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We experimentally study a transport across the integer incompressible strip with local filling factor �c=1 at
the sample edge at high imbalances across this strip. The bulk is in the quantum Hall state at the integer ��
=2,3� or high fractional ��=5 /3,4 /3� filling factors. Unlike the integer case, for the fractional bulk filling
factors, we find a lack of the full equilibration across the edge even in the situation where no potential barrier
survives in the integer incompressible strip with �c=1. We interpret this result as the manifestation of com-
plicated edge excitation structure at high fractional filling factors.
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I. INTRODUCTION

An interest to the fractional quantum Hall effect �FQHE�
is determined by its many-particle nature,1 which gives rise
to unique physical properties. Particularly, collective gapless
edge excitation modes, unlike usual edge magnetoplasmons,
becomes to be very sensitive to the interaction. They thus
can be described by the one-dimensional strongly-interacting
Luttinger liquid picture.2–4

For the smooth edge potential profile, it is well estab-
lished now for integer5 and fractional6–8 quantum Hall-effect
regimes that there is a structure of strips of compressible and
incompressible electron liquid at the sample edge, see Fig. 1.
For the FQHE regime �at fractional bulk filling factor ��, the
strip structure emerges,9,10 if the edge potential variation is
wider than five to six magnetic lengths, i.e., for most of real
edge potentials. Every incompressible strip can be character-
ized by a local filling factor �c��, which corresponds to the
integer or fractional quantum Hall state in the strip. The
number of strips with integer �c equals to the number of the
filled Landau levels in the bulk. The number of the strips
with fractional �c is determined by the FQHE hierarchical
structure,11,12 the magnetic field, and the sample quality.

Gapless collective modes are predicted9 to exist both at
the edges of the every incompressible strip with fractional
local filling factor �c and at the edge of the bulk incompress-
ible state. Physically, they can be understood as variations of
the strip’s borders, while moving along the strip. The struc-
ture of the edge modes follows the structure of the ground
state at �c: there should be several excitation branches for the
bulk filling factors �c that are not of the principal Laughlin
sequence.2,13

Experimentally, it is hardly possible to distinguish be-
tween excitation of multiple branches of a single strip and
the simultaneous excitation of edge modes from different
strips14–17 because of the narrowness of the fractional incom-
pressible strips. For this reason, experimental investigation
of the excitation structure can better be performed at the edge
of the bulk incompressible state at the high fractional filling
factor such as �=4 /3,5 /3. In this case, for a sample of low
carrier density and medium mobility, it is possible to have

only one incompressible strip with integer �=1 at the sample
edge. A special experimental environment18 allows to elimi-
nate the potential jump in the integer incompressible strip, so
the transport across the sample edge should be sensitive to
the edge properties of the bulk incompressible state only.

Here, we experimentally study a transport across the inte-
ger incompressible strip with local filling factor �c=1 at the
sample edge at high imbalances across this strip. The bulk is
in the quantum Hall state at the integer ��=2,3� or high
fractional ��=5 /3,4 /3� filling factors. Unlike the integer
case, for the fractional bulk filling factors, we find a lack of
the full equilibration across the edge, even in the situation,
where no potential barrier survives in the integer incom-
pressible strip with �c=1. We interpret this result as the
manifestation of several gapless edge excitation branches for
�=4 /3,5 /3 high fractional quantum Hall states.

II. SAMPLES AND TECHNIQUE

The samples are fabricated from two GaAs/AlGaAs het-
erostructures with different carrier concentrations and mo-
bilities grown by molecular-beam epitaxy. One of them �A�

FIG. 1. Schematic of the smooth sample edge in the quantum
Hall regime. Light gray areas are the incompressible strips at local
filling factors �c1 ,�c2 and the bulk incompressible state at the filling
factor �bulk. White areas are the compressible regions.
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contains a two dimensional electron gas �2DEG� located 210
nm below the surface. The mobility at 4K is 1.93
�106 cm2 /V s and the carrier density 1.61�1011 cm−2.
For heterostructure B, the corresponding parameters are 70
nm, 800 000 cm2 /V s, and 3.7�1011 cm−2. FQHE states
are not achievable for the wafer B. It is used to obtain results
for integer filling factors at higher magnetic fields because of
the high carrier concentration. Standard magnetoresistance
and magnetocapacitance measurements were performed to
characterize the electron system in the ungated area and un-
der the gate.

