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 1 Introduction edge states at low imbalance 
Both the integer quantum Hall effect (IQHE) and the frac-
tional quantum Hall effect (FQHE) occur in high-mobility 
two-dimensional electron systems in a quantizing magnetic 
field under low temperatures. Although the Fermi level is 
within the spectrum gap in both regimes, the origins of the 
gap are substantially different for the IQHE and FQHE. The 
integer quantum Hall effect is explained by the Landau 
quantization in the spectrum of the two-dimensional electron 
system in a magnetic field. On the contrary, the FQHE is 
fully recognized as a manifestation of the electron–electron 
interaction. Despite these differences, charge transport is 
mostly determined by edge effects in both IQHE and FQHE 
regimes. The present report is dedicated to a detailed inves-
tigation of intra-edge transport and the differences and simi-
larities in the physical effects observed in both regimes. 
 
 1.1 Edge states definition Halperin [1] introduced 
current-carrying edge states as the intersections of the 
Landau levels and the Fermi level near the sample edges. 
Hence, the total number of edge states is equal to the fill-
ing factor, i.e., the number of filled Landau levels, and 
their electrochemical potentials are equal to the electro-

chemical potentials of the corresponding edges of the sam-
ple. If the number of filled Landau levels is n, the total cur-
rent through the sample can be written as ( )I n e h µ= / D , 
where µD  is the difference in the electrochemical potentials 
of the sample edges. Hence, the current is determined only 
by the difference in electrochemical potentials of the edges 
(or, in other words, of the edge states) and the number of 
filled Landau levels (the number of edge states). If we intro-
duce the edge-state current ( )e h µ/ , then the sum of all edge-
state currents gives the total current through the sample. 
 Büttiker [2] combined Halperin’s idea of current-
carrying edge states with the Landauer formalism [3], aim-
ing to take scattering in one-dimensional semiconductors 
into account. He showed that the effects of elastic and 
nonelastic scattering in edge states and contacts can be 
taken into account by introducing the transmission coeffi-
cient matrix ijT . He suggested the formalism for calculating 
various resistances for samples with many ohmic contacts. 
In this formalism, the current 

i
I  carried by edge states go-

ing from a contact i is given by 

i i i ij j

j i

e
I n T

h
µ µ

Ê ˆ
Á ˜
Á ˜
Á ˜Ë ¯π

= + ,Â  (1) 
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where 
i
I  is the current through edge states, going from the 

contact i, 
i

µ  is the electrochemical potential of the contact i, 

i
n  is the number of edge states that are going from the con-
tact i. It is worth to mention here, that edge-state transport 
is dissipativeless in the absence of inter-edge scattering. A 
finite resistance is arising due to the mixing of the electro-
chemical potentials in ohmic contacts. 
 
 1.2 Experiments at low imbalance Experimental 
verification of Büttiker’s formalism was performed mainly 
in the Hall-bar geometry with crossing gates (see Fig. 1). 
In this geometry, a sample with two current leads (1 and 4 
in Fig. 1) and several potential contacts (2 and 3 in Fig. 1) 
was crossed by one or several gates. Reducing the electron 
concentration under the gates to the smaller than the bulk 
filling factor results in a nonzero voltage between potential 
contacts in the quantum Hall effect regime. The result can 
easily be explained in terms of edge states: in the absence 
of gate voltage, two edge states leave contact 2 and the 
same states arrive at contact 3, see Fig. 1. Because no cur-
rent flows through the potential contacts, their electro-
chemical potentials are equal, leading to zero voltage drop 
between contacts. If the filling factor beneath the gates is 
reduced, then some of the edge states are reflected at the 
gate boundary while the others pass through, which leads 
to a more complicated set of electrochemical potentials of 
the contacts. It can be calculated from Buttiter formulas (1) 
for the particular situation. Moreover, this geometry allows 
to model and study various effects considered by Büttiker. 
A very comprehensive review of experiments in this ge-
ometry is made in Ref. [4]. 
 In the region between the gates in Fig. 1, one of the 
edge states starts from beneath the gate and the other ap-
proaches the gate along the gate edge. Their electrochemi-
cal potentials are different in general. Further along the 
sample edge, the electrochemical potentials of these states 
come to an equilibrium due to the electron transport be-
tween them, i.e., across the sample edge. Thus, the trans-
port effects between the edge states can be studied if the 
mixing of states in the contact can be excluded, i.e., if a  
 

 

Figure 1 Hall-bar geometry with two crossing gates. Numbered 

rectangles denote ohmic contacts. Shaded areas are gates evapo-

rated onto the sample. The structure of edge states is shown for 

the filling factors 1g =  under the gate and 2b =  in the rest of the 

sample (after Ref. [5]).  

second crossing gate is used as a detector of the final elec-
trochemical potential of the edge state, as shown in Fig. 1. 
Using the Büttiker formalism (1), it is easy to see that the 
measured resistance is 

1

14 23 2

eq

2
1 exp

h d
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-

,
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 (2) 

where 
eq
l  is the phenomenological equilibration length be-

tween the edge states. It can therefore be found from the de-
viation in the measured resistance from the quantized value. 
 Experimental data obtained by various groups (see, e.g., 
Ref. [5]) have shown that the equilibration length between 
spin-split edge states can reach 1 mm at low temperatures 
and is of the order of 100 µm for ones separated by a cy-
clotron splitting. This difference is caused by the fact that 
the spin flip accompanying the electron transfer is ham-
pered at the edge of the sample: there are no magnetic im-
purities in perfect heterostructures, and the spin flip is due 
to the spin-orbital and hyperfine interactions [5–8]. 
 We note that such experiments provide information 
about the equilibration processes only for a small imbal-
ance (a small difference in electrochemical potentials in 
comparison to the spectral gaps) between the edge states. 
In fact, any initial imbalance can be applied, but to have 
measurable deviations from the quantized value in (2), 

eq
l d∼  should be fulfilled. Thus, the resulting processes are 
at low imbalances, between the edge states that are practi-
cally in equilibrium. The physical origin is the following: 
in the Hall-bar geometry we study transport across the 
edge as the some correction to the constant transport along 
the edge. At high imbalances this correction is too small to 
be investigated. Thus, Hall-bar geometry is very suitable to 
study undisturbed situation at the sample edge. At high 
imbalances, however, edge reconstruction can be antici-
pated, following a lot of interesting physical effects. For 
the investigations in this regime we should switch to the 
Corbino topology. 
 
