary values and we obtain for r € (0, ry) the estimate

n+?2 n+

O 2 o)
r

L M) - W, <, 04)) -
1 -«
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— 1

1-«
By the monotonicity formula Lemma 1, e(r) > 0, and we conclude in the non-trivial case
e > 0in (ry, rp) that

~e.

r

n+2 ( 1 )e(r) (n1+ 2k 1

+2)k 1
(n )K— for s € (r1,rp) .
11—k s

(log(e(s))) =

Integrating from r to ry we obtain that

(n+2)x

e(rp) (n+2)x To e(r) ro\ 42
log(em) > o og () ana TR = ()T forre g

(n+2)k

and that e(r) < e(rg) (i) ™ for r € (0, ry) which proves our first statement.
Using once more the monotonicity formula (Lemma 1) we get for 0 < p < o < rg an
estimate of the form

T
f f' du, drdH"™ "' < f r_l_"f v dH" " dr
B0 Jp | dr o 9B,(x%)
1
—1 —p el w2 —n—2 112 n—1 :
< Vno, rzrz (r v-Vu — 2—| dH dr
3B, (x0) r

z ;" " (log(c") — log(p))* (e() — e(p))* .

= ,/n;)" r Ne(ndr <
P

Considering now 0 < 2p < 2r < ry and intervals [27%71,27%) 5 p and [2771,27¢) > r the
already proved part of the theorem yields that

21
fB < fB f
0B (0) i=t 0B, (0)

k k
< Ci(m) ) (log2) — log2 )2 (@) = e27 )7 = Cam) ) (e(27) - e(2 7))
i=C i=l

u(x® + rx) u(x + px) du,

r2 2

dr dH"!

—(n+2)x

< Cy(n, 00 |W(, 2, rp) — Wi, x°,04)| Z ro 2/)
j=t
0 0 1 cf —(n+2)k
< Caln, ) W, 2%, o) = W, x°, 04)]* — o 0
—C

—(n+2)k
where ¢ = 220 € (0, 1) . Thus
LBI(O)
(n+2)x

1 2(1-k)
< Cs(n, 1) |W(,x°,ro) — W(u,x°,04)|? (ri) ,
0

u(x® +rx)  ulx
72 B 02

and letting W—?’) — ug as a certain sequence p; — 0 finishes our proof. O
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7. HOMOGENEOUS SOLUTIONS
In this section we consider homogeneous solutions u € WL2(B; R™), meaning that
u(lx) = Pu(x) forall 1> 0and x € B;(0).

Obviously u may be extended to a homogeneous solution on R".
Moreover, if dist;ig,.gm(u, H) < 1 (see (4)) then due to Remark 1 we have

(22) sup u| < C(n,m) and sup [Vu| < C(n, m).
B| BI

Proposition 3. If B; Nsupp u C {x, > —6(n, supg, o, )}, then u € H.
Proof. Observe first that each component u; is a solution of
Liu; = —A’M,' + u;/|u| = 2nu;

in every connected component Q" of dB; N {Jju] > 0}, where A’ is the Laplace-Beltrami
operator on the unit sphere in R”. In Lemma 4 of the Appendix we prove that u; = a; for
for a real number a; and a function fo depending only on Q’ which is positive on Q’
and vanishes on the boundary of Q’. It follows that for each connected component Q of
B N{lu| > 0} there exists a unit vectora = (a; . .., a,,) such that u(x) = aju(x)| and Aju| = 1
in Q.

Now, if [Vu| = 0 on 9L, then we may extend u by 0 outside €, that is [u| can be extended
to a 2-homogeneous non-negative solution of the classical obstacle problem in R*. These
solutions have been completely classified (see [5], cf. also [13]), and supp u C {x, > —4|x|}
(where § = 6(n, m, supg, (o) lu|)) would in this case imply that up to rotation, [u| = &, and
u = ah, where # is a half-space solution for scalar problem.