The samples are patterned in the quasi-Corbino sample
geometry.18 Each sample has an etched region inside, provid-
ing a topologically independent inner mesa edge �Corbino
topology�. A split-gate is used to connect these two edges in
a controllable way �see Fig. 2�. A structure of compressible
and incompressible strips is present at every edge at the bulk
filling factor � �see Fig. 2�. An incompressible quantum Hall
state under the gate �with filling factor g��� is chosen to
coincide with one of the incompressible strips at the outer
mesa edge �with local filling factor �c�, g=�c. In these con-
ditions, some of the compressible strips �white in Fig. 2� are
redirected from the inner to the outer mesa edge along the
split gate. Compressible strips are at the electrochemical po-
tentials of the corresponding Ohmic contacts.5 The gap in the
split gate at the outer edge �the gate-gap region, denoted as
AB in the figure� has no Ohmic contacts inside and is much
narrower �LAB=5 �m in the present experiment� than at the
inner one �about 1 mm�. As a result, applying a voltage be-
tween Ohmic contacts at outer and inner edges leads to the
electrochemical potential imbalance across the incompress-
ible strip at local filling factor �c=g in the gate-gap region
AB at the outer edge �see Fig. 2�.

For the proposed experiment, it is crucial to establish the
systematics of the incompressible strips at the outer sample
edge. For a smooth edge potential, the decrease of the elec-
tron concentration to the sample edge is similar to decreasing
the electron concentration in the bulk by the gate potential.
By lowering the gate voltage, different quantum Hall states

are arising under the gate. Thus, in magnetocapacitance mea-
surements, we obtain not only gate voltage values, corre-
sponding to integer or fractional filling factors g under the
gate, but also verify the structure of incompressible strips at
the sample edge. We can confirm in this way that there is
only �c=1 incompressible strip for bulk filling factors �
=2,5 /3,4 /3 and there are two integer �c=1,2 strips for �
=3. This fact is because of moderate mobility of 2DEG and
low magnetic fields, in which �=5 /3,4 /3 are realized for the
wafer A.

In the present paper, we study I-V curves in four-point
configuration, by applying dc current between a pair of outer
and inner contacts and measuring dc voltage between an-
other pair of inner and outer contacts. Four-point configura-
tion is used to eliminate possible contact influence on the
experimental traces, allowing the most accurate measure-
ments �contact resistance is typically below 100 � for the
present samples�. The contact behavior is still tested sepa-
rately by two-point magnetoresistance measurements to ex-
clude the possibility of Corbino-type or nonlinear contacts.
All measurements are performed in a dilution refrigerator
with base temperature of 30 mK, equipped with a supercon-
ducting solenoid. The results, presented here, are indepen-
dent of the cooling cycle.

III. EXPERIMENTAL RESULTS

Typical I-V curves for transport across the integer incom-
pressible strip �c=1 are presented in Figs. 3 and 4 for the
integer and fractional bulk filling factors �. The experimental
I-V curve is strongly nonlinear and asymmetric: the positive
branch starts from the finite threshold voltage Vth and is lin-
ear after the threshold; the negative branch continuously
goes from zero and is strongly nonlinear. The linear behavior
of the positive branch above the threshold is demonstrated in

FIG. 2. Schematic of the active sample area. The etched mesa
edges are shown by solid lines, the dashed lines represent the split-
gate edges. The gate-gap region at the outer mesa edge is denoted as
AB. Light gray areas are the incompressible regions at filling fac-
tors � �in the bulk� and �c=g�� �under the gate and the incom-
pressible strip at the mesa edge�. Compressible regions �white� are
at the electrochemical potentials of the corresponding Ohmic con-
tacts, denoted by bars with numbers.
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FIG. 3. �Color online� Examples of I-V curves �solid� for the
filling factor combinations �=2,g=1 for samples with different
electron concentrations ��a� and �b� are for wafers B and A, corre-
spondingly�. Calculated equilibrium I-V’s are shown by the dashed
lines �Req=2h /e2�. The positive branch �V�Vth� of the experimen-
tal curve is linear and parallel to the equilibrium line in both cases.
The threshold voltage Vth is also denoted. Normal magnetic fields
equal to �a� 7.69 T and �b� 3.58 T.
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a wide voltage range in Figs. 3 and 4. A linear fit allows to
determine the slope R of the positive branch for V�Vth with
high accuracy.