 1.3 Edge structure in real samples Before describ-
ing the special features of the transport between the edge 
states in the case of an arbitrary imbalance, where the de-
tails of the edge structure manifest themselves, we give a 
detailed description of the structure of a real (in most cases, 
etched or electrostatic) edge of a sample. 
 The edge potential is smooth if it varies on a length 
scale much larger than the magnetic length. This is true for 
usual experimental realizations in the integer quantum Hall 
effect regime, e.g. etched mesa edge or the electrostatic 
confinement, because of high values of the spectral gaps 
and the long-range character of the Coulomb potential. In 
the case of a smooth potential, the bottom of the two-
dimensional subband rising up in approaching the edge of 
the sample, and the Landau levels follow the subband bot-
tom (Fig. 2). At any point, a local filling factor (the num-
ber of  filled levels) can be introduced, which var-ies from 
its initial value in the bulk of the sample to zero at the edge.  
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A change in the local filling factor occurs each time a Lan-
dau level crosses the Fermi level, see Fig. 2, left. Chklovsky 
et. al. [9] took the electron–electron interaction into ac-
count in the mean-field approximation. It turned out that 
one-dimensional intersections of the Fermi and Landau 
levels are transformed into finite-width strips (in a certain 
region, the Landau level is ‘pinned’ to the Fermi level, see 
Fig. 2, right) where the local filling factor gradually  
varies, and the edge of the electron system is an alternating 
sequence of compressible and incompressible strips of  
electronic liquid. The incompressible strip width is deter-
mined by the energy gap between the corresponding Lan-
dau levels. The strips of compressible and incompressible 
electron liquid can be observed directly in spatially  
resolved techniques, see, e.g., Ref. [10]. 
 In this case, we should answer the question about the 
current distribution over the sample. It was clearly showed 
by Thouless [11] that dissipationless (diamagnetic) cur-
rents flow in regions with a potential gradient because the 
group velocity in such areas is nonzero. It means that they 
are concentrated in the incompressible strips at each sam-
ple edge. If the electrochemical potentials of the edges are 
different, the current in one direction exceeds the opposite 
current by exactly the value determined by the difference 
in the electrochemical potentials of the edges. This justifies 
the validity of the Büttiker formalism, which is sensitive 
only to integral characteristics, such as the electrochemical 
potentials of the edges and the matrix of scattering coeffi-
cients ‘from contact to contact’. This consideration per-
tains to the current along the edge of the sample. The cur-
rent running across the edge and equilibration of the edge 
states is determined by tunnelling through incompressible 
strips and diffusion in compressible ones. 
 Taking these considerations into account, we can re-
formulate the definition of an edge state as a compressible 
strip. This provides a clear definition for the electrochemi-
cal potential of an edge state and keeps our consideration 
consistent with the above considerations, where an edge 
state was defined as the intersection of a Landau level with 
the Fermi level. 
 
 2 Transport between edge states at high im-
balance in the integer quantum Hall effect regime 
Most probably, a quasi-Corbino geometry in combination 
with the technique of a crossing gate was first proposed in 

Ref. [12]. But the first experimental results appeared only 
ten years later [13], when a measurement method appropri-
ate for obtaining interpretable results was developed and the 
experimental difficulties arising in such measurements were 
overcome. By that time, the idea of applying the Corbino 
geometry had been thoroughly forgotten, and the authors of 
Ref. [13] had to develop the sample geometry anew. 
 
 2.1 Quasi-Corbino experimental geometry In 
the quasi-Corbino geometry (see Fig. 3), the sample has 
the rectangular shape with an etched region at the center, 
which creates two independent edges not connected topo-
logically. Ohmic contacts are made to the two-dimensional 
electron gas (2DEG) at both edges A metal gate is evapo-
rated on the top of the sample. It surrounds the internal et-
ched area, leaving only a T-shaped region of the two-
dimensional gas between the outer and inner boundaries 
uncovered (see Fig. 3). 
 By partially depleting the 2DEG under the gate, differ-
ent filling factors in the T-shaped region (ν ) and under the 
  

 

Figure 3 Sketch of a sample in the quasi-Corbino geometry  

(after Ref. [18]). Bold lines show the inner and outer edges of the 

mesa, crossed rectangles with numbers denote ohmic contacts, 

the shaded area is the gate. The structure of the edge states is 

shown in the case where the filling factor is 1g =  under the gate 

and 2ν =  outside the gate. 

Figure 2 Edge structure for the smooth edge poten-

tial (after Ref. [9]). Left panel: simple one-particle 

picture. Right panel: edge reconstruction because of 

interaction effects. 
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gate (g) can be achieved, g ν< . Some part of the edge 
states are reflected at the boundary of the gate and go along 
the gate to the other boundary of the sample. At the inner 
boundary of the sample not covered by the gate (the ‘bar’ 
of the T), all edge channels are in equilibrium due to the 
macroscopic size and several ohmic contacts. At the outer 
boundary of the sample, the area not covered by the gate 
(the ‘leg’ of the T), is of several micrometers in size. It is 
much less than the equilibration length at low temperatures, 
and there are no ohmic contacts here. Thus, if a voltage is 
applied to a pair of contacts at the inner and outer edges, a 
difference in electrochemical potentials appears between 
the edge states at the outer edge of the sample, in the area 
not covered by the gate, i.e. in the gate-gap region. 
 To obtain I–V characteristics of the transport between 
edge states in the gate-gap, 4-point configuration is used. A 
dc current is applied between a pair of inner and outer con-
tacts and the resulting dc voltage is measured between an-
other pair of inner and outer contacts. (Due to the existence 
of a preferred direction determined by the magnetic field, 
there are four principally different combinations of con-
tacts.) Four-point configuration allows to eliminate contact 
effects. The obtained results were qualitatively confirmed by 
direct measurements of two-terminal I–V characteristics. 
 This geometry offers many degrees of freedom to a re-
searcher. By varying the filling factor in the gate-gap area 
with the help of a magnetic field, the total number of inter-
acting edge channels can be changed; by varying the filling 
factor beneath the gate with the help of the gate voltage, 
the channels can be divided into groups to which the dif-
ference in electrochemical potentials is applied and be-
tween which the current flows. In particular, the transport 
between edge states separated by a spin or cyclotron gap or, 
in double-layer structures, by symmetric-antisymmetric 
(isospin) splitting can be studied in the IQHE regime. 
 