If, on the other hand, there is a point A0 € 4Q N {|Vu| # 0}, then the fact that u is
continuously differentiable, implies that a equals the vector of the adjoining connected
component of {|u] > 0} up to the sign. In this case we obtain, taking the maximal union
of all such connected components, that each u; is a 2-homogeneous solution of the scalar
two-phase obstacle problem

Av = c(xp>0) — Xv<0y) in R"

with ¢ > 0, satisfying v = 0 in {x, < —¢}. However, according to [14, Theorem 4.3], no
such solution exists. ]

Lemma 3. The half-plane solutions are (in the L' (B (0); R™)-topology) isolated within the
class of homogeneous solutions of degree 2.

Proof. Let|lu—hl|;ip, .z < €, where rotating in R"” and in R™ if necessary we may assume
that

max(x,,0)* |

—e

h(x) = >
From (22) as well as Propositions 2 and 3 we infer that u € H if € has been chosen small
enough, depending only on n and m. O

We defined in (5) the constant @,, = 2M(h) where h € H. Now we are going to estimate
the value of M(u) for an arbitrary homogeneous solution u of degree 2.

Proposition 4.

_ H"(@B))
(23) a, = m
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Let u be a homogeneous solution of degree 2. Then
H" 1 (OB N {[u| > 0})

24 M®) > a,

(24) W 20— oS
In particular,

(25) M) > a, iflu| > 0 a.e.

Proof. Let U := |u|, and recall (17):
A
AU =1+ 7 in {ju] > 0}, where A = |[Vu|> — [VU|* > 0.

It follows that —using the homogeneity of u—

A
f (1+—)=f VU -vdH"!
BiN{jul>0} U A(B1N{lul>0})

= 2f UdH"™" - 2f IVU| dH"!
0B N{u|>0} BiN{u=0}n{|Vu|>0}
=2(n+2) U—2f VU|dH" ",
By 1N{u=0}N{|Vu|>0}

On the other hand, using once more the homogeneity of u,

(26) M(u) = f (V> + 2uf) - 2 f luf? dH"! = f lu| = f U.
B BB] B B,

In order to verify (23), observe that for e € dB; € R” and h(x) = e max(x,, 0)2/2,

= M(h) = f max(x,,0)" = fBl = fB] ™ = dn(n+2) "

Using the above estimates we conclude that

H"' (9B N {ju| > 0}) H"' (9B N {ju| > 0})

1B1 0 {ful > 0} = = OB

1
MW= 302 2n(n + 2)

Corollary 1. Let u be a homogeneous solution of degree 2. Then

1 H*Y6B; n{ju] > 0})
27 M@) > «, max(z, H1 (9B, >

and M(u) = a, /2 implies that u € H. Moreover, a,/2 < &, := inf{M(v) : vV is a homoge-
neous solution of degree 2, but v ¢ H}.

Proof. If H"' (0B, N {lu] = 0}) = 0, then (27) follows from (25). Otherwise {ju] = 0}
contains by the non-degeneracy property Lemma 1 an open ball B,(y), and we may choose
it in such a way that there is a point z € B,(y) N d{|u| > 0}. Let ug be a blow up of u at z.
Since supp uy is contained in a half-space it follows from Proposition 3 that uy € H. Note
that by homogeneity, [u(x)| < C |x? and |Vu(x)| < Clx| for every x € R”, implying that the
limit W(u, x°, +00) does not depend on the choice of X0,

From (23) we obtain therefore that

(28)

a’l’t/zs

7" = M(up) = W(u,z,0%) < W(u, z, +00) = W(u, 0, +00) = M(u).

Now we have to prove that M(u) = «,/2 implies u € H. Consider a ball B,(y) and a
point z as above, that is y = z + pe with a unit vector e. It follows from homogeneity of u
that e is orthogonal to z. We consider two cases.
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Case a) If z = 0 then, again due to homogeneity of u, we have [u(x)| = 0 in a half-space
(x-e) > 0. Hence u € H by Proposition 3.
Case b) If |z| > O then, since W(u, z, r) does not depend on r (by (28)), we conclude that u
is homogeneous with homogeneity center z. More exactly, we have u(z + kx) = k*u(z + x)
for any k > 0, x € R". Since also u(z + kx) = k*u(z/k + x) we obtain u(z + x) = u(z/k + x)
for any k > 0,x € R". It means that u is constant in direction of vector z. In particular,
[u| = 0 in the ball B,(pe) touching the origin and we are again at the case a).