This behavior is characteristic18 for the transport across
the integer incompressible strips at small LAB �see Fig. 2�, in
comparison to the equilibration length20 leq, LAB� leq. In the
opposite case, for LAB� leq, the I-V curve is linear18 and
coincides with the equilibrium one. Its slope can be deter-
mined by the relation:6,19

Req =
h

e2

�

g�� − g�
. �1�

In Figs. 3 and 4, the main difference between the integer
and fractional bulk filling factors is present. In the integer
case, the slope of the positive branch above the threshold is
strictly equals to the equilibrium one, R=Req, while it is
much higher than the equilibrium for fractional �=5 /3,4 /3:
R�Req.

Experimental slopes R are presented in Fig. 5 for different
integer and fractional filling factor combinations � ,g. The
data are obtained in normal and tilted magnetic fields. Each
data set is presented as a function of the total magnetic field
at the fixed perpendicular one. Equilibrium slopes, calculated
from Eq. �1�, are denoted by lines.

The experimental R values are independent of the in-plane
magnetic fields for integer filling factor combinations �see
Fig. 5�. They coincide with the calculated equilibrium lines
very well.22 This behavior is also supported by the results for
the sample B �filled symbols in Fig. 5�, obtained at twice
higher normal magnetic fields. We can conclude that the
present behavior is independent of the magnetic-field value
and is specific to the filling factors only. The data are tem-
perature independent below 1K.

The experimental situation is more intriguing for the frac-
tional filling factor combinations �=5 /3,g=1 and �=4 /3,g
=1. Slopes of the positive branch are much higher than the

calculated equilibrium values �see Fig. 5�. This fact is also
demonstrated directly in Fig. 4. It can also be seen from Fig.
5 that there is a weak dependence of R on the in-plane mag-
netic field for fractional bulk filling factors. The dependence
is different in sign for �=4 /3 and �=5 /3 and is more pro-
nounced for the latter one. The data are temperature indepen-
dent below 0.4 K. At higher temperatures R, values are di-
minishing with increasing the temperature.

IV. DISCUSSION

Let us start the discussion from the simplest situation of
�=2,g=1. Equilibration takes place between two spin-split
sublevels of the first Landau level21 �see Fig. 6�a�, where the
energy diagram is shown�. It is well known20,21 that the
equilibration length leq is determined by both the potential
barrier at local filling factor �c=1 and the spin-flip rate. This
length is about 1 mm at low imbalances,20 which provides
high differential resistance R� leq /LAB	Req at V�Vth. A
high positive imbalance is diminishing the potential barrier
at �c=1, so that the flat-band situation is achieved at −eV=
−eVth=−
c �see Fig. 6�b��. Thus, there is no potential barrier
between compressible strips, allowing electron diffusion
along the level for V�Vth. Spin-flip can easily be obtained in
this case by photon emission.21 The equilibration length
drops below LAB=5 �m for these reasons,15 allowing the
full equilibration R=Req across the sample edge. The corre-
sponding resistance slope Req can easily be calculated,6,19 see
Eq. �1�. At negative voltages, the potential profile at �c=1 is
increasing, giving rise to the complicated tunnel branch of
the I-V curve.

This picture is verified by the observation of the equilib-
rium slope of the positive I-V branch for �=2 and g=1 �see
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FIG. 4. �Color online� Examples of I-V curves �solid� for the
filling factor combinations �a� �=5 /3,g=1 and �b� �=4 /3,g=1 for
wafer A. Calculated equilibrium I-V’s are shown by the dashed
lines. The positive branch �V�Vth� of the experimental curve is
linear and has a higher slope than the equilibrium line, R�Req. The
threshold voltage Vth is also denoted. Normal magnetic field equals
to �a� 4.29 T and �b� 5.36 T.
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FIG. 5. Slopes R of the linear positive branch of the experimen-
tal I-Vs for different filling factor combinations as a function of the
total magnetic field. Open symbols are for the wafer A: �=3,g=2
�down triangles, normal field is B�=2.38 T�, �=3,g=1 �up tri-
angles, B�=2.38 T�, �=2,g=1 �circles, B�=3.58 T�, �=5 /3,g
=1 �squares, B�=4.29 T�, �=4 /3,g=1 �diamonds, B�=5.36 T�.
Filled symbols are for the corresponding � and g for wafer B �B�

=5.18 T for �=3, 7.69 T for �=2�. Lines indicate the equilibrium
slopes Req: solid line is for �=3,g=2, dash is for �=2,g=1 and
�=3,g=1, dotted one is for �=5 /3,g=1, dash-dot is for �
=4 /3,g=1.
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Figs. 3 and 5�. It is also valid18,22 for any integer filling
factors, e.g., for �=3 and g=1,2. We cannot expect any
influence of the in-plane magnetic field on the transport in
the flat-band situation, at V�Vth, as it is also confirmed in
the present experiment.