 2.2 Switching from the low imbalance to the 
high imbalance case Transformation of the I–V curves 
was demonstrated with decreasing the temperature [13]. At 
a high temperature (4 K), the I–Vs are linear, with the 
slope exactly corresponding to its equilibrium value ob-
tained from the Büttiker calculation (1) for various combi-
nations of ohmic contacts (see Fig. 4). This fact can be ex-
plained by the small value of the equilibration length 
(compared to the size of the interaction area length, i.e. 
gate-gap width) at this temperature. As the temperature de-
creases to 30 mK, the equilibration length grows dramati-
cally [5], and the system enters the regime of strong imbal-
ance. The current–voltage characteristic becomes strongly 
nonlinear and asymmetric (see Fig. 4), with a pronounced 
threshold behavior of the right-hand branch (corresponding 
to positive currents when the inner contact is grounded). 
Above the threshold, this branch is linear, while the left-
hand branch has no threshold and remains nonlinear. A 
similar transformation of the I–V was observed at low 
temperatures [14] as a result of in situ varying the length of 
the interaction area. 

 
Figure 4 Current–voltage characteristics at a high temperature 

(straight lines, 4 K, complete equilibration) and a low tempera-

ture (non-linear curves, 30 mK, non-equilibrium regime) for the 

transport between cyclotron-split edge states (after Ref. [13]). 

 

 2.3 Interpretation of the non-linear current–
voltage characteristics The above mentioned non-linear 
I–V curves can only be explained [13] by means of the 
smooth edge model, in which the edge is represented by al-
ternating strips of compressible and incompressible elec-
tron liquids (see Fig. 2 and Fig. 5, which – for simplicity – 
discusses the case 2)ν = . At bulk filling factor 2ν = , the 
interaction area near the outer boundary contains two com-
pressible strips separated by the incompressible strip with 
the local filling factor 1g = . The electrochemical potential 
of each compressible strip is determined by the electro-
chemical potential of the corresponding (inner or outer) 
ohmic contact. If a voltage is applied to a pair of contacts 
situated at different edges, a difference in electrochemical 
potentials drops within the incompressible strip between 
the two compressible ones and affects the distribution of 
edge potential in it. For instance, at positive voltages (inner 
contacts grounded), the potential barrier between the edge 
states decreases and completely disappears when the voltage 
is equal to the corresponding spectral gap (see Fig. 5(c)). 
This leads to a dramatic growth in the current at this volt-
age and to a complete equilibration between the edge states 
at larger potential differences. At negative bias voltage, the 
potential barrier increases, which leads to the appearance 
of a strongly nonlinear I–V branch. 
 
 2.4 Spectral investigations Thus, the energy gap 
between the edge states can be found from the position of 
the threshold voltage on the right-hand (positive) I–V 
branch. It turns out that the gap is equal to the bulk value 
of splitting between the corresponding energy levels. This 
fact was first demonstrated for cyclotron gaps [13], which 
justifies using the smooth-edge model and experimentally 
confirms the smoothness of an etched edge in the IQHE 
regime. (All the arguments for the I–V should also be valid 
in the case of a sharp edge, but the measured gap is then 
much larger than the bulk value of the splitting.) For suffi- 
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ciently pure samples, it was shown in [15] that the gap be-
tween spin-split edge states corresponds to the bulk ex-
change-increased Landé factor [16]. 
 
 2.5 Equilibration at the edge In addition to spec-
troscopic studies, the process of equilibration was studied 
in Ref. [17], with the initial values of imbalance exceeding 
the spectral gap in the transport between cyclotron-split 
edge states. In this experiment, the slope of the linear 
(above-threshold) part of the I–V right-hand branch was 
studied (see Fig. 4). It turned out that for strongly nonequi-
librium edge states, not the whole difference of electro-
chemical potentials but only the part exceeding the spectral 
gap can be redistributed. 
 Furthermore, the Büttiker formalism [2] was modified 
by explicitly introducing a local characteristic of the trans-
port between the edge states instead of the integral matrix 

ijT . Namely, the local transport parameter α  was defined as 
the ratio of the distributed difference in electrochemical 
potentials between the edge states and the difference in 
electrochemical potentials allowed for redistribution. This 
single parameter a is universal: it fully describes the slopes 
of linear parts of the I–V for any combination of the con-
tacts and depends only on the physics of the transport be-
tween edge states. Numerical values of α  indicate the ex-
tent to which equilibrium is established between the edge 
states. 
 