Last, we have to prove @, > a,/2. If it is not true then there is a sequence of homoge-
neous global solutions {uy} such that

M(ug) N\ 0%" as k — oo.

In particular it implies by (26) uniform boundedness of uy in L'(B;(0)) and therefore, by
(16) and by elliptic theory, uniform boundedness of solutions uy in leog (R™) for any g < oo.
Then there exists a limit @, by subsequence, such that 11 is a homogeneous solution, i ¢ H
(by Lemma 3) and M(ii) = a,,/2. From the first part of the proof we infer that @ € H, and
a contradiction arises. O

Definition 1. A point x is a regular free boundary point for u if:

a’n
7 .
We denote by Ry the set of all regular free boundary points of u in Bj.

x € Ip(u) and lir% W, x,r) =

Corollary 2. The set of regular free boundary points Ry is open relative to I'p(u).

Proof. This is an immediate consequence of Corollary 1 and the upper semicontinuity
Lemma 2. O

8. REGULARITY

In this last section we prove that the set of regular free boundary points Ry is locally in D
a C'#-surface and we derive a macroscopic criterion for regularity: suppose that W(u, x, r)
drops for some (not necessarily small) r below the critical value @, : then d{[u| > 0} must
be a C'#-surface in an open neighborhood of x .

Theorem 4. Let C, be a compact set of points x° € To(w) with the following property:
at least one blow-up limit uy of u at x° is a half-plane solution, say uy(x) = %e max(x -
v(x°), 0)? for some v(x°) € 0B1(0) C R" and e(x°) € dB1(0) € R™. Then there exist ry > 0
and C < oo such that

\fr;B 1(0)

Proof. Step 1: Due to Dini’s theorem, W(u, x,r) < € + a,/2 for all »r € (0, ry) and all
X € Ch.
Step 2: If p; — 0,x/ € C; and u; := u(x/ +pj-)/p§ — vin Wllo’f(R”;R’”) as j — oo,

then v € H : According to Remark 2, v is a global solution of (1). Moreover, by Step 1

u(x® + rx)
2

(n+2)x

1
- ze(xo)max(x-v(xo),O)2 dH"' < Crio

I%

for every x° € Cj, and every r < ry .

W(v,0.p) = lim W(u;,0.p) = lim W(u, 2/, pj0) = 2.
Jj—oo Jj—oo

But then Lemma 1 and Corollary 1 imply that v € H.
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Step 3: For small p, u(x+p-)/p? is uniformly (in x € Cj,) close to H in the W,.*(R"; R™)N
Ly (R";R™)-topology: assuming towards a contradiction that this is not the case, we obtain
p; — 0and x/ € Cj, such that the distance in the same topology is > 6 > 0. Asu; := u(x’/ +
o) j~)/p§ is by Theorem 2 and w2p -theory bounded in Wif R™*;R™) for each g € [1, +c0),
passing to a subsequence if necessary u; — win WIIO’CZ(R”; R™NCY (R";R™), implying by

loc

Step 2 that w € H, contradicting the distance being > § > 0. O

Theorem 5 (regularity). The free boundary dflu| > 0} is in an open neighborhood of the

-1
set Ry locally a C'P-surface; here 8 = (Z'Hi)('; (l + ;’éfi’;)

Proof. Let us consider a point x°

Bz5u(x0) Cc D and

(29) f
9B1(0)

for every xeR N Bs,(x%) and for every r < min(do, ro) -

€ Ry . By Theorem 4 there exists 5o > 0 such that

(n+2)x

1
M _ 1 dH"™ ! < C rxo

Ee(xl) max(x - v(xl), 0)2

72

We now observe that x' — v(x!) and x' — e(x!) are Holder-continuous with exponent 8
on Ry N Bs, (x0) for some 6; € (0, 5p) :

(n+2)x

1 f e(x") max(x - v(x"),0)* — e(x?) max(x - v(x?),0)’| dH" < 2C o
0B, (0)

2
1
dB1(0) YO

1 2n ] 42

max(r, |x' — x*D|x' —x (42

+ C] ( ’| : |)| | < (2C + C1)|x2 _ x1|72(1,,<)
r

(n+2)x

Ix!' = X dt dH"™" < 2C ras

Vu(x!' + rx + 1(x? — x1))
12

-1
if we choose y := (1 + (2"(;'—31’;) and r := |x* — x!|” < min(6y, ro) , and the left-hand side

1

= f le(x") max(x - v(x"),0)* — e(x?) max(x - v(x?),0)*| dH"!

