

Assoziationen und Kompetenzzuschreibung angehender Sachunterrichtslehrkräfte zur Informatik

Jan Grey, Stephan Napierala, Inga Gryl

INFOS 2023 – 20.09.2023 bis 22.09.2023

Fr. 14.15 – 15.15 Seminarraum I

Offen im Denken

Offen im Denken

Ablauf

- 1. Informatische Bildung in der grundschulischen Lehrkräftebildung
- 2. Projektvorstellung InformSU
- 3. Studiendesign und Auswertungsmethode
- 4. Ergebnisse
- 5. Implikationen: Herausforderungen informatischer Bildung in der Grundschule
- 6. Ausblick

Informatische Bildung in der grundschulischen Lehrkräftebildung

Offen im Denken

Informatische Bildung in der grundschulischen Lehrkräftebildung

- Kinder wachsen in und mit einer digital geprägten Welt, in einer Kultur der Digitalität (Stalder 2017), auf
- Insbesondere die Mediennutzung und die Mediensozialisation und Informatiksysteme sind wesentliche Teile des alltäglichen Lebens (JIM 2021)
- Das Ziel grundschulischer Bildung (im Sachunterricht) muss es sein, Schüler*innen zu befähigen, ihr Leben in der Digitalität mündig zu gestalten (GDSU 2021), informatische Bildung ist ein wesentlicher Schritt hierzu
- Insbesondere der Lehrkräftebildung kommt die Aufgabe zu, (angehende) Lehrkräfte hinsichtlich digitalisierungsbezogener und informatischer Kompetenzen auszubilden

Offen im Denken

Informatische Bildung in der grundschulischen Lehrkräftebildung

Für die Lehrkräftebildung im Sachunterricht leiten sich hieraus unterschiedliche Aufgaben ab:

Nutzung von digitalen Weiterentwicklung der Technologien bzw. eigenen informatischen digitalen Kompetenzen Lernumgebungen für Lernprozesse Aufgaben für die Lehrkräftebildung Wahrnehmung von Entwicklung digitalisierungsbezogenen schulbezogener Konzepte Erziehungs- und für die digitale und Bildungsaufgaben informatische Bildung

INFOS 2023 Offen im Denken

Informatische Bildung in der grundschulischen Lehrkräftebildung

 Für die Lehrkräftebildung im Sachunterricht leiten sich hieraus unterschiedliche Aufgaben ab:

Weiterentwicklung der eigenen informatischen Kompetenzen

Nutzung von digitalen Technologien bzw. digitalen Lernumgebungen für Lernprozesse

Aufgaben für die Lehrkräftebildung

Wahrnehmung von digitalisierungsbezogener Erziehungs- und Bildungsaufgaben Entwicklung schulbezogener Konzepte für die digitale und informatische Bildung

INFOS 2023 Offen im Denken

Informatische Bildung in der grundschulischen Lehrkräftebildung

- Welche Assoziationen haben angehende Sachunterrichtslehrkräfte zur Informatik?
- Welche geschlechterspezifische Vorstellungen und Kompetenzzuschreibungen zeigen sich in einer Längsschnittstudie über die schulpraktische Phase des Lehramtsstudiums und wie verändern diese sich jeweils in einem Prä-Interim-Post-Design durch eine Intervention?

Offen im Denken

Faktoren zur Einbettung eines (neuen) Unterrichtsgegenstandes

- WSTP-Modell (Knezek et al. 2016)/WWW-Modell (Döbeli-Honegger 2021):
 - Wille
 - Wissen
 - Werkzeuge
- Kompetenzselbsteinschätzung, Assoziationen, Interesse (Rubach und Lazarides 2020/2021)
- Relativer Vorteil; Kompabilität; Beobachtbarkeit; Komplexität; Versuchbarkeit (Rogers 2003)

Offen im Denken

Faktoren zur Einbettung eines (neuen) Unterrichtsgegenstandes

- Relativer Vorteil; Kompabilität; Beobachtbarkeit; Komplexität; Versuchbarkeit (Rogers 2003)
- WSTP-Modell (Knezek et al. 2016)/WWW-Modell (Döbeli-Honegger 2021):
 - Wille
 - Wissen
 - Werkzeuge
- Kompetenzselbsteinschätzung, Assoziationen, Interesse (Rubach und Lazarides 2020/2021)

Offen im Denken

Referenzstudie

Brinda et al. (2018):

