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We investigate the tunneling rates from a 2-dimensional electron gas (2DEG) into the ground state

of self-assembled InGaAs quantum dots. These rates are strongly affected by a magnetic field

perpendicular to the tunneling direction. Surprisingly, we find an increase in the rates for fields up

to 4 T before they decrease again. This can be explained by a mismatch between the characteristic

momentum of the quantum dot ground state and the Fermi momentum kF of the 2DEG.

Calculations of the tunneling probability can account for the experimental data and allow us to

determine the dot geometry as well as kF. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4728114]

The interaction between tunable, localized charges and a

two-dimensional electron channel is of great technological

importance as it is the basis of today’s non-volatile flash

memory devices. At the same time, the controlled manipula-

tion of charge in low-dimensional semiconductor systems1

has been an active field of basic research, because it is a

promising route for large scale integration of quantum infor-

mation storage and manipulation.2,3 Combining both aspects,

self-assembled quantum dots (QDs), embedded in the dielec-

tric of a field-effect transistor structure, have been proposed

as a next-generation non-volatile memory device.4,5 Here,

we investigate the tunneling between a layer of self-

assembled InAs quantum dots and a two-dimensional elec-

tron gas (2DEG). A recently developed pulse technique

makes it possible to directly determine the tunneling rate.6,7

A magnetic field applied perpendicular to the tunneling

direction (i.e., in the plane of the 2DEG) allows us to shift

the momentum of the tunneling electrons.8–14 We observe a

distinct maximum in the tunneling rate when the magnetic-

field-induced shift matches the momentum of the 2D carriers

at the Fermi energy, similar to tunneling in 2D-2D systems

with unequal carrier densities.8,15,16 Model calculations, tak-

ing into account the momentum distribution of both the

quantum dots and the 2DEG, can very well reproduce the

experimental data. This makes it possible to obtain detailed

information on the wave function in the quantum dots, such

as their characteristic length and their anisotropy.

The investigated samples were grown by solid source

molecular-beam epitaxy. On a semi-insulating GaAsð001Þ
substrate, a 360 nm buffer layer and an inverted high electron

mobility transistor were deposited. The latter consists of

300 nm Al0:34Ga0:66As, a Si delta doping layer, followed by

a 16 nm Al0:34Ga0:66As spacer layer and a 15 nm GaAs quan-

tum well. Subsequently, 10 nm Al0:34Ga0:66As and 5 nm

GaAs were grown as a tunneling barrier. For the quantum

dots, approximately 1.9 ML InAs were deposited at 525 �C
and covered with 30 nm GaAs. Growth of a 116 nm thick

GaAs=AlAs superlattice blocking layer and a 5 nm thick cap

layer completed the heterostructure. Samples of 4� 4 mm2

were cleaved from the wafer and patterned into transistor

structures (Fig. 1(a)), using optical lithography and wet

chemical etching. Ohmic source and drain contacts were

fabricated by annealing Ni=AuGe=Au layers, and Ti=Au was

deposited as a gate electrode. The active gate area comprises

about 8� 105 QDs. The samples were mounted in a liquid

He cryostat equipped with a superconducting solenoid,

allowing magnetic fields of �12 T � B � 12 T to be applied

parallel to the epitaxial layers. In particular, two crystal ori-

entations, B k ð110Þ and B k ð1�10Þ, were investigated, as

these are the main symmetry axes of the (anisotropic) quan-

tum dots.11 The conductivity of the 2D channel was meas-

ured by applying a constant voltage of VSD ¼ 8 mV along

the electron channel and measuring the resulting current

with a sampling rate of 125 kHz. Transconductance spectros-

copy measurements were performed as described elsewhere6

in order to identify the gate voltages at which the quantum

dots become occupied with 1…6 electrons each.