2 Jomi0)

(30) > c(n) (W(x") = v()] + le(x") — e(x)))

which can be seen as follows: Suppose first that for j — oo, v}. — Y/l,v? — f/z,e} —

e, e? — & such that
0« e} max(x - v}, 0)* — € max(x - v3,0)%| dH"".
0B1(0)
‘We obtain
0= f |e! max(x- #',0)* — & max(x - ¥, 0)*| dH"",
0B1(0)

implying immediately that @ = & and that ' = . Next, suppose towards a contradiction
that, setting ¢; := |V; - v?l + Ie} - e?l, (v} - vﬁ)/cj -1, (e; - e?)/cj — & and

1
0« —f |e} max(x - vj-,O)2 - e? max(x-v§,0)2| dH™" = T;.
Cj JoBi(0)
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‘We obtain

l —
0T;>— e} —eDx- v + & x- (Vi + VD) x- (v} =vD)| dH™!
€j JoBi0)ntxvi>0in(x12>0)

- |§(x-17l)2 + 28 x- 9! x-77| dH"!
OB (0)N{x-v! >0}
as j — co. We obtain ¢ = —27' - 7 @', contradicting the fact that 0 = (le}|* — e31°)/c; =
((e} + e?) . (e}. - e?)/cj — 28! - ¢ and thus proving (30).
Next, (29) as well as the regularity and non-degeneracy of u imply that for € > 0 there
exists 6, € (0,;) such that for x' € R, N Bs, (x0)

u(y) = 0 fory € Bs,(x!) satisfying (y — x") - v(x!) < —€ly — x'| and

31
G [u(y)| > 0 for y € Bs,(x!) satisfying (y — x") - v(x!) > ely — x'| :

assuming that (31) does not hold, we obtain a sequence R, N Bs, (x%) > x™ — X and a
sequence y" — x™ — (0 as m — oo such that

either u(y™)| > 0 and ()" — X™) - v(x™) < —ely™ — x|

(32) or ll(ym) =0and (ym _ xm) . V()Cm) > EIy’" _ xm| .

On the other hand we know from (29) as well as from the regularity and non-degeneracy
Jlyd —xd| x
u(xl;/lix/lﬁgl )
%e()"c) max(x - v(%),0)? as j — oo and that u ; = 0 on each compact subset C of {x- (%) < 0}
provided that j > j(C) . This, however, contradicts (32) for large j .
Last, we use (31) in order to show that d{[u| > 0} is for some 3 € (0, ;) in Bs,(x0) the
graph of a differentiable function: applying two rotations we may assume that v(x°) = e”
and e(x") = e!. Choosing now d, with respect to € = % and defining functions g*, g~ :
B, (0) = [—00, 0], g* (&) := sup{x, : X"+ (x’, x,) € Ofju| > 0} and g~ (x') := inf{x, : x°+

of the solution u, that the sequence u;(x) := converges in Cll(;‘C'(R”;R’”) to

(x’_, X,) € 8{[u| > 0}}, we first note that (applying (31) at x°), that g* < +c0 and g~ > —c0 on
B’12 (0). As Vu(x® + («/, g7 (x")) = 0 for every x’ € B’(,l (0), we infer from Corollary 2 that

2 2
20+ (¥, g7(x')) € Ry. It follows that (31) is applicable at x° + (x’, g~(x))) = O for every
x" € B, (0), yielding by the Holder continuity of x! — v(x") that for sufficiently small

2
83 the functions g* and g~ satisfy g* = g~ Lipschitz-continuous on Bg} (0) . In particular
it follows that all free boundary points close to x° belong to Ry, and there are no other
free boundary points (for example free boundary points with non-vanishing gradient) in a
neighborhood of x°.
Applying (31) once more with respect to arbitrary € we see that g* is Fréchet-differentiable

in Bj (0), which finishes our proof in view of the already derived Hélder-continuity of the
normal v(x) . m]

Corollary 3 (Macroscopic criterion for regularity). Let &, be the constant defined in Corol-
lary 1. Then By,.(x°) c D, x° € D N d{ju| > 0} and W(u, x°, r) < &, imply that 0{[u| > 0} is
in an open neighborhood of x° a C'P-surface.

