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ABSTRACT

Self-assembled quantum dots are still one of the best model systems for artificial atoms in a solid-state environment, where the electronic
states can be accessed by electrical and optical means. This article focuses on nonequilibrium carrier dynamics in these quantum dots, using
the ability of recent developments in electrical and optical spectroscopy techniques. All-electrical transconductance spectroscopy is intro-
duced, where a two-dimensional electron gas serves as a fast and sensitive detector for the electron/hole dynamics and charge/spin state prep-
aration and relaxation in an ensemble of dots. Latest results on single electron tunneling and nonequilibrium Auger recombination in a
single quantum dot using a high-resolution optical experiment (the time-resolved resonance fluorescence) are summarized. This article con-
cludes with a perspective view on a future combination of both techniques toward an electro-optical measurement toolbox to link the coher-
ent control of quantum states by optical means with an electrical preparation of electron charge and spin states.
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(2DEG), and (iii) self-assembled semiconductor dots.”**” Colloidal
quantum dots are small nanostructures without a surrounding matrix
material. They can be produced with narrow size distribution using dif-
ferent techniques, for instance, laser ablation”>”” or synthesis from the
gas”™” or liquid phase.”’ Large quantities can be obtained, and these
nanostructures are optically active; however, it is difficult to contact
them by electrical means. From an application point of view, an electrical
access to the optical and electrical properties of these nanostrucutres is a
very convenient and interesting way to control the physical properties
and, hence, the device characteristics. Such an electrical access is espe-
cially realized for lithography-defined dots in a two-dimensional electron
gas by gate contacts’” that allow coherent electrical manipulation of
quantum states” " and spins’>* for applications in quantum informa-
tion processing. Such quantum dots are fabricated in a “top-down”-
approach, where local oxidation with an atomic force microscope
(AFM)” or electron-beam lithography on top of a two-dimensional
electron gas™*" is used to produce the dots and the control gates.

Another possibility to produce a confinement in all spatial direc-
tions is a “bottom-up” approach, where two different material combi-
nations with different lattice constants are deposited on top of each
other. For instance, indium arsenide (InAs) can be grown with submo-
nolayer precision on top of a gallium arsenide (GaAs) substrate. This
forms small islands with a lateral size of 15-30 nm and a typical height
between 3 and 8 nm. These self-assembled quantum dots™*** can be
addressed by optical and electrical means, and like an atom, they show
energy quantization, direct and indirect (exchange) Coulomb interac-
tions, and angular momentum and spin-dependent optical”’ *’ and
electrical properties.”’ >* The combination of electrical and optical
control makes self-assembled dots an ideal model system to test the
interaction between electrically addressable charge states and a quan-
tized light field in quantum optics.”” " Even more, transport in com-
bination with optics enables us to measure here the nonequilibrium
electron dynamics and understand the interaction phenomena
between the quantum dots and their environment.

The following article will review the latest results on nonequilib-
rium charge carrier dynamics in self-assembled quantum dots. In this
sense, it will describe recent developments of the electron/hole dynam-
ics in time-resolved transconductance spectroscopy on an ensemble of
quantum dots and the nonequilibrium electron dynamics of single
dots studied by an optical detection scheme, i.e., resonance fluores-
cence (RF).” °' Tt is important to mention here that this article is not
a representative review. It rather focuses on measurements done at the
University of Duisburg-Essen, however, describing and referencing to
many important results of other groups working in the area of optics
and transport on self-assembled quantum dots.

This review is organized as follows: It will start in Sec. II with a
basic overview on semiconductor nanostructures, followed by the
description on the electronic properties of self-assembled quantum
dots in Sec. I1I and their optical properties in Sec. I'V. Afterward, this
review will present the latest results on the nonequilibrium charge
carrier dynamics in the time-resolved electrical measurement scheme
in Sec. V and the optical resonance fluorescence measurements in Sec.
VI. It will end with a conclusion and outlook in Sec. VII.

Il. LOW-DIMENSIONAL HETEROSTRUCTURES

Using low-dimensional heterostructures” in combination with
the so-called “band structure engineering” can tune precisely the
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electronic and optical properties™"” of semiconductor devices. It
alters the Bloch functions of the electrons in the crystal and, as a con-
sequence, changes the most important ingredient: the density of states
(DOS). “Low-dimensional” means a reduction of the dimensionality
in at least one dimension, where one-dimensional reduction gives a
two-dimensional electron gas (2DEG), and a confinement in all three
spatial directions results in a quantum dot.”**”

For compound semiconductors, every material combination has
its own lattice constant and energy gap. Starting, for instance, with
III-V materials, already the pure binary compounds of AIP or InSb
exhibit a huge difference in the energy gap, ranging from 2.5eV to
0.17 eV. Moreover, the energy gap can be widely (and continuously)
tuned by using different ternary (like InGaAs) or quaternary alloys
(like InGaAsN). This opens up numerous possibilities to build electro-
optical devices that can operate with different bandgaps and emit light
from the near UV down to the infrared.””