 2.6 Spin-flip transport: creation of dynamic nu-
clear polarization The transport between spin-split edge 
states should be accompanied by the electron spin flip. The 
spin flip is mainly provided by the spin-orbital interac-
tion [5], but part of the electrons participate in the so-called 
flip-flop process: due to the hyperfine interaction, the spins 
of the electron and the nucleus are flipped simultaneously. 
This process, even at relatively high temperatures, leads to 
the creation of an area with a dynamic polarization of nu-

clear spins, in which the static polarization by the external 
magnetic field is inessential [7, 8]. 
 Creation of dynamic nuclear polarization has been 
studied in the strongly nonequilibrium case in Ref. [18], 
where the I–Vs were measured for the transport between 
spin-split edge states in the quasi-Corbino geometry. Un-
der these conditions, the current–voltage characteristics 
exhibit a considerable hysteresis, especially pronounced in 
the left-hand (negative) branch (see Fig. 6). Comparison 
with the I–V obtained for transport without the spin flip 
(through a cyclotron gap) in the same field and with the 
same degree of disorder showed that the hysteresis is not 
related to the spurious transient effects such as recharging 
of the sample from the contacts. It was shown in Ref. [18] 
that the hysteresis is caused just by the dynamic polariza-
tion of the nuclei in the interaction area of the sample. In-
deed, the effective Overhauser field arising in this case in-
fluences the spin splitting, which determines the potential-
barrier  between the edge states.  This  affects  the  current 
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Figure 6 Hysteresis for the I–V for the spin-flip transport and re-
laxation curves (after Ref. [18]). 

Figure 5 (Left panel) Structure of the sample edge in 

the interaction area of edge states in equilibrium. The 

bulk filling factor ν  is equal to 2. Two spin-split energy 

levels reach the edge and form a structure of com-

pressible and incompressible strips. (Right panel) The 

structure of the sample edge in the interaction area of 

edge states in the case of a voltage applied between 

compressible strips. At positive voltage, because the 

electron charge is negative, the potential barrier be-

tween the edge states reduces down to the flat-band 

situation (c). At negative voltage, the barrier grows and 

deforms (d) (after Ref. [13]). 
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for all electrons, and not only for those whose spin flipping 
is caused by the flip-flop process; as a result, a noticeable 
hysteresis of the I–V occurs. 
 In addition, relaxation processes investigated in 
Ref. [18] revealed two typical relaxation times, of the order 
of 25 and 200 s (see the insets in Fig. 6). The first time cor-
responds to the creation of the dynamic nuclear polariza-
tion area at a certain stage of the transport between the 
edge states, and the second relates to the development of a 
stable area where nuclear spins in the sample are polarized 
due to the competition between the nuclear spin diffusion 
and the escape of the spins from the system. 
 It was also demonstrated [19] that the flip-flop mecha-
nism can be reversed. After establishing a local dynamic 
nuclear polarization region, the externally applied current 
is switched off, and the sample exhibits an output voltage, 
which decays with a time constant typical for the nuclear 
spin relaxation. 
 
 
 2.7 Edge states in the double quantum wells. 
Topological defects in the edge state structure 
More complicated for investigation are tunnel-coupled 
double electron layers, or double-layer systems, which are 
usually realized in double quantum wells separated by a 
tunnel-transparent barrier. Because of the tunnelling  
between the layers, the bulk spectra of such systems are  
already rather complicated [20–25]. At the edge of the 
sample, the Fermi level becomes the same for edge states 
that originate, in the general, from different parts of the 
quantum well or from subbands, depending on the quan-
tum well symmetry. 
 In the symmetric case, in addition to the cyclotron and 
spin splitting, a symmetric-antisymmetric splitting appears, 
which is smaller than the Zeeman splitting in strong fields 
and exceeds it in weak fields [23–25]. In intermediate 
fields, where these splitting values should be comparable, a 
new phase, the so-called antiferromagnetic one, appears 
due to the electron–electron interaction [26]. A bulk tran-
sition into this phase from the range of weak fields was ob-
served in Ref. [25] and from the range of strong fields in 
Ref. [24]. Thus, singularities can be expected in the trans-
port between edge states in the vicinity of the bulk phase 
transition point. Such transport singularities were observed 
in Ref. [27], where the incompressible strip separating 
edge states was demonstrated to disappear near the bulk 
phase transition point. 
 An important fact, established in Ref. [27], is that the 
structure of edge states always corresponds to the structure 
of the bulk spectrum and follows even its complicated 
transformations. It was investigated by mapping the energy 
gaps at the edge using I–V spectroscopy, while the system 
approach the phase transition point. 
 The Pauli principle does not forbid the intersection of 
edge states corresponding to different quantum numbers 
(see, for example, Fig. 7). Such intersections were called 
defects in the topological structure of  edge states, or topo- 

 

Figure 7 Simplest example of the topological defects in the edge 

states structure (after Ref. [29]). 

 
logical defects. The possibility of the existence of such de-
fects was shown theoretically in Refs. [28, 29]. 
 The only way to detect topological defects is by study-
ing the transport between edge states, which can be most 
conveniently done in the quasi-Corbino geometry [13]. 
The existence of a gate in this geometry, in particular, al-
lows changing the symmetry of the quantum well, and 
hence the energy spectrum under the gate [21, 22]. Since 
the structure of edge states corresponds to the structure of 
the bulk spectrum [27], the quasi-Corbino geometry allows 
to realize topological defects in the structure of edge 
states [30]: (i) If the well is asymmetric in the interaction 
area of the edge states, then edge-state electrons are fully 
described by the spin and isospin (layer number) orienta-
tions [21]. Electrons injected from beneath the gate can 
also come either from an isospin-polarized state or from a 
mixed one. In the latter case, because the injection occurs 
with isospin conservation, the electrons are distributed 
among the edge states. This results in the intersections of 
edge states and in the equilibration of electrochemical po-
tentials for all edge states in the interaction area, which 
manifests itself in the perfect linearity of the I–V in a nor-
mal magnetic field. (ii) If a tangential field is applied, the 
states in the interaction area become isospin-mixed [22], 
and the topological defects disappear. This leads to a 
strongly nonlinear I–V, usual for the inter-edge-state 
transport. In this way, the existence of topological defects 
and the possibility of controlling their creation and disap-
pearance were demonstrated in Ref. [30]. 
 

 3 Transport between edge states at high imbal-
ance in the fractional quantum Hall effect regime 
 3.1 Laughlin’s wavefunction and the composite 
fermion hypothesis. Edge states in the FQHE In the 
fractional quantum Hall effect regime, the system has to be 
treated as a large number of strongly interacting particles, 
and therefore no method exists for exactly solving the 
problem with the real Hamiltonian. The interaction results 
in a rearrangement of the ground state of the system of par-
ticles, and the new ground state cannot be obtained from 
the perturbation theory as a small correction to the interac-
tion- free state. Two approaches turned out to be efficient 
for the description of such a liquid: the method of a trial 
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ground-state wave function (the Laughlin approach [31]) 
and the mean-field method [32] (based on the hypothesis 
of composite fermions). 
 According to MacDonald [33] there are collective gap-
less excitation modes at the sample edge in the FQHE  
regime, that he defined as edge states. The structure of the 
excitation spectrum was shown to correspond to the struc-
ture of the Laughlin’s ground state at the particular filling 
factor. For example, the state with 2 3ν = / , according to 
Laughlin, is constructed as a quasi-hole state on the back-
ground of a completely filled lowest Landau level. Corre-
spondingly, in this case, edge spectrum consists from the 
branches, originating from quasi-holes and electrons corre-
spondingly. He attributed a current to each excitation 
branch ( )I e h µ*= / D , where e eν

*
=  is the effective charge 

of the branch (1/3 and –1 in the above example) and com-
pleted the construction of a FQHE Büttiker formalism [2] 
by introducing the transmission matrix ijT  [33]. 
 The so-defined edge excitations are one-dimensional 
and in the FQHE regime the inter-electron interaction must 
be consistently taken into account. This was done in the 
theoretical works by Wen [34], who applied the Luttinger 
model [35] of a one-dimensional interacting liquid to this 
problem and demonstrated that collective excitations with 
a gapless spectrum do exist at the edge and their structure 
is indeed determined by the hierarchical structure of the 
bulk ground state. Physically, these excitation branches 
correspond to different modes of edge magnetoplasmons 
(see, e.g., [36] that we will need below). We note that an 
edge state in the FQHE regime is probably the only exact 
realization of a chiral Luttinger liquid model: the edge cre-
ates the one-dimensionality of the system, the bulk states 
form an infinite reservoir, which is necessary in the Lut-
tinger model, and the magnetic field determines a preferred 
direction providing the chirality of the electron liquid. 
Therefore, the investigation of collective excitations in the 
FQHE regime allows studying a rare example of a non-
Fermi electron liquid. 
 Since the transport along the edge is determined by the 
bulk filling factor and edge electrochemical potentials [33], 
the only way to study Luttinger liquid effects is the trans-
port across the edge. Wen [34] has shown theoretically that 
the tunnel density of states has power-law behavior in the 
FQHE regime, 

1 1( ) g
D E E∼

/ -
 with 1/g ν=  for the filling 

factors ν  from the principal Laughlin sequence. It was also 
shown in [37] that there are universal scaling relations for 
the temperature dependence of the tunnel density of states 

1 g
D T∼

/
. These results have also been confirmed in the ap-

proach of composite fermions [38]. 
 In the experimental study of tunnelling into the edge, it 
must be ensured that the I–V nonlinearity is caused pre-
cisely by the excitation of collective modes and not by the 
deformation of the edge potential. For this, the so-called 
cleaved edge overgrowth technique [39] is used. Experi-
ments in Refs. [39, 40] demonstrated power-law I–Vs in 
the case of tunnelling into the edge, as well as temperature 
scaling of these diagrams with the exponents close to the 

predicted ones [34, 37] for the filling factor 1 3ν = / . The 
experiment and the theory give considerably different re-
sults [40] outside the vicinity of 1 3ν = / , which might be 
caused by a structure of compressible and incompressible 
strips forming at the edge [39]. 
 Numerical calculations based on the Laughlin wave 
function [41] and in the framework of the composite-
fermion approach [42] showed that the structure of strips 
of an incompressible and compressible electron liquid al-
ready appears at the edge width as small as five or six 
magnetic lengths. In other words, all real potentials (such 
as, for instance, the most common potential of a mesa 
etched edge) satisfy this condition. The situation is still not 
so clear for the cleaved edge overgrowth (CEO) samples [39, 
40], which are the best candidates for the sharp edge reali-
zation. On the one hand, there are signs of the compressi-
ble-incompressible strips formation in high magnetic 
fields [39], supporting the above mentioned calcula-
tions [41, 42]. On the other hand, there are sings of the 
sharp edge situation [43] in low magnetic fields, at much 
higher magnetic length. This difference could also occur 
from the progress in the CEO samples preparation over a 
decade. In this Review we will concern only the high-field 
limit, as the most appropriate for the FQHE regime. 
 For a smooth potential, the bottom of the two-
dimensional subband increases in the vicinity of the edge 
and the electron concentration decreases. Hence, a local fill-
ing factor can be introduced, which varies from the bulk 
value to zero in approaching the edge of the sample. 
Beenakker [44] showed that for a sufficiently pure system 
and the FQHE existing with such local filling factors, finite 
width incompressible strips corresponding to these filling 
factors appear on the edge. In the FQHE regime, therefore, 
similarly to the IQHE case, a smooth edge consists of al-
ternating strips of compressible and incompressible elec-
tron liquid. The difference from the integer case lies in the 
fact that it is now impossible to introduce a system of Lan-
dau levels bent at the edge, because everything occurs on 
the last (single) Landau level. It can only be asserted that 
there is no gap in the compressible strips, while a gap cor-
responding to the electrochemical potential between the 
ground and the excited states occurs in the incompressible 
strips. This gap shrinks at the edges of each incompressible 
strip. Dissipation-free current, similarly to the IQHE case, 
is carried by the ground state and, because the ‘excess’ cur-
rent is concentrated near the edge of the incompressible 
area in the absence of equilibrium, it can be described as 
an edge current. 
 As in the integer case, the analogue of the Büttiker 
formalism can now be introduced as [44]: 

i i i ij j

j i

e
I T

h
ν µ µ

Ê ˆ
Á ˜
Á ˜
Á ˜Ë ¯π

= + ,Â  (3) 

where 
i
I  is the current carried by the edge states coming 

out of contact i, 
i

µ  is the electrochemical potential of con-
tact i, and 

i
ν  is the maximum filling factor for incom-
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pressible strips coming from contact i. It is easy to see that 
equation 3 contains Büttiker formula 1 as a special case of 
integer 

i
ν , as well as MacDonald’s result [33] for a sharp 

edge potential, because e eν
*
= . This indicates that Büt-

tiker formalism is a rather general integral relation, which 
is independent of the details of the edge structure. Simi-
larly to the integer case, to check the formalism one should 
place a crossing gate on the sample. Such experiments 
showed a perfect agreement between the calculation and 
the measurement [45]. 
 While strips of incompressible electron liquid exist at a 
smooth edge of a two-dimensional electron system in the 
FQHE regime, collective modes appear near the bounda-
ries of these strips [41]. In addition, because the edges of 
the strips are close (both to each other and to the edges of 
neighboring strips if the potential is not very smooth), and 
the electric fields are long-range ones, these modes inter-
act [46]. Therefore, collective excitations on a smooth edge 
in the FQHE are most similar to neutral magnetoplasmon 
modes, which were first proposed for the IQHE re-
gime [36]. As a result, in the case of tunnelling into a 
smooth FQHE edge, the exponent of the tunnel density of 
states and hence the I–Vs become dependent on the real 
shape of the edge potential [46], although the I–V main-
tains its power-law behavior, which was demonstrated in 
Ref. [40]. 
 
 3.2 Transport across the incompressible strip at 
high imbalance As it was shown before, there are two 
major problems in investigation of collective effects at the 
smooth sample edge in FQHE regime: (i) a presence of the 
structure of compressible and incompressible strips, which 
entangle different collective modes at the strip edges; (ii) 
deformation of the edge potential by the applied voltage V  
while measuring I–V curves. This affects the 

0
( )T V  de-

pendence, where 
0
T  is one-particle barrier transmittance, 

and, therefore, makes it difficult to separate one-particle 
effects and the collective ones. The former problem can be 
removed by separate contacting to compressible strips 
across a single incompressible one. The latter problem de-
mands the high-imbalance regime. Indeed, collective ef-
fects can be selected in two limiting cases. The first is 
where the bias potential is so small compared to the poten-
tial barrier that it does not deform it. (This regime was re-
alized in Ref. [40], but without separate contacting to the 
strips.) The second case is where the bias potential is large 
in comparison with the barrier width. The barrier is de-
formed and other deformation has no effect on transport 
across it. (This fact can be easily understood in a triangular 
barrier approximation.) We note that the second case is 
easier to realize from the experimental standpoint, and it 
can be better controlled. Thus, experiments in the quasi-
Corbino geometry are needed to study collective effects at 
the smooth sample edge. 
 Figure 8 shows the structure of compressible and in-
compressible electron liquid strips near the gate gap of the 
sample in the quasi-Corbino geometry for the simples situ- 

 

Figure 8 Schematic diagram of the active region of the sample in 

the quasi-Corbino geometry. The etched mesa edges are shown 

by solid lines, the dashed lines represent the split-gate edges. The 

gate-gap region at the outer mesa edge is denoted as AB. Light 

gray areas are the incompressible regions at filling factors ν  (in 

the bulk), g under the gate (g ν< ), and at local filling factor 
c

ν  

( )
c

gν =  in the incompressible stripe at the mesa edges. Com-

pressible regions (white) are at the electrochemical potentials of 

the corresponding ohmic contacts, denoted by bars with numbers 

(after Ref. [47]). 
 
ation of filling factors 1 3g = /  under the gate and 2 3ν = /  
outside it. This scheme is based on the data of magnetore-
sistance and magnetocapacitance measurements. For in- 
stance, measuring the magnetoresistance in the quantum 
Hall effect regime allows finding the field corresponding 
to the filling factor 2 3ν = /  in the part of the sample not 
covered by the gate. Further, the capacitance between the 
two-dimensional system and the gate should be measured 
while decreasing the electron concentration under the gate. 
This allows finding the FQHE fractional filling factors 
manifested in the given sample at given magnetic fields 
due to a decrease in the electron concentration. Because 
approaching the edge is also accompanied by a decrease in 
the electron concentration for the smooth edge potential, 
we can be sure that incompressible strips appear at the 
edge of the sample at the same filling factors that were ob-
served when decreasing the electron density beneath the 
gate. For example, in the sample described in Ref. [15], at 
the bulk filling factor 1ν = , incompressible strips appear in 
the vicinity of the edge at local filling factors 2 3/  and 1 3/ . 
Choosing the filling factor under the gate to coincide with 
one of these values, we choose the incompressible strip for 
which the transport is studied. 
 Similarly to the IQHE case, obtaining current–voltage 
characteristics is the basic tool in the study of the transport. 
Measurement of the transport through an incompressible 
strip can be carried out in two ways: by fixing the current 
or by fixing the voltage. Because the FQHE is especially 
sensitive to the quality of the samples and the ohmic con-
tacts, to check the results for reliability it is necessary to 
see whether the data of both above-described methods of 
the I–V measurement agree in each particular case. In ad-
dition, it is necessary to independently estimate the resist-
ance and the quality of the ohmic contacts using magne-
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toresistance measurements, to use various samples and dif-
ferent methods to cool them, and to compare the results 
with the ones known for the IQHE regime. 
 We consider a current carried across an incompressible 
strip, shown in Fig. 8, depending on the equilibration 
length 

eq
l : 

1

eq AB eq(1 exp ( / )) .I R V L l
-

= - -  (4) 

For the gate-gap width AB eqL l� , the shape of the current–
voltage characteristic directly reflects the behavior of the 
equilibration length as the imbalance between the edge 
states is varied. In turn, the equilibration length reflects the 
behavior of the transition probability w  between the edge 
states, 

1

eql w∼

-

. The transition probability w  can be written 
as the single-particle transmittance 

0
T  of the potential bar-

rier times the tunnel density of states D: 
0
( ) ( )w T V D V T∼ , . 

As mentioned before, the barrier can be considered trian-
gular in the strongly nonequilibrium case, and therefore the 
single-particle transmittance, which can be written as 

3 2exp ( / )C V∆
/

- , tends to unity when the imbalance ex-
ceeds the fractional gap .V∆�  Because the equilibration 
length for fractional filling factors and small imbalances 
are known [8, 48, 49] to be of the order of 10 µm, the sam-
ples used in Ref. [47] had the width of their working area 

AB
L = 0.5 µm. 
 Figure 9 shows examples of I–Vs for integer and frac-
tional filling factors in samples with small interaction area. 
The differences in the I–Vs for fractional filling factors 
  

-4

0

4

-5 0 5

-4

0

4

V
 (

m
V

)

ν=2 g=1a)

V
th
=0.45 mV

ν=2/3(SP) g=1/3

 

V
 (

m
V

)

I (nA)

b)

 

Figure 9 (online colour at: www.pss-b.com) I V-  curves for in-

teger filling factors 2 1gν = , =  (a) and fractional ones 

2 3 1 3gν = / , = /  (b) for two different contact configurations for for 

a sample with an extremely narrow gate-gap width 
AB

0 5 µmL = . . 

Equilibrium lines (with 
2

eq 2 1R h e= ; /  (top) and 
2

6 3h e; /  (bottom)) 

are shown. Magnetic field B equals to 1.67 T for integer fillings 

and to 5.18 T for fractional ones (after Ref. [47]). 
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Figure 10 (online colour at: www.pss-b.com) Equilibration 

length 
eq
l  for different filling factor combinations as function of 

the voltage imbalance V across the incompressible stripe with 

corresponding local filling factor 
c

gν =  (see caption to Fig. 8). 

Inset shows an example of the temperature dependence of the 
eq
l  

for 2/5 1/3gν = , =  ( 7 69 T)B = .  (after Ref. [47]). 

 

from the well-known I–Vs for integer filling factors (see 
above) are (i) the absence of a threshold; (ii) strong nonlin-
earity within the whole voltage range; and (iii) almost per-
fect symmetry. This behavior of the I–V s is observed for 
almost all fractional filling factors. 
 Equilibration lengths calculated by means of Eq. (4) 
for various filling factors are shown in Fig. 10. For integer 
filling factors, the 

eq
l  behavior corresponds to the one dis-

cussed in Section 2, known one caused by the deformation 
of the potential barrier between edge states, while for frac-
tional filling factors, the behavior of 

eq
l  was studied in 

Ref. [47] for the first time. 
 Under the conditions of the experiment [47], the de-
pendence of the transition probability 

1

eqw l∼
-

 (see Fig. 11) 
on bias and temperature reflects the dependence of the  
tunnel density of states D  on these parameters. The 
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Figure 11 (online colour at: www.pss-b.com) Transition prob-

ability 
1

eqw l∼
-

 is shown as a function of the temperature (a) and of 

the voltage imbalance at 30T =  mK (b) in logarithmic scales, 

demonstrating the power-law dependencies. The filling factors 

are 2/3( ) 1/3SU gν = , =  (squares); 2/3( ) 1/3SP gν = , =  (circles); 

2/5 1/3gν = , =  (triangles) (after Ref. [47]). 
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power-law behavior of the transition probability was dem-
onstrated in Ref. [47] (see Fig. 11); the exponents found in 
experiment for the voltage and temperature dependencies 
differ by unity, as indeed should be the case under the ex-
citation of collective modes [34, 37]. Thus, neutral excita-
tion modes [41] do exist at the edges of the incompressible 
strip and determine transport across it at high imbalances 
in the FQHE regime. 
 The exponents were found in Ref. [47] for the first 
time and need a theoretical explanation. They are different 
for the filling factors 2/3 1/3gν = , =  and 2/5 1/3gν = , =  
which is caused by the collective-mode excitation at the 
boundary of the bulk filling factor 2 5ν = / . The edge of the 

2 5ν = /  bulk incompressible state is extremely close to the 
incompressible strip with local filling factor 1 3

c
ν = /  in this 

case, because of 
c

ν ν ν�- . Thus, we can expect some in-
fluence in D  also from the edge excitations of 2 5ν = /  bulk 
incompressible state, affecting the exponents in power-law 
( )D V T, . Thus, the structure of the collective excitations is 

more complicated at 2/5,ν = resembling the acoustic 
modes predicted in Ref. [36]. 
 
 3.3 Equilibration at the edge and the structure 
of the excitation spectrum Direct measurements of the 
structure of edge collective excitations (in the cases where 
the structure is assumed to be complicated, see Ref. [33]) 
are not realistic: they would require an independent study 
of several simultaneously propagating magnetoplasmon 
modes [36, 41]. But an indirect measurement method is 
possible. During the equilibration from an initially strongly 
nonequilibrium case, the transport across the incompressi-
ble strip involves excitation of collective modes [47], 
which, in turn, establish the edge potential and therefore 
influence the equilibration [50]. Such effects are not taken 
into account by the single-particle Büttiker–Beenakker 
theory [2, 44]. Hence, the comparison between the experi-
mental equilibrium resistance and the one calculated ac-
cording to Büttiker’s formalism (1,3), can indicate a struc-
ture of the collective excitations. 
 In Ref. [15] equilibration was studied through incom-
pressible strips corresponding to the local filling factors 

2 3
c

ν = /  and 1/3, at the bulk filling factor 1ν = . This al-
lows investigating equilibration at the same strip structure 
in the gate-gap by realizing contacts between different 
compressible strips. Büttiker’s formulas (1) and (3) yield 
the same equilibrium values of resistance for both combi-
nations of filling factors. However, the experiment [15] 
showed the equilibrium resistance values to be different: 
for the transport through the incompressible strip with the 
local filling factor 2 3,

c
ν = /  the slope of the equilibrium 

curve turned out to be much smaller than the expected one, 
while for the transport through the strip with the filling fac-
tor 1 3

c
ν = / , the measured slope was close to the expected 

one. In terms of Büttiker’s formalism, smaller equilibrium 
slope corresponds to an excess charge transfer across the 
incompressible strip, which is difficult to explain in the 
framework of one-particle picture. At the same time, the 

filling factor 2 3/  is distinguished in this experiment only 
by the fact that for the edges of the strip 3 2/ , a complicated 
structure of collective modes is expected [33, 34, 41], and 
interaction between these modes determines the ‘excess’ 
equilibration of edge states. Thus, the experiment  [15] for 
the first time demonstrated the existence of several 
branches of collective excitations at the edge of an FQHE 
system with the filling factor 2 3/ . 
 In Ref. [14], the influence of collective modes on the 
equilibration at the edge was studied under the variation of 
the gate gap width. The study was aimed at transforming a 
strongly nonlinear current–voltage characteristic into a lin-
ear one without changing the state of the two-dimensional 
electron system in the sample. For this, the structure of the 
sample in the quasi-Corbino geometry was modified: the 
gate-gap area was made macroscopically large. In this area, 
an additional gate was placed. Varying the voltage at the 
additional gate allows controlling the width of the interac-
tion area between 10 µm and 800 µm. 
 Transformation of current–voltage characteristics for 
the filling factors 2 3ν = / , 1 3g = /  is shown in Fig. 12. As 
expected, the I–V curves, initially weakly nonlinear, turn 
into linear ones with the slope coinciding with the one 
found from the Büttiker–Beenakker calculation (1,3). The 
linearity of the central part of the curves means that the 
equilibration length does not exceed the interaction area 
size at small imbalances. Based on these considerations, 
the equilibration length can be estimated to be 10 µm, 
which is in agreement with the results in Refs. [8, 48, 49] 
obtained at small imbalances. 
 The most unexpected result is the transformation of  
I–Vs corresponding to the filling factors 2 5 1 3gν = / , = /  
(see Fig. 13). From the weakly nonlinear I–V, which is 
situated above the the calculated equilibrium line, the 
equilibration length for edge states can be estimated to ex-
ceed 10 µm. As the interaction area increases, the I–V still 
 

-10 0 10

-2

0

2

-10 0 10

I (nA)

 

V
 (

m
V

)

ν=2/3(SU)
g=1/3
B=4.68 T

a)

I (nA)

ν=2/3(SP)
g=1/3

B=5.18 T

b)

 

Figure 12 (online colour at: www.pss-b.com) I V-  curves for 

fractional filling factors 2 3ν = / , 1 3g = /  for narrow (10 µm, solid 

line) and wide (800 µm, dashed line) interaction regions, for two 

spin configurations of 2 3ν = / : (a) spin unpolarized (SU) state 

( 4 68TB = .  ); (b) spin polarized (SP) state ( 5 18B = .  T). Equilib-

rium curve (with 
2

eq 6R h e= / ) is shown by dots (after Ref. [14]). 
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Figure 13 (online colour at: www.pss-b.com) I–V curves for 

fractional filling factors 2 5ν = / , 1 3g = /  for narrow (10 µm, solid 

line) and wide (800 µm, line with open circles) interaction re-

gions. Equilibrium curve (with 
2

eq 18 / )R h e=  is shown by dots. 

Inset shows the wide-region curve (dash), scaled to the narrow-

region one (solid) in current direction. The linear dependence 
0

IR  

with 
2

0
28 /R h e=  is subtracted to highlight the non-linear behav-

ior. Magnetic field B equals to 7.69 T (after Ref. [14]) 

 

remains weakly nonlinear (see the inset in Fig. 13) but lies 
below the equilibrium calculated curve, which would cor-
respond, in terms of the Beenakker–Büttiker single-
particle picture, to excessive charge transfer (by more than 
a quarter). Nonlinear curves for both lengths of the interac-
tion area can be reduced to a single curve by scaling along 
the current axis. In this case, the scaling coefficient 

2 35q = .  is 40 times less than the ratio of the interaction 
area lengths. 
 We note that prior to Ref. [14], no edge-state experi-
ments have been carried out for filling factors other than 
2/3 and 1/3. It was predicted [50] however, that collective 
modes at the “non-third” edge are expected to have a  
considerable impact on the equilibration process. As it  
was mentioned above, in Ref. [14] at filling factors 

2 5ν = / , 1 3g = /  the edge of the 2/5 bulk state has an  
influence on the transport effects, because of the small 
width of the corresponding compressible strip. Thus, the 
result [14] is not too unexpected and can be interpreted as 
the influence of the collective effects on the equilibration 
process. 
 

 4 Conclusion We summarize the main results of the 
edge-state investigations in the IQHE and FQHE regimes: 
 – The edge potential of a real system can be considered 
smooth in both the IQHE and FQHE regimes. At the edge, 
there is a structure of compressible and incompressible 
strips of electron liquid. 
 – The Büttiker formalism is sensitive only to integral 
values, such as the electrochemical potentials of the edges 
and total scattering between the edge states. Therefore, it is 
not sensitive to the edge structure and many-body effects. 

Thus, it is valid for low imbalances in both the IQHE and 
FQHE regimes. 
 – The structure of edge states for double-layer tunnel-
coupled systems corresponds to the structure of the bulk 
spectrum and even follows its considerable rearrangements 
in the IQHE regime. This leads to a possibility of topologi-
cal defects appearing in the edge state structure. 
 – Equilibration among the edge states occurs by means 
of the electron transport through incompressible strips. 
This process is fully governed by the single-particle tunnel 
transparency of the barrier in such strips in IQHE regime. 
In contrast, in the FQHE regime the tunnel density of states 
has an impact on all effects related to the transport between 
edge states, both in the direct studies of the transport and in 
the studies of equilibration between edge states. This 
many-body tunnel density of states is governed by the so-
called neutral collective excitations at the edge. 
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