Proof. By C'#-regularity of u and Theorem 3, it suffices to show that for W(u, N < a,
either (i) Vu(x®) # 0 or (ii) x° € Ry. If both (i) and (ii) fail then by Lemma 1, Lemma 2
and Corollary 1, W(u, 20,7 = lim,o W(u, 2%, 1) > @,, contradicting the assumption. O
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9. APPENDIX

Lemmad4. Let A’ be the Laplace-Beltrami operator on the unit sphere in R”", let the domain
Q' c 0B1(0) C R", let £ := —A’ + g where g € CO(QY) such that g > gy > 0 in ', and let
(L, Q") denote the k-th eigenvalue with respect to the eigenvalue problem

Lv=wvinQ
v=00ndQ;

here 0Q) denotes the boundary of Q' relative to 0B;.

1 IFQY C Y then L(L, Q) > AL, Q) for every k € N. For k = 1 the inequality is strict.
2. (L, Q) = gy + A(=A, Q) for every k € N; in case q # qq the inequality becomes a
strict inequality.

3.q=1/hand ' c 0B, N{x, > 0} and v € W">(0B,) being an eigenfunction with respect
to Q' and A = 2n imply v = ah for some real number a # 0. Here h(x) = % max (x,, 0)% .

4. & c 9B1(0) N {x, > —6(n, qo)} and v € WH2(OB,(0)) being an eigenfunction of L with
respect to A = 2n and a domain Q' imply v = afq for a real number a # 0 and a function
for which is positive on & and depends only on C)'.

Proof. 1. It suffices to remark that v € W(; ‘z(fz’) implies v € W(l ’Z(Q’), after extending v by
zero outside .
2. Let M,_be a subspace of Wé’z(Q’) of codimension k — 1,

LY M) = veMk_l,i\RﬁLz(Q,)zl Q/(|V'V|2 +q1?).
Due to the Courant minimax principle we have
(L, Q) = sup p(L, Q' Mi-1)
where sup is taken over the set of all possible M;_;. Since

WL QM) 2 inf 1f V'V + inf f @ = qo+u(—A Q' Mi_y),
= (9% (04

VEMi-1 IV 2 VeEM1 IVl 2or) =1
we may take M;_; := {v € W(;’Z(Q’) : fg; ww; =0,i <k-— 1}, where w; is an eigenfunction
with respect to the ith eigenvalue of —A’ on Q’. For such M;_; we obtain u(-A’, Q', M;_,) =

(A, Q"), and 2. is proved.
3. In this case the eigenvalue problem on the sphere becomes

-Av+ > v=2nvin Q c {x, > 0},
cos” @

v=00n0Q .

Since 2n = A(-A’,0B1(0) N {x,, > 0}), we obtain from 1. and 2. that 1,(L, Q') > 2 + 2n.
But then v must be an eigenfunction with respect to the first eigenvalue A;(L, Q’), and
A1(L, Q) = 2n. Observe now that /4 is an eigenfunction with respect to the first eigenvalue
A1(L,0B1(0) N {x, > 0}), so that

(L, 0B1(0) N {x, > 0}) =2n = A;(L,Q)).

This is only possible if Q" = dB;(0) N {x, > 0} and v = ah for some a # 0.

4. Observe that the second eigenvalue of —A’ in a half-sphere is 2n, therefore due to 1.
and continuity of 1, with respect to the size of a spherical cap, A,(-A’, Q") > 2n — w(n, 6)
where w(n, ) — 0as ¢ — 0. From 2. it follows that A,(L, Q") > 2n — w(n,d) + qo > 2n if
6 = 6(n, qo) is small. Thus, v must be an eigenfunction with respect to the first eigenvalue
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(L, ), and 21 (L, Q") = 2n. Again, the eigenspace is a one-dimensional space such that
v = afq for some real number @ # 0 and a function fo depending only on Q’; We also
know that first eigenfunctions do not change sign in the connected set €’. O
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