Epitaxial growth techniques” are nowadays able to deposit
different materials with submonolayer precision on top of each other.
Starting with a substrate material, in a metal organic chemical vapor
deposition (MOCVD)”’ or molecular beam epitaxy (MBE),”" a semi-
conductor heterostructure can be obtained by such a bottom-up
growth technique. One of the first and most common heterostructures
is the interface between the two binary III-V compounds aluminum
arsenide (AlAs) and gallium arsenide (GaAs), where AlAs has a larger
bandgap at the I'-point than GaAs. Both materials have almost the
same lattice constant,” i.e., they can be grown on top of each other
without any lattice mismatch and resulting strain. The material combi-
nation Al(Ga)As/GaAs with its interface is an important starting point
to achieve a confinement for charge carriers in one direction. The
result is a low low-dimensional quantum structure®’* with new elec-
tronic and optical properties: A so-called two-dimensional electron
(2DEG)” or hole gas 2DHG).”*

A. Two-dimensional electron gases

The strong confinement in one direction leads to a situation
where the confinement direction can be ignored in most physical prop-
erties (hence, higher sub-bands are neglected) and the electrons (or
holes) can move freely in the other directions. Such a two-dimensional
nanostructure can be produced in different ways. It is found in transis-
tor structures (the mentioned MOSFET), where it is formed below the
gate oxide. In such a device, the Quantum-Hall effect was discovered.””
Graphene as a monolayer (ML) of carbon atoms in a honeycomb lat-
tice structure is also a two-dimensional electron system;”® depending
on doping or gate voltage, it can even be tuned from an electron to a
hole gas.

Another possibility to form a two-dimensional electron gas is the
epitaxial growth of an AlGaAs/GaAs interface. This method has the
advantage of a very smooth interface with low disorder potential.
Electron scattering is reduced, and charge carrier mobilities of more
than 3 x 107 cm®/V s have been reported.”” The band structure at an
AlGaAs/GaAs interface is shown in Fig. 1, where AlGaAs has a layer
with n-doping, while GaAs is undoped (the so-called “modulation
doping”). The electrons in the n-doped AlGaAs layer diffuse to the
GaAs layer, where they form the 2DEG in the triangular potential.
The triangular potential is a result of the electric field of the ionized
donor in the doped AlGaAs and the potential step between the
AlGaAs and GaAs layers. The spacer between the n-doped AlGaAs
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FIG. 1. Basic principle of a two-dimensional electron gas at an AlGaAs/GaAs inter-
face. The electrons from the n-doped AlGaAs layer diffuse to the AlGaAs/GaAs
interface, where the two-dimensional electron gas is formed in a triangular well.
The spacer layer separates the ionized donor atoms from the electrons, suppress-
ing Coulomb scattering with the positively charged donors.

n
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and the AlGaAs/GaAs interface protects the charge carriers in the elec-
tron gas from Coulomb scattering with ionized donator atoms in the
doping layer.

The density of states is constant in every sublevel of the two-
dimensional electron gas. The energy difference between two sublevels
can be calculated for an AlGaAs/GaAs interface by solving the
Schrodinger equation,”” where many-body Coulomb interaction
reduces the sublevel spacing to experimental values of about
20meV.”® At temperatures below 50K (kzT(50K) =~ 4 meV) in the
following experiments, the sublevel spacing ensures that the two-
dimensional electron gas remains 2D, as the thermal energy is smaller
than the energy spacing in the remaining third dimension.

B. Quantum dots

Self-assembled quantum dots can be produced by epitaxial
growth using molecular beam epitaxy (MBE)’* or metal-organic vapor
deposition (MOCVD).* As an example, the growth of InAs/GaAs
quantum dots starts on top of a GaAs substrate with a GaAs buffer
layer. InAs has a larger lattice constant of approximately 7% compared
to the GaAs substrate. A highly strained thin film of InAs is formed on
GaAs as the InAs lattice constant adjusts to the GaAs substrate, up to
a film thickness of about 1.5 monolayers (ML), see Fig. 2 (left). If the
growth proceeds, the strained InAs layer relaxes into coherent (with-
out dislocations and defects) tiny little islands after deposition of 2-4
monolayers during a growth interruption period, see Fig. 2 (middle).
This is the Stranski-Krastanov growth mode.”" Further deposition of
InAs of more than 4 monolayers leads to bigger islands with disloca-
tions and defects.