- Untersuchen Assoziationen zur digital geprägten Welt und Informatik in der Sekundarstufe 1 und 2
- 198 Schüler*innen der Klassen 5 (N=46),8,9 (N=81),10,11,12 (N=71) (w = 95; m = 102)
- Die meisten Schüler*innen hatten bisher weniger als ein Jahr Inforamtik in der Schule (N=133)
- Berichten, dass vor allem Assoziationen zu lebensweltlichen Informatiksystemen und Anwendungen (video game, application, communication, cell phone, internet) vorhanden sind

Projektvorstellung InformSU

INFOS 2023 Offen im Denken

Projektvorstellung: Informatische Bildung als Perpektive für den Sachunterricht im Praxissemester (InformSU)

Projektleitung

Prof. Dr. Miriam Kuckuck, Prof. Dr. Ludger Humbert

Teilnehmende Universitäten

Universität Duisburg-Essen, Westfälische Wilhelms-Universität Münster, Bergische Universität Wuppertal

Förderung

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Laufzeit

April 2020 bis Dezember 2022

Offen im Denken

Ziele des Projektes

Studierende des Sachunterrichts

- erwerben Kompetenzen zur informatischen Bildung in Seminaren mit Praxisanteil
- bringen Ideen und Konzepte an die Grundschulen und wirken als Multiplikatoren für die Lehrkräfte

Beteiligte Lehrkräfte

 erfahren Möglichkeiten und praktische Ideen für eine eigene Umsetzung

Die unterrichteten Kinder

erwerben Kompetenzen zur informatischen Bildung

Schulpraktische Phase im Lehramtstudium Sachunterricht in NRW

1. FS MA

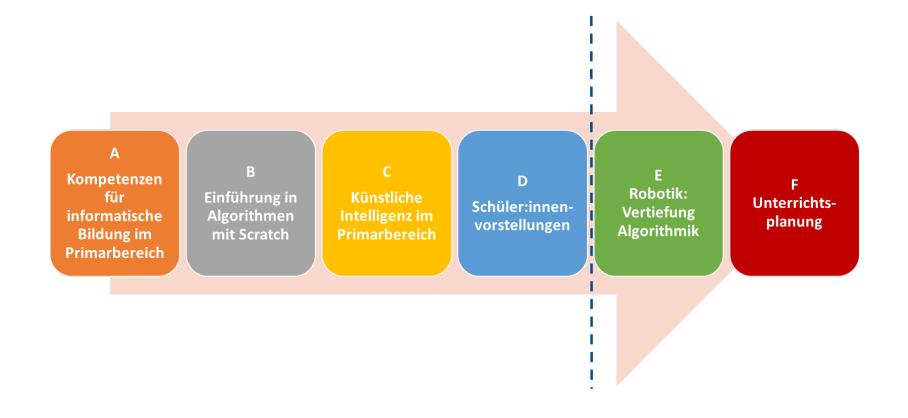
Didaktik des Sachunterrichts II (Vorlesung)

Planung und Diagnostik von Sachunterricht (Übung/Seminar)

2. FS MA

Begleitveranstaltung zum Praxissemester (Seminar) Schulpraktische Phase

Studienprojekt (Wahlpflicht)


Obligatorische Reflexionsaufgaben Informatische Bildung

3. FS MA

Forschungsseminar Analyse von Sachunterricht (Seminar)

Inhaltliche Schwerpunkte der Intervention

Vorgehen: dreistufigen Mixed-Methods-Fragebogenstudie

Erhebungskontext: Die Erhebung schließt an die Vorbereitungs-, Begleit- und Nachbereitungsveranstaltung an. Zwischen Prä- und Posterhebung liegt ca. ein Jahr.

Proband*innen: 106 Studierenden (102 w und 4 m) in drei Kohorten im Master of Education in drei Kohorten

Datensatz: 13 Proband*innen (Prä-, Interim-, Posttestung); 93 Datensätze, die bisher nicht alle Zeitpunkte durchlaufen haben

Erhebungsinstrument:

Teil 1

Freitextitem (Assoziationen)

Ein geschlossenes Item (Kompetenzzuschreibung) Teil 2

Acht
geschlossene
Items zur
eigenen
informatischen
Kompetenz

Teil 3

Interessenorientierung der Studierenden in 8 geschlossenen Items

Erhebungsinstrument:

