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We use the variational principle to obtain the wave functions of elliptical quantum dots under the

influence of an external magnetic field. For the first excited states, whose wave functions have

recently been mapped experimentally, we find a simple expression, based on a linear combination

of the wave functions in the absence of a magnetic field. The results illustrate how a magnetic

field breaks the x-y symmetry and mixes the corresponding eigenstates. The obtained

eigenenergies agree well with those obtained by more involved analytical and numerical methods.
VC 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4898790]

I. INTRODUCTION

Semiconductor technologies, such as crystal growth and li-
thography, have been improving continually over the past
decades. As a result, it is possible today to reliably fabricate
semiconductor structures that have sizes of only around
10 nm in all spatial dimensions. For typical doping densities,
only very few carriers (electrons or holes) will be present in
these nano-structures, and therefore, their charge quantization
will be apparent. Furthermore, the carriers can no longer be
treated as classical point charges, because they are confined
to a region of space that is smaller than the de Broglie wave-
length in bulk semiconductors. A full quantum approach is
needed in order to unravel the energy spectra in such three-
dimensional semiconductor nanostructures, which are called
“quantum dots” for short. Quantum dots can be fabricated
with different sizes and shapes, so that their energy structure
(and thus their electronic and optical properties) can be tai-
lored to match desired specifications. This flexibility makes
quantum dots attractive for a wide range of applications,
from solar cells to lasers, and products such as quantum dot
LCD displays have just entered the consumer market.1

On the other hand, quantum dots have always sparked the
interest of basic science, as they are ideal model systems to
study the many-particle interactions of confined carriers. In
this respect, they share many similarities with electrons con-
fined in the Coulomb potential of atoms, and many of the ba-
sic properties and phenomena of atomic physics can also be
found in quantum dots. Examples are a distinct shell struc-
ture,2 direct Coulomb interaction and exchange interaction,3

incomplete shell filling,4 orbital Zeemann splitting,5 and the
(quantum confined) Stark effect.6 Therefore, quantum dots
are sometimes referred to as “artificial atoms.”

Contrary to real atoms, however, it is practical to apply
external fields to quantum dots that compete in strength with
the “built-in” confining potential. To illustrate this, consider
that in order to match the magnetic energy (Landau level
spacing) with the Rydberg energy of a hydrogen atom, a
magnetic field of 105 T would be required—many orders of
magnitude above anything achievable in the laboratory. For
quantum dots, on the other hand, a comparable situation is
reached at moderate fields of 1–10 T. Therefore, the applica-
tion of a magnetic field is not just a small perturbation—it
can profoundly modify the quantum states and the energy
structure of the quantum dots.3

One type of quantum dot that has attracted particular
attention is the so-called self-assembled quantum dot.7 These
structures form when a thin layer of a suitable semiconductor

(commonly InAs) is deposited on an appropriate substrate of
a different semiconductor (commonly GaAs). In the so-
called Stranski-Krastanov growth mode, the top layer will
form a random array of nanoscopic islands, which can be
overgrown by the substrate material without breaking the in-
tegrity of the crystal lattice. When the island material has a
lower conduction band energy than the matrix, the islands
will constitute an attractive potential for electrons and thus
serve as quantum dots. The confining potential in self-
assembled quantum dots is smooth. And even though its
detailed shape is given by a complex interplay between the
potential of external charges, band bending, strain, and pie-
zoelectric fields, it can be well approximated using a simple
two-dimensional harmonic oscillator ansatz.8 Therefore,
these quantum dots are not only a topic of great interest in
basic and applied physics, they also provide the advanced
student with a number of interesting but manageable prob-
lems in quantum mechanics, with direct connections to con-
temporary physics research.

In the following, we will use the harmonic oscillator model
to investigate how the interplay between the internal confin-
ing potential and an external magnetic field gives rise to a
tunable mixing of wave functions. Such a controlled modifi-
cation of the wave functions has recently been observed
experimentally,9,10 so that this example of a variational ansatz
provides a direct link to contemporary nanoscience.