Depending on the growth parameters, these self-assembled quan-
tum dots have a typical height of a few nanometers and diameter of a
few tens of nanometers. With an area density of more than
1 x 10" cm™?, they exhibit a high homogeneity in their size distribu-
tion with a variation of only ~10%. Figure 3 shows an atomic force
microscopy (AFM) image of two quantum dots on the sample surface.
For optical experiments, the growth parameter can be changed

InAs QDs Dislocations
<1.5ML 2-4 ML >4 ML
\ A A A A A A a B A
GaAs GaAs GaAs

FIG. 2. Schematic illustration of the quantum dot growth procedure. On a GaAs
substrate, InAs is deposited in a MBE or MOCVD growth process.
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FIG. 3. Atomic force microscopy image of two self-assembled quantum dots. The
dots are uncapped visible on the sample surface with an average height of 5nm
and a diameter of approximately 20 nm. Reproduced with permission from O.
Wibbelhoff, “Ladungstragerquantisierung in selbstorganisierten Nanostrukturen,”
Ph.D. thesis (University of Duisburg-Essen, 2006).”

accordingly to obtain the area density below 1 x 10%cm ™2, i.e., less
than one dot per um?.

C. Heterostructure devices

For active devices, the InAs dots are commonly integrated into a
heterostructure of undoped/doped GaAs and AlGaAs layers, which
allows controlled charging of the quantum states with electrons or
holes (depending on the doping). One of the simplest structures is a
p-i-n diode-like device, shown schematically in Fig. 4(a), where the
InAs quantum dots are embedded in an undoped region of GaAs. The
layer below the dots serves as the tunneling barrier [see Fig. 4(b)]. It
separates the dot states from a doped region that is contacted by an
Ohmic contact. The Ohmic contact to the n-doped layer (or the
2DEG in Fig. 5) can be achieved by evaporation of Ni/AuGe/Au on
top of the sample surface and subsequent annealing at about 400 °C.
The germanium atom produces a highly n-doped area (gray-shaded

(a) V:9 (b)
T Gat Ohmi 3
ate mic ®
\ O
—— COntaCt
Superlattice
GaAs d2
]
A InAs QDs A
T
Tunnel barrier T d4
. 1l
GaAs n-doped

GaAs substrate

FIG. 4. Schematic picture of a diode structure with embedded quantum dots. (a)
On top of a GaAs substrate, an n-doped layer serves as Ohmic back contact. The
dots are sandwiched between the two layers of undoped GaAs, where the lower
one serves as the tunneling barrier that separates the quantum states from the
charge reservoir. A gate and an Ohmic contact allow controlled charging of the dot
states by tunneling from the reservoir. The gray-shaded gradient area of the Ohmic
contact should visualize that an electric contact to the n-doped layer can be
achieved by evaporation and subsequent annealing of Ni/AuGe/Au on top of the
sample surface. (b) Schematic conduction band structure of the device.
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FIG. 5. lllustration of a high-mobility-electron-transistor (HEMT) structure with
embedded quantum dots. (a) Below the tunneling barrier, the n-doped region of
GaAs is replaced by a two-dimensional electron gas that is formed at an AlGaAs
interface. The Ohmic contacts to the 2DEG can be achieved by evaporation and
subsequent annealing of Ni/AuGe/Au on top of the sample surface (gray-shaded
areas with gradients). (b) Schematic conduction band structure of the device.

area with a gradient in Fig. 4) by diftusion to the n-doped layer. A sec-
ond contact is a metal gate on top of the AlGaAs/GaAs heterostructure.

An applied voltage V, tilts the band structure in Fig. 4 such that
the Fermi energy Er in the doped back contact (the charge reservoir)
can be tuned in resonance with the energy levels in the dots. This can
be used to precisely control the number of electrons (or holes) inside
the dots in optical experiments®’ or measure the quantum capacitance
in capacitance-voltage (C-V) spectroscopy’’ (also in a magnetic field:
The Fock-Darwin spectrum™ ).

A second device structure that is relevant within this review is a
high-electron-mobility transistor (HEMT) structure. In such a device,
the highly n-doped region of the diode structure in Fig. 4 is replaced
by a two-dimensional electron gas.”** The advantage is a feedback
mechanism of the charged quantum dots on the conductance of the
electron gas Gy, determined by measuring the current I ; between the
source and drain contacts [see Fig. 5(a)]. Charging the quantum dots
with electrons leads to a reduction of the charge carrier concentration
in the 2DEG."”"” Time-resolved measurements of this conductance
enables us to investigate the nonequilibrium tunneling dynamics from
the reservoir into the dot states.