Acht geschlossene Items zur eigenen informatischen Kompetenz

Teil 2

Interessenorientierung der Studierenden in 8 geschlossenen Items

Teil 3

Items:

- Freitextitem: Nennen Sie drei Begriffe, die Sie mit Informatik verbinden
- Geschlossens Item: Wer hat mehr Informatik-Kenntnisse und/oder informatische Fähigkeiten? (Antwortoptionen: Männer, Frauen und Beide gleich zu wählen)

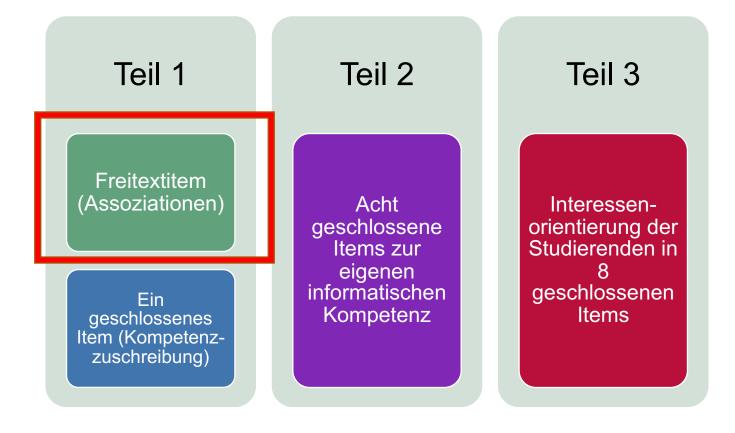
Auswertungsmethode:

- Freitextitems mittels einer induktiven inhaltlichstrukturierenden qualitativen Inhaltsanalyse (Kuckartz 2018; Mayring 2015)
- das geschlossene Item mittels einer quantitativen Datenanalyse (Tausendpfund 2019) ausgewertet

Offen im Denken

ad-hoc Kategoriensystem

Hauptkategorie	Beschreibung	Ankerzitat	Codierregel
Kompetenzen	Es wird ein Kompetenzbereich,	"Digitale Kompetenz"	Ein Code wird diesem Hauptcode
	Kompetenzbegriff oder ein	(D1_T3_12)	zugeordnet, wenn ein
	Kompetenzziel benannt.		Kompetenzbegriff, Kompetenzziel
			genannt wird.
Systemische Verortung	Die Hauptkategorie fasst	"Wissenschaft" (D1_T1_01)	Ein Code wird diesem Hauptcode
Informatik im	Kategorien zur inhaltlichen		zugeordnet, wenn eine inhaltliche
Bildungssystem	bzw. systemischen Verortung		bzw. institutionelle Verortung zur
	der Informatik zusammen.		Informatik genannt wird.
Themenbereiche	Die Hauptkategorie fasst	"KI" (D1_T1_10); "Robotik"	Ein Code wird diesem Hauptcode
Informatik	Inhaltsbereiche zur Informatik	(D1_T1_19)	zugeordnet, wenn ein Inhaltsbereich
	zusammen.		der Informatik genannt wird.
Wahrnehmung/	Die Hauptkategorie fasst	"verwirrend" (D2_T2_32);	Ein Code wird diesem Hauptcode
Einstellung Informatik	Kategorien zur Wahrnehmung	"abstrakt" (D2_T2_32)	zugeordnet, wenn eine emotionale
	bzw. Einstellungen zur		Reaktion, Wahrnehmung, Einstellung
	Informatik zusammen.		zur Informatik genannt wird.
Prinzipien der	Die Hauptkategorie fasst	"Datenverarbeitung"	Ein Code wird diesem Hauptcode
Informatik	Kategorien zu Prinzipien der	(D2_T1_10);	zugeordnet, wenn
	Informatik zusammen.	Informationen" (D1_T2_24)	
Anwendungen	Die Hauptkategorie fasst	"Programmierung"	Ein Code wird diesem Hauptcode
	Kategorien zu informatischen	(D1_T1_06)	zugeordnet, wenn eine
	Anwendungen zusammen.		informatische Anwendung genannt
			wird.
Technische Ein- und	Die Hauptkategorie fasst	"Computer" (D1_T1_01)	Ein Code wird diesem Hauptcode
Ausgabeformate	Kategorien zu technischen Ein-		zugeordnet, wenn ein Ein- bzw.
	und Ausgabeformaten		Ausgabesystem genannt wird.
	zusammen.		


23.10 **21**

Ergebnisse der Erhebung

Erhebungsinstrument:

Offen im Denken

Assoziationen der Studierenden

Kategorie	Beschreibung	Ankerzitat	Belegstellen
		e (42-44-9BS)	
Technik	Die Kategorie fasst tech- nische Begriffe zusam- men.	"Digitale Kompetenz" (D1-T3-12)	18-6-2 BS
Robotik	Die Kategorie fasst Ro- boter bzw. Robotik zu- sammen.	"Robotik" (D1-T1-19)	6-20-5 BS
KI	Die Kategorie fasst Künstliche Intelligenz zusammen.	"KI" (D1-T1-10)	4-4-2 BS
Informatiksysteme	Die Kategorie fasst (informatische) Systeme zusammen.	"Systeme"(D1-T2-15)	0-5-0 BS
	Anwendungen	(57-67-11 BS)	
Algorithmik	Die Kategorie fasst al- gorithmische Strukturen und Algorithmen zusam- men.	"Algorithmen" (D2-T1-08)	11-22-1 BS
Programmieren bzw. Codieren	Die Kategorie fasst Pro- grammierung bzw. Co- dierung zusammen.	"Programmierung" (D1- T1-06)	37-30-6 BS
Codes	Die Kategorie fasst Co- dierungen zur Program- mierung zusammen.	"Codes"(D2-T2-23)	0-5-0 BS
Befehle	Die Kategorie fasst Co- dierungen zu Befehlen und Befehlsstrukturen zusammen.	"Befehle" (D1-T3-02)	0-0-3 BS
	Technische Ein- bzw. Aus	gabegeräte (44-35-6 BS)	
Neue bzw. digitale Medien	Die Kategorie fasst neue bzw. digitale Medien zu- sammen.	"Neue Medien" (D1-T1- 24)	4-3-0 BS
Computer	Die Kategorie fasst Computer bzw. Compu- tersoftware zusammen.	"Computer" (D1-T1-01)	39-27-6 BS

Offen im Denken

Ergebnisse: Assoziationen der Studierenden

Kategorie	Beschreibung	Ankerzitat	Belegstellen
	Inhaltsbereich	ne (42-44-9BS)	
Technik	Die Kategorie fasst tech- nische Begriffe zusam- men.	"Digitale Kompetenz" (D1-T3-12)	18-6-2 BS
Robotik	Die Kategorie fasst Ro- boter bzw. Robotik zu- sammen.	"Robotik" (D1-T1-19)	6-20-5 BS
KI	Die Kategorie fasst Künstliche Intelligenz zusammen.	"KI" (D1-T1-10)	4-4-2 BS
Informatiksysteme	Die Kategorie fasst (informatische) Systeme zusammen.	"Systeme"(D1-T2-15)	0-5-0 BS
	Anwendungen	(57-67-11 BS)	
Algorithmik	Die Kategorie fasst al- gorithmische Strukturen und Algorithmen zusam- men.	"Algorithmen" (D2-T1-08)	11-22-1 BS
Programmieren bzw. Codieren	Die Kategorie fasst Pro- grammierung bzw. Co- dierung zusammen.	"Programmierung" (D1- T1-06)	37-30-6 BS
Codes	Die Kategorie fasst Co- dierungen zur Program- mierung zusammen.	"Codes"(D2-T2-23)	0-5-0 BS
Befehle	Die Kategorie fasst Co- dierungen zu Befehlen und Befehlsstrukturen zusammen.	"Befehle" (D1-T3-02)	0-0-3 BS
	Technische Ein- bzw. Aus	gabegeräte (44-35-6 BS)	
Neue bzw. digitale Medien	Die Kategorie fasst neue bzw. digitale Medien zu- sammen.	"Neue Medien" (D1-T1- 24)	4-3-0 BS
Computer	Die Kategorie fasst Computer bzw. Compu- tersoftware zusammen.	"Computer" (D1-T1-01)	39-27-6 BS
23 10 23			

In der Prätestung zeigt sich eine deutliche Häufung an BS:

- für Informatiksysteme, wie der Computer (39 BS)
- Programmierung (37 BS)
- algorithmische Strukturen (11 BS)
- Technik (6 BS)

Veränderungen im Verlauf der Studie:

- Technik reduziert (6 BS), dafür tritt Robotik (20 BS) vermehrt auf
- Vermehrte Nennung Algorithmik
 (22 BS), weniger
 Programmierung (30 BS)
- Technische Ein- und Ausgabegeräte werden weniger (35 BS) 25

Erhebungsinstrument:

Kompetenzeinschätzung der Studierenden

Items/Testung	Prätest (N=77)	Interimtestung (N=58)	Posttestung (N=13)
Frauen	0%	0%	0%
Männer	63,2%	51,7%	23,1%
Etwa beide gleich	36,8%	48,3%	76,7%
Kumulierte Prozente	100%	100%	100%

Die vornehmlich weiblichen Studierenden:

- schätzen Männer kompetenter ein
- schätzen im Verlauf der Thematisierung informatischer Gegenstände beide Geschlechter gleich kompetent
- schätzen in keinem Datensatz Frauen kompetenter ein

Zusammenfassung der Ergebnisse

- die Ergebnisse deuten darauf hin, dass durch die Thematisierung informatischer Gegenstände im Lehramtsstudium die Informatik für die Studierenden entmystifiziert wurde
- sie weisen eine Veränderung von unspezifischen zu fachspezifischen Konzepte auf, die mit der Informatik assoziiert werden, dies bezieht sich allerdings nicht auf alle thematisierten Inhalte
- die unspezifischen Assoziationen decken sich teilweise mit bestehenden Studien (Brinda et al. 2018), werden jedoch im Verlauf minimiert
- zudem schätzen die vornehmlich weiblichen Studierenden durch die zunehmende Thematisierung informatischer Inhalte Frauen und Männer identisch kompetent ein und damit sich selbst kompetenter

Limitationen der Studie

- Es stehen noch Datensätze aus, da nicht alle Studierenden alle Messzeitpunkte abgeschlossen haben
- Es sind (fast) ausschließlich weiblich Studierende, wodurch ein direkter Vergleich zwischen den Geschlechtern nicht möglich ist
- Vergleichsstudie (Brinda et al. 2018) funktioniert als explorative Studie und passt kaum auf die vorliegende Proband*innengruppe

Herausforderungen informatischer Bildung in der Grundschule - Diskussion

Rollenherausforderung – Herausforderung eines Geschlechterdiskurses?

- die niedrige Kompetenzselbsteinschätzung der angehenden Sachunterrichtslehrkräfte ist keineswegs zufällig
- sie bestätigt vielmehr einen Trend in der Geschlechterforschung der MINT-Fächer
- Mädchen haben aufgrund von gesellschaftlichen Stereotypen ein vermindertes Interesse an der Informatik (Dengel & Heuer 2021)
- Schülerinnen werden im Laufe ihrer Lernbiografie weniger technikversiert eingeschätzt und reproduzieren diesem Umstand auf die eigene Einschätzung (Ripke 2012)

30

Herausforderungen informatischer Bildung in der Grundschule - Diskussion

Rollenherausforderung – Herausforderung eines Geschlechterdiskurses?

- die niedrige Kompetenzselbsteinschätzung der angehenden Sachunterrichtslehrkräfte ist keineswegs zufällig
- sie bestätigt vielmehr einen Trend in der Geschlechterforschung der MINT-Fächer
- Mädchen haben aufgrund von gesellschaftlichen Stereotypen ein vermindertes Interesse an der Informatik (Dengel & Heuer 2021)
- Schülerinnen werden im Laufe ihrer Lernbiografie weniger technikversiert eingeschätzt und reproduzieren diesem Umstand auf die eigene Einschätzung (Ripke 2012)

Teufelskreis der Bildungsbiografien – Herausforderungen eines selbstreferenziellen Bildungssystems

- Lehrkräfte sind ehemalige Schüler*innen des deutschen Schulsystems, die zumeist ohne Umweg durch ein Studium in die Schule zurückkehren (Treptow 2006)
- Neuerungen treffen in Schulen auf keine multiprofessionellen Teams, da nahezu alle Lehrkräfte sich in ihrem Bildungsweg gleichen (Kurtz 2004)
- es ist daher unwahrscheinlich, dass Lehrkräfte informatische Bildung einfach mitbringen, wenn sie nicht Teil der eigenen Schulzeit oder der Lehrkräftebildung war

Ausblick

- Einbettung gestaltet sich schwierig, da die angehenden Grundschullehrer*innen zumeist weiblich sind, kaum Informatikunterricht hatten, daher die eigenen Kompetenzen eher schlecht ein
- der Sachunterricht muss im Sinne der Doppelten Anschlussfähigkeit (GDSU 2013), informatische Bildung einbetten
- die Lehrkräftebildung braucht hierfür:
 - innovative Lehrkonzepte und Materialien (s. Workshop Fr. 15:15)
 - Fortbildungen für Lehrende
 - entsprechende curriculare Zielstellungen

Offen im Denken

Literatur

Primary and Secondary Computing Education, 1–10. https://doi.org/10.1145/3265757.3265763; Dengel, A., & Heuer, U. (2021). Motivation, Fachinteresse und Schulleistung in Informatik. In L. Humbert (Hrsg.), INFOS 2021—19. GI-Fachtagung Informatik und Schule (S. 113–122). Gesellschaft für Informatik. https://doi.org/10.18420/INFOS2021 F26; Döbeli Honegger, B. (2017). Mehr als 0 und 1: Schule in einer digitalisierten Welt (2., durchgesehene Auflage). hep, der Bildungsverlag.; GDSU (Hrsg.). (2013). Perspektivrahmen Sachunterricht (Vollständig überarb. und erw. Ausg). Klinkhardt.; GDSU. (2021). Sachunterricht und Digitalisierung [Positionspapier erarbeitet von der AG Medien & Digitalisierung der Gesellschaft für Didaktik des Sachunterrichts (GDSU)]. https://gdsu.de/sites/default/files/PDF/GDSU 2021 Positionspapier Sachunterricht und Digitalisierung deutsch de.pdf; Knezek, G., & Christensen, R. (2016). Extending the will, skill, tool model of technology integration: Adding pedagogy as a new model construct. Journal of Computing in Higher Education, 28(3), 307–325. https://doi.org/10.1007/s12528-016-9120-2; Kuckartz, U. (2018). Qualitative Inhaltsanalyse: Methoden, Praxis, Computerunterstützung (4. Auflage). Beltz Juventa.; Kurtz, T. (2004). Organisation und Profession im Erziehungssystem. In W. Böttcher & E. Terhart (Hrsg.), Organisationstheorie in pädagogischen Feldern: Analyse und Gestaltung (1. Aufl, S. 43–54). VS Verlag für Sozialwissenschaften.; Medienpädagogischer Forschungsverbund Südwest (mpfs). (2021). JIM 2021—Jugend, Information, Medien. Basisuntersuchung zum Medienumgang 12-bis 19 Jähriger in Deutschland. https://www.mpfs.de/fileadmin/files/Studien/JIM/2021/JIM-Studie 2021 barrierefrei.pdf; Ripke, M., & Siegeris, J. (2012). Informatik – ein Männerfach!?: Monoedukative Lehre als Alternative. Informatik-Spektrum, 35(5), 331–338. https://doi.org/10.1007/s00287-011-0558-3; Rogers, E. M. (2003). Diffusion of innovations (5th ed). Free Press.; Rubach, C., & Lazarides, R. (2020). Digitale Kompetenzeinschätzungen von Lehramtsstudierenden fördern. journal für lehrerInnenbildung jlb, 20(1), 88–92. https://doi.org/10.35468/jlb-01-2020 07; Rubach, C., & Lazarides, R. (2021). Heterogene digitale Kompetenzselbsteinschätzungen bei Lehramtsstudierenden. In Geschäftsstelle beim Stifterverband (Hrsg.), Digitalisierung in Studium und Lehre gemeinsam gestalten (S. 453–473). Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-32849-8 26; Stalder, F. (2017). Kultur der Digitalität (2. Auflage). Suhrkamp.; Tausendpfund, M. (2019). Quantitative Datenanalyse: Eine Einführung mit SPSS. Springer VS. https://doi.org/10.1007/978-3-658-27248-7; Treptow, E. (2006). Bildungsbiografien von Lehrerinnen und Lehrern: Eine empirische Untersuchung unter Berücksichtigung geschlechtsspezifischer Unterschiede.

Brinda, T., Napierala, S., & Behler, G. A. (2018). What do secondary school students associate with the digital world? *Proceedings of the 13th Workshop in*

23.10.23

Waxmann.; Tulodziecki, G. (2021). Medienerziehung und Medienbildung in der Grundschule (1. Auflage). Verlag W. Kohlhammer.

Vielen Dank für die Aufmerksamkeit!