The treatment of the isotropic two-dimensional harmonic
oscillator, which can be found in many textbooks,11 can eas-
ily be extended to also include a magnetic field that is
applied perpendicular to the plane of the two-dimensional
oscillator. If, however, an anisotropic contribution breaks the
circular symmetry of the potential,9,10 the derivation of the
energy levels and wave functions in a magnetic field
becomes more involved. It is the purpose of this work to
show that a straightforward application of the variational
method leads to simple expressions for the wave functions
and energies of an anisotropic harmonic oscillator in a mag-
netic field. These expressions nevertheless approximate the
exact results with high accuracy.

II. VARIATIONAL METHOD

We assume that the confining potential is in the xy-plane
and the magnetic field points along the z-axis. The
Hamiltonian can be written in the form11

H ¼ 1

2m
ð~p þ e~AÞ2 þ V; (1)
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where m is the effective electronic mass, ~A is the vector
potential of the magnetic field, and V is the two-dimensional
confining potential

V x; yð Þ ¼
1

2
mx2

xx2 þ 1

2
mx2

yy2: (2)

When the two characteristic frequencies are different
(xx 6¼ xy), this potential describes an anisotropic harmonic
oscillator. Choosing the symmetric gauge12 Ax ¼ �By=2; Ay

¼ Bx=2, Az¼ 0, we obtain for the Hamiltonian

H ¼ 1

2m
p̂x �

eBy

2

� �2

þ p̂y þ
eBx

2

� �2
" #

þ 1

2
mx2

xx2 þ 1

2
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yy2

¼ p̂2
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2m
þ 1

2
mx2

1x2 þ
p̂2

y

2m
þ 1

2
mx2

2y2

þ eB

2m
xp̂y � yp̂x

� �
¼ H1 þ

1

2
xcl̂z: (3)

Here, we have used the abbreviations H1 ¼ p̂2
x=2m

þmx2
1x2=2þ p̂2

y=2mþ mx2
2y2=2; x1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

x þ x2
c=4

p
, and

x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

y þ x2
c=4

q
. Furthermore, l̂z ¼ xp̂y � yp̂x is the

orbital angular momentum along the z-direction and xc

¼ eB=m is the cyclotron frequency. For later convenience,
we also introduce the length normalization parameters a1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx1=�h

p
and a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx2=�h

p
.

When no magnetic field is applied (B¼ 0), the
Hamiltonian can be separated in x and y, and the eigenfunc-
tions wnx;ny

ðx; yÞ are easily found as products of the well-
known wave functions of the one-dimensional harmonic
oscillators. The corresponding energies are Enx;ny

¼ �hxxðnx

þ 1=2Þ þ �hxyðny þ 1=2Þ. In the following, we will restrict
ourselves to the discussion of the so-called “p-states,”13 with
ðnx; nyÞ ¼ ð1; 0Þ or (0, 1), because they exhibit an interesting
change in topology when the magnetic field is turned on, and
because they have recently been mapped out experimen-
tally.9,10 For these states and B¼ 0, the energies and the
wave functions are

E10 ¼
3

2
�hxx þ

1

2
�hxy;

w10 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2a1a2

p

r
a1xe� a2

1
x2þa2

2
y2ð Þ=2; (4)

E01 ¼
1

2
�hxx þ

3

2
�hxy;

w01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2a1a2

p

r
a2ye� a2

1
x2þa2

2
y2ð Þ=2: (5)

For B 6¼ 0, the Hamiltonian is no longer separable, because
the angular momentum term xcl̂z=2 in Eq. (3) mixes the
x and y directions. For very high magnetic fields, on the
other hand, the anisotropy will no longer be relevant
ðx1;x2 � xc=2Þ and the wave functions can be written in
cylindrical coordinates (r, u) as

w6 r;uð Þ ¼
1ffiffiffi
p
p

l2
re�r2=2l2 e6iu; (6)

where x2 þ y2 ¼ r2; l2 ¼ �h=ðmxcÞ, and xþ iy ¼ reiu.