Figure 5 depicts schematically the layer sequence and the conduc-
tion band structure of the device. To be more precise, it is an
“inverted” high-electron-mobility transistor since the doped layer is
below (with respect to the growth direction) the two-dimensional elec-
tron gas. Moreover, in comparison to the electron gas described in Sec.
II A, the n-doped layer is replaced by J-doping, a highly doped thin
layer. The 0-doping is separated from the two-dimensional electron
gas by an AlGaAs spacer layer, while the quantum dots are again cou-
pled by a tunneling barrier to the electron gas as the charge reservoir.
The thickness and the material of the tunneling barrier determine the
tunnel coupling strength, i.e., the average tunneling time between the
dot states and the reservoir. It can be easily tuned from below

REVIEW scitation.org/journal/are

nanoseconds up to more than seconds. The charge carrier mobility of
the electron gas in the vicinity of a layer of quantum dots is often quite
small, as the strain field induced by the dots acts as scattering potential.
Typical values for the mobility are on the order of 1 x 10* cm?*/V's
(Refs. 91-93) for a charge carrier density of ~10" cm ™2

An important parameter for both device structures is the
so-called lever arm.”*”® With the tunneling barrier of thickness d,
and a thickness of the layer sequence on top of the quantum dots (the
so-called “blocking layer”) of d, [see Figs. 4(b) and 5(b)], a change in
gate voltage AV , applied between gate- and Ohmic-(back)-contacts
translates into an energy shift of

d
AE = eAng1 a4
The ratio between the distance d, + d, (surface to reservoir) and d,
(dot layer to reservoir) is called the lever arm L = (d; + d;)/d;
= eAV, /AE and relates the applied gate voltage to the energy shift at
the quantum dot position. The lever arm varies in different samples
slightly; however, it is typically in the range between 6 and 10.

lll. QUANTUM DOTS: ELECTRONIC PROPERTIES

In Sec. 111, the basics of the electronic structure of self-assembled
dots will be briefly summarized. The small structural size of the dots
(in comparison to the de Broglie wavelength) gives the strong confine-
ment in all three spacial directions. However, in more detail, the elec-
tron structure of these nanostructures can be quite complicated, as we
have to keep in mind that the electrons live in a crystal structure. They
are quantum mechanical Bloch waves’””” that interact with the crystal
structure. Therefore, besides the shape of the dots, the lattice, strain,
piezoelectric effects, and the chemical composition have to be taken
into account to determine the wavefunctions and energy levels. This
can be done in a numerical calculation, for instance, starting from the
bulk material (and using its parameters) in 8-band-k-p calcula-
tions"””'"’ or from the atomic levels in atomistic pseudopotential
theory.lm’mz

(1)

A. Two-dimensional harmonic oscillator

A much more simple approach is to squeeze the influence of the
underlying crystal mostly in one parameter: the effective mass m"*. A
single-band effective mass approximation'”” will neglect every mixing
of the orbital states and is especially questionable for the hole states,
where this mixing plays an important role in the eigenstates and ener-
gies.”” However, to interpret the following experiments, using the
effective mass is a reasonable approximation. The crystal lattice is,
hence, neglected, and one has to be aware that in the following, only
the envelope of the Bloch wavefunctions is shown in the schematic
pictures.

To further simplify the situation, the confinement of a quantum
dot can be separated into two parts, see Fig. 6, where the smaller height
of the dots in the growth direction (z-axis) leads to a stronger confine-
ment than in the lateral extension in the x-y-plane. This means that
the energy spacing between the ground state (n,=1) and the first
excited state (n,=2) in the z-direction is much larger than the level
spacing in the x-y-plane. At temperatures below T=10K and for
every gate voltage applied, the system is always in the ground state
with respect to the confinement in the z-direction. This confinement
in the z-direction can be described approximately by a finite potential
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FIG. 6. Simplified description of the potential profile in a self-assembled quantum dot. (a) For InAs dots embedded in a GaAs matrix material, the potential can be separated
into a part in the x-y-(lateral)-direction and another the in z-(growth)-direction. (b) The potential into the growth direction can assumed to be a finite square well with quantum
numbers n, =1, 2, 3,.... (c) The more important part is the potential in the x-y-direction which can be approximated by a two-dimensional harmonic oscillator. The labeling with

s-, p-, and d-shells is imitated from atomic physics.

well with a quantum number 7, =1,2,..., as schematically depicted in
Fig. 6(b), where the ground state n, =1 would have an s-like and the
first excited state n,=2 have a p-like symmetry of the wavefunction.
As we can separate this z-component of the wavefunction (where the
system is in the ground state), we are left with two-dimensional
confinement in the direction of the x,y-axis, depicted in Fig. 6(c).

As a further simplification, the confining potential in the
x-y-plane can be described by a two-dimensional harmonic oscilla-
tor' " '" since the “lens-like” shape (A lens-like shape of the quantum
dots is a further approximation, as dots with a pyramidal shape have
also been reported in the literature.'””*%®) (cf. Fig. 