The edge structure is very close to ones discussed above
for the filling factor combinations �=4 /3, g=1 and �
=5 /3, g=1 �see Fig. 6�c��, except for the energy gap at the
Fermi level in the bulk. It is a many-particle fractional en-
ergy gap1 in this case. As it is tested from the magnetoca-
pacitance measurements, there is only one incompressible
strip with �c=1 at the sample edge, even for �=5 /3 in the
bulk. It seems to be a result of the moderate mobility, that
does not allow fractional strips in low magnetic fields. De-
spite the similarity of the edge structure to the �=2 case,
experimental slopes of the positive branch are always signifi-
cantly higher than can be expected from Eq. �1� for fractional
filling factors in the bulk.

Experimental slopes, exceeding the equilibrium ones, in-
dicate partial equilibration for V�Vth. In general, it can be
caused by two reasons: �i� the transport across the �c=1 in-
compressible strip and the adjacent compressible one is dif-
ferent; �ii� the edge of the bulk FQHE state is responsible for
the partial equilibration.

The first reason cannot explain our results. The structure
of both the �c=1 incompressible strip and the adjacent com-

pressible one is the same for the integer �=2 and the frac-
tional �=4 /3,5 /3. We observe a full equilibration as well in
lower magnetic fields �at �=2 for the sample A�, as in ap-
proximately twice higher ones �at �=2 for the sample B�.
Thus, it is the edge of the bulk FQHE state at �=4 /3,5 /3
that is responsible for the partial equilibration.

The edge of the FQHE incompressible state is character-
ized by the gapless collective excitation modes.2,9 A charge
transfer into the edge of the FQHE state is accomplished by
their excitation,2–4,9,17 so they govern the charge redistribu-
tion across the FQHE edge.9,17 There should be several2,13

excitation modes for high fractional filling factors ��1. In
the case of their common excitation, however, the equilib-
rium resistance is given by the simple relation �Eq. �1�� �see,
e.g., Refs. 23 and 24�. Thus, partial equilibration �R�Req� in
the flat-band conditions in our experiment can be achieved
only for selective excitation of the gapless modes �cp. Ref.
23�. The linear behavior of the I-V curve at V�Vth can be
easily understood in this case: in the flat-band conditions,
electrons are always leaving the fractional bulk incompress-
ible state at the same energy, leading to the same excitation
schema at any applied voltage. For this reasons, our experi-
mental result can be regarded as the manifestation of several
gapless excitation branches for �=4 /3,5 /3 high fractional
quantum Hall states.

This conclusion is also supported by the small but differ-
ent dependence of the equilibration on the in-plane
magnetic-field component. The �=4 /3 FQHE state can be
regarded as the quasielectron state at completely filled first
Landau level, while the �=5 /3 state belongs to the quasihole
state at two filled Landau levels.12 The difference in the
ground-state structure leads to the difference in the structure
of edge excitations. That could be responsible for the differ-
ent in-plane field dependencies.

V. CONCLUSION

In summary, we experimentally study transport across the
integer incompressible strip with local filling factor �c=1 at
the sample edge at high imbalances across this strip. The
bulk is in the quantum Hall state at the integer ��=2,3� or
high fractional ��=5 /3,4 /3� filling factors. Unlike the inte-
ger case, for the fractional bulk filling factors, we find a lack
of the full equilibration across the edge even in the situation,
where no potential barrier survives in the integer incom-
pressible strip with �c=1. We interpret this result as the
manifestation of several gapless edge excitation branches for
�=4 /3,5 /3 high fractional quantum Hall states.
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FIG. 6. Schematic of the energy levels in the active sample area.
Solid lines represent the filled electron states. Dashed lines are for
the empty ones. 
c is the potential jump in the �c=1 incompressible
strip. Pinning of the Landau sublevels to the Fermi level �shot-dash�
is shown in the compressible regions at electrochemical potentials
�1 and �3. �a� Integer filling factors �=2,g=1. Equilibrium situa-
tion �3=�1, no voltage V is applied to Ohmic contacts 1 and 3. �b�
Integer filling factors �=2,g=1. Flat-band conditions for −eV=
−eVth=�1−�3=−
 �V�0, e is the absolute value of the electron
charge�. �c� Fractional filling factors �=4 /3,g=1. Equilibrium situ-
ation �3=�1, no voltage V is applied to Ohmic contacts 1 and 3.
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