Figure 1(b) shows the response of the 2DEG conductiv-

ity r when a rectangular voltage pulse DVG ¼ 20 mV is

applied to the gate at a time t ¼ 0. Here, the starting gate

bias of VGðt < 0Þ ¼ �0:67 V is chosen, because it corre-

sponds to the charging of the first electron into the dots for

the average-sized quantum dot in the ensemble. Around

t ¼ 0, the conductivity of the 2DEG abruptly rises, as its car-

rier density increases, following the (positive) gate voltage

pulse. The subsequent drop in r is caused by a gradual

decrease of the 2D carrier density as some of the electrons

tunnel through the barrier and occupy empty dot states.5 We

find that for tunneling into the quantum dot ground state

(“s-state”), the time dependence of the conductivity can be

described by an exponential decay, DrðtÞ ¼ Dr0e�t=s, see

inset in Fig. 1(b). This allows us to directly determine the

time constant s and the tunneling rate 1=s, respectively,

between the 2DEG and the quantum dots.

a)On leave from Shanghai Advanced Research Institute, Chinese Academy

of Sciences, No. 99 Haike Road, Zhangjiang Hi-Tech Park, Pudong,

Shanghai 201203, China.
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The data points in Fig. 2 summarize the thus obtained

tunneling rates 1=s as a function of Bk, applied along the two

orthogonal directions (Fig. 2, top and bottom). Contrary to

previous studies which used highly doped bulk (3D) back

contacts,9–11,13 we observe that the tunneling rate into the

lowest dot state increases with increasing magnetic field up

to Bk � 4:5 T.

This indicates a fundamental difference in the magneto-

tunneling spectroscopy of coupled 2D–0D systems, compared

to 3D–0D systems. In samples with a 3D emitter, tunneling is

dominated by states with kk ¼ 0 or, in other words, by states,

which impinge perpendicularly onto the tunneling barrier with

maximum kz (z is the tunneling direction, (001), and kk is the

momentum in the ðx; yÞ plane).10 For coupled 2D–0D sys-

tems, on the other hand, kz is fixed by the quantum confine-

ment of the 2DEG and kk is given by its Fermi wave vector

kk ¼ kF ¼
ffiffiffiffiffiffiffiffiffi
2pns

p
, where ns is the 2D carrier density. Because

the maximum of the s-state wave function in the dot is at

kk ¼ 0, tunneling between the 2D emitter and the quantum

dots will be reduced by the corresponding momentum mis-

match. This is illustrated in inset (a) of Fig. 2, where the wave

function of the dot is plotted schematically in k-space and

compared to the Fermi circle of the 2DEG. For a sufficiently

large kF, the overlap between the Fermi circle and the wave

function of the dot will be small and tunneling will be reduced

accordingly. When an in-plane magnetic field Bk is applied,

the momentum of the emitted electrons will shift by an

amount8,9 Dk ¼ eBkDz=�h, where Dz is the tunneling distance

between the emitter and the dots (see inset (b) and (c)). There-

fore, with increasing field, the wave function overlap will first

increase, until it reaches a maximum at Dk � kF (inset (b)).

When the magnetic field is increased even further, the overlap

between dot and 2DEG wave function will decrease again, as

schematically depicted in inset (c). This is all in qualitative

agreement with the experimental findings.

For a more in-depth evaluation of the data, we follow

the approach in Refs. 10 and 14 and calculate the overlap in-

tegral of the wave functions in the 2DEG and the quantum

dots jhW2DEGjWQDij2. First, we need to address how Bk
affects the electron states in the emitter. Without loss of gen-

erality, we take Bk ¼ ðB; 0; 0Þ and use the Landau gauge

A ¼ ð0;�Bz; 0Þ. Straightforward solution of the resulting

Schrödinger equation17 yields

E ¼ E�z þ
�h2

2m
k2

x þ k2
y

E2
z

E�z
2

� �
; (1)

where E�z is the diamagnetically shifted and Ez the bare con-

finement energy of the quantum well. In the present situa-

tion, where Ez is much larger than the cyclotron energy, we

find E�z � Ez, and Eq. (1) reduces to the usual dispersion of a

2D free electron gas. Similar arguments also apply to the

states in the quantum dots, so that the parallel magnetic field

essentially only affects the tunneling process by the above-

mentioned momentum shift Dk.

For the quantum dot states we use the now well-

established model of parabolic confinement,14,18 which gives

wQD ¼
ffiffiffiffiffiffiffiffi
kxky

p

r
e�

1
2
ðk2

x x2 þ k2
y y2Þ (2)

FIG. 1. (a) Schematic of the sample layout

and the measurement configuration. (b)

Time resolved response of the 2DEG con-

ductance, when a rectangular pulse VG is

applied to the gate. The slow decay corre-

sponds to the tunneling transfer of charge to

the quantum dots. It roughly follows an ex-

ponential decay (see inset), which is given

by the tunneling rate.