Guided by the fact that both limiting cases B¼ 0 and B
!1 can be solved exactly, we use a simple linear combina-
tion of w10 and w01 as a trial function to make a variational
approximation over the whole range of magnetic fields

w ¼ aw10 þ ibw01: (7)

Here, a is a real number between 0 and 1, and b ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

to ensure normalization of w. To minimize the energy with
respect to a, we calculate the expectation value of w,

E¼hwjHjwi¼
�

aw10þibw01

����H1þ
1

2
xcl̂z

����aw10þibw01

	
:

(8)

Using the fact that jw10i and jw01i are eigenstates of H1

with energies given by Eqs. (4) and (5), we find for the first
part of the Hamiltonian in Eq. (8),

haw10 þ ibw01jH1jaw10 þ ibw01i

¼ a2 3

2
�hx1 þ

1

2
�hx2

� �
þ b2 1

2
�hx1 þ

3

2
�hx2

� �
: (9)

To find the angular momentum contribution in Eq. (8), we
first calculate

l̂zjw10i ¼ xp̂y � yp̂x

� �
jw10i ¼ �i�h x

@w10

@y
� y

@w10

@x

� �
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2
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xy� y
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 �
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2
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x2 � 1

� 
 a1

a2

w01; (10)

from which it follows that

hw01jl̂zjw10i ¼ hw01j � i�h a2
1 � a2

2

� �
x2 � 1

� 
 a1

a2

jw01i
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a2

� i�h a2
1 � a2

2

� � a1

a2

hw01jx2jw01i

¼ i�h
a2

1 þ a2
2

2a1a2

: (11)

Here, we have used hw01jx2jw01i ¼ 1=ð2a2
1Þ. The term

hw10jl̂zjw01i can be derived from

hw10jl̂zjw01i ¼ hw01jl̂zjw10i
† ¼ �i�h

a2
1 þ a2

2

2a1a2

: (12)

Because w10 and w01 are eigenstates of the Hamiltonian
of linear motion (H1, separable in x and y), their angular
momentum expectation value is zero: hw10jl̂zjw10i
¼ hw01jl̂zjw01i ¼ 0.

Combining the above results, we calculate the angular mo-
mentum contribution to E in Eq. (8) to be�

aw10 þ ibw01

���� 12 xcl̂z

����aw10 þ ibw01

	

¼ 1

2
ab �hxc

a2
1 þ a2

2

a1a2

¼ 1

2
ab �hxc

x1 þ x2ffiffiffiffiffiffiffiffiffiffiffi
x1x2
p ; (13)
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and thus obtain the total energy

E ¼ a2 3
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In order to find the minimum energy, we take the deriva-
tive with respect to a of Eq. (14), using b ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

,

@E
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¼ 2a �hx1 � �hx2ð Þ6 1� 2a2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p �hxc

x1 þ x2ffiffiffiffiffiffiffiffiffiffiffi
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) 6a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

2a2 � 1
¼ xc

4 x1 � x2ð Þ
x1 þ x2ffiffiffiffiffiffiffiffiffiffiffi

x1x2
p : (16)

For simplicity, we define a parameter b, which characterizes
the anisotropy and also accounts for the applied magnetic
field

b ¼ xc

4 x1 � x2ð Þ
x1 þ x2ffiffiffiffiffiffiffiffiffiffiffi

x1x2
p : (17)

The variational parameters are then easily computed in terms
of b, giving

a2
6 ¼

1

2
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

16b2 þ 4

s
; (18)

b2
6 ¼

1

2
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

16b2 þ 4

s
: (19)

The sign (positive or negative) of the root of b2 in Eq. (19)
needs to be chosen to correctly reflect the chirality of the sol-
utions with respect to the magnetic field. For xx > xy and
B> 0, the sign will be the same as the one on the right hand
side of Eq. (18).

Let us now consider a few limiting cases. For xc ! 0,
we find aþ ! 1; Eþ ! 3=2�hxx þ 1=2�hxy, and a� ! 0;
E� ! 1=2�hxx þ 3=2�hxy; while for xc !1 we have a6

! 1=
ffiffiffi
2
p

; b6 ! 1=
ffiffiffi
2
p

, Eþ ! 3=2�hxc; E� ! 1=2�hxc.
These results are in agreement with the two lowest Landau
levels, into which the two p-states merge at high fields.12

Furthermore, for a symmetric dot with xx ¼ xy ¼ x, we

obtain E6 ¼ 2�h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x2

c=4
p

6�hxc=2, the exact result for
the well-known energies of the rotationally symmetric para-
bolic confinement.

III. CALCULATED RESULTS AND DISCUSSION

We can now directly compare our calculations with recent
experimental and theoretical results on self-assembled InAs
quantum dots.9,10 Note that the wave functions in Refs. 9
and 10 were calculated numerically. We consider the p6

states for different magnetic fields (1, 3, and 9 T), using pa-
rameters that are appropriate for the experimentally investi-
gated self-assembled InAs quantum dots: �hxx ¼ 62:9 meV,
�hxy ¼ 56:9 meV, and m ¼ 0:07me.

The calculated probability densities jw6j2 are shown in
Fig. 1. Here, the x and y axes are oriented horizontally and

vertically, respectively, and run through the center of each
panel. First, we focus on the higher-energy pþ state. From
Eq. (4), we see that at B¼ 0 this state has a node along the
x¼ 0 line (w10ð0; yÞ ¼ 0). The nodal structure is well pre-
served at a low magnetic field B¼ 1 T, as seen in the top
left panel of Fig. 1. This is because xc � jx1 � x2j, resulting
in jbj � 1 and so, according to Eqs. (18) and (19),
ða; bÞ � ð1; 0Þ, which gives the original wave function w10.
With increasing magnetic field, b increases and the wave func-
tions become more and more mixed. Roughly speaking, the
magnetic force imposes a stronger and stronger circular sym-
metry onto the pþ state, so that the node along the y-axis gives
way to a more ring-like shape of the wave function. For the p�

state, a very similar development is observed. In the experi-
mentally investigated range B � 9 T, the states will only partly
develop a ring shape, with superimposed maxima along the
rim, which are remnants of the lobes of w10 and w01.

The corresponding energy diagram is shown in Fig. 2.
Due to different confinement energies in the x and y direc-
tions, the two p-state energies separate at zero magnetic field,
with an energy gap between Eþ and E�. The inset in Fig. 2
compares the energies of elliptical and circular quantum
dots. With increasing magnetic fields, the energies of the p6

states merge with those of a symmetric quantum dot: the

Fig. 1. Calculated probability densities for the p-state wave functions of a

two-dimensional elliptical quantum dot in a perpendicular magnetic field.

With increasing magnetic field, the nodal structure of the wave functions

gives way to a more circular, ring-like shape.
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broken symmetry of the elongated dot is superseded by the
circular symmetry imposed by the magnetic force.

Additionally, we compare our calculated energies to the
exact eigenenergies given in Refs. 14 and 15: Enþ;n�
¼ ðnþ þ 1=2Þ�hxþ þ ðn� þ 1=2Þ�hx�, where the quantum
numbers ðnþ; n�Þ are (1,0) and (0,1) for the pþ and p� states,
respectively, and

x6 ¼ 1ffiffiffi
2
p fðx2

x þ x2
y þ x2

cÞ

6½ðx2
x þ x2

y þ x2
cÞ

2 � 4x2
xx

2
y �

1=2g1=2 : (20)

The difference between the two results, plotted in the lower
panel of Fig. 2, shows that the deviations are of the order of
one percent. (On the scale of the upper part of Fig. 2, the two
dispersions are indistinguishable from each other.) As
expected from a variational approach, our calculated ener-
gies are always somewhat higher than the exact results. As
pointed out above, the variational ansatz gives exact results
for zero magnetic field, and for B!1. This can also be
seen in the bottom of Fig. 2, where the deviation is zero at
B¼ 0, then reaches a maximum and finally decreases again
for very high magnetic fields.

IV. COMPARISON WITH EXPERIMENTAL DATA

The mixing of wave functions in elliptical quantum
dots has recently been studied using magneto-tunneling

spectroscopy. With this technique, the probability density is
sampled in momentum space rather than in real space.
Fortunately, a peculiarity of the harmonic oscillator is the
fact that (apart from pre-factors) its Hamiltonian is the same
in both real and momentum space. Basically, the harmonic
oscillator wave functions are their own Fourier transforms.
The wave functions (4) and (5) can therefore easily be
expressed in reciprocal space by making the substitutions
x! kx; y! ky; a1 ! 1=a1, and a2 ! 1=a2, to obtain

w10 kx; kyð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2

a1a2p

r
kx

a1

exp � k2
x

2a2
1

�
k2

y

2a2
2

 !
; (21)

w01 kx; kyð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2

a1a2p

r
ky

a2

exp � k2
x

2a2
1

�
k2

y

2a2
2

 !
: (22)

Because of the linearity of the Fourier transform, the dimen-
sionless mixing parameters a and b will be the same in both
representations.

In order to compare our calculation with the experimen-
tal data, we take �hxx ¼ 62:9 meV; �hxy ¼ 56:9 meV, and
m ¼ 0:07me (from Ref. 10) and obtain for the variational
parameters a¼ 1, b¼ 0 for B¼ 0 T and a¼ 0.8280,
b¼ 0.5607 for B¼ 9 T. The resulting calculated probability
density is shown as a contour plot in Fig. 3 (right). At
B¼ 9 T, because a> b, the wave function is still dominated
by the nodal structure of w10 (with nodes along the x-axis).
On the other hand, because b> 0, we can already observe
the influence of the magnetic field, giving the probability
density a “volcano”-like shape. These features are in good
agreement with the experimental data, shown in Fig. 3
(left). However, there are also some differences between
the experiment and the calculation. The experimental data
cover a wider range in k-space and seems to be more

Fig. 2. Calculated energies for the p states, using a model potential with

�hxx ¼ 62:9 meV and �hxy ¼ 56:9 meV. The inset compares the energies of

an elliptical (solid line) and a symmetric (dotted line) quantum dot. The

lower panel shows the deviation between the variational ansatz (EVP) and an

exact calculation ðEDPÞ.

Fig. 3. Left: Experimental map of the probability density in momentum space

of the pþ state in self-organized quantum dots at a magnetic field of 0 and 9 T

(Ref. 10). Right: Calculated quantum dot wave functions in k-space. The plots

span a momentum range of�5:8� 108 m�1 � kx; ky � þ5:8� 108 m�1.
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asymmetric. This can be attributed to an uncertainty
regarding two experimental parameters: (1) the tunneling
distance, which is needed in magneto-tunneling spectros-
copy to convert the applied in-plane magnetic field into a
momentum shift (a thicker barrier would shrink the experi-
mental density plot); and (2) the exact shape anisotropy of
the dots, which was assumed to be about 65%10 (in other
experiments, a more pronounced anisotropy has been
observed16). Finally, the two maxima along the x-direction
as well as the minimum in the center appear less pro-
nounced in the experimental data than in the calculated
density plots. This can be understood as a result of the lim-
ited experimental resolution, caused by the size and shape
distribution of the investigated dot ensemble and by the
admixture of tunneling current from states in the back con-
tact with non-vanishing angular momentum, as discussed
in Ref. 10. All in all, the calculated probability density can
well reproduce all characteristic features of states in ellip-
tical quantum dots that are subjected to a perpendicular
magnetic field that mixes the B¼ 0 eigenstates.

V. CONCLUSION

We have used a variational approach to model the wave
functions in a quantum dot with an elongated, parabolic
confinement, subjected to a magnetic field. Simple expres-
sions are found for both the energies and the wave func-
tions of the first excited states, which very well
approximate the numerical and analytic results given in
other work. Our calculations are an instructive example of
how to apply the variational principle to understand recent
results in basic physics. Furthermore, these simple expres-
sions, derived from the wave functions of the unperturbed,
circular quantum dot, may also facilitate analytic calcula-
tions of the direct and exchange Coulomb interactions,
which have been used successfully for circular quantum
dots.17
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