FIG. 2. Data points measured tunneling rate as a function of magnetic field

for two orthogonal field directions (top and bottom). Lines are calculated

probabilities for dot dimensions Lx¼ 8.0 nm, Ly¼ 6.8 nm, and Fermi wave

vector kF¼ 0.19 nm�1. Inserts indicate how the Fermi circle lines up with

the dot wave function for (a) vanishing field, (b) intermediate fields, and (c)

high fields. Optimum momentum matching is achieved when the shift

approximately equals kF (b).
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as the ground state wave function, with kx and ky being the

characteristic momentum (inverse characteristic length) of

the parabolic dot potential along the ð1�10Þ and the ð110Þ
directions. Following the discussion above, the emitter wave

functions are taken to be plane waves of momentum kF. The

overlap integral is calculated numerically and summed up

over the Fermi circle, which is displaced by Dk as a result of

the in-plane magnetic field.

In order to calculate the shift in momentum,

Dk ¼ eBkDz=�h, the tunneling distance Dz is needed, which is

larger than the geometric width of the tunneling barrier

(15 nm), because the maximum of the wave function in the

back contact is shifted away from the GaAs/(AlGa)As inter-

face. To estimate the tunneling distance, we solve the 1D

Schrödinger and Poisson equations for the given heterostruc-

ture19 and find that the calculated maximum of the charge

carrier density is shifted by 9 nm from the interface towards

the substrate. This results in a tunneling distance of

Dz ¼ 2461 nm, which is then used to calculate the displace-

ment in k-space for the overlap integrals.

The lines in Fig. 2 show the results of our model calcula-

tion for kF ¼ 1:9� 108 m�1, which corresponds to a 2D car-

rier density of ns ¼ 6� 1011 cm�2 obtained by Hall

measurements and characteristic lengths Lx ¼ 1=kx ¼ 8:0 nm,

Ly ¼ 1=ky ¼ 6:8 nm. It can be seen that all experimental data

points can be very well reproduced. The comparison between

the detailed calculations and the experimental data thus allows

us to determine the spatial confinement of the wave function

in the dot as well as the Fermi wave vector in the 2D back

contact. Because the entire Fermi circle enters the calculation,

the values for Lx and Ly affect the calculated results for both

magnetic field orientations. In this context, we would like to

discuss the accuracy of our assumption of a circular Fermi

surface. Indeed, on standard (triangular well) heterostructures,

distortions of the Fermi circle20 of 5%–10% have been

observed in parallel magnetic fields of � 6 T.20,21 Since the

distortion is quadratic in the confinement energy (see Eq. (1))

and in the present experiment Ez is much larger than in stand-

ard heterostructures, we estimate the error from this approxi-

mation to be only a few percent.

Therefore, the good agreement between experiment and

calculation strongly supports our conclusion that the non-

monotonic behavior of the magnetotunneling rates seen in

Fig. 2 is indeed caused by the momentum mismatch of the

2DEG and the dots.

Our findings may open up a new route for the electrical

control of the tunneling probability in epitaxial systems,

where the tunneling barrier itself is not tunable. When the

2D carrier density can be independently set, e.g., by the

application of an additional back gate, the diameter of the

Fermi circle becomes adjustable. This in turn will affect the

momentum mismatch, so that the tunneling rate can be con-

trolled by the applied bias.

Furthermore, we believe that the present method to

obtain the dimensions Lx and Ly of the dot wave function is

of high accuracy, since it starts from a direct measurement of

the tunneling time (see Fig. 1(b)) rather than from an evalua-

tion of the capacitive tunneling current. Indeed, our present

experimental results lead to considerably larger dot dimen-

sions Lx, Ly (smaller characteristic momenta kx and ky) than

the data from capacitance spectroscopy, in agreement with

theoretical results.13

In summary, we have shown that a momentum mis-

match can strongly affect the tunneling between 2-

dimensional and 0-dimensional electron systems. For suffi-

ciently high 2D carrier densities, tunneling into the ground

state of self-assembled dots can be considerably suppressed.

The application of a magnetic field perpendicular to the tun-

neling direction can be used to offset the momentum mis-

match and increase the tunneling rate. A detailed comparison

between the experimental magnetotunneling rates and calcu-

lations of the wave function overlap makes it possible to

determine both the spatial extent of the dots’ ground state

and the Fermi wave vector in the 2D electron system. Our

results open up new possibilities to control the coherent

transport in semiconductor quantum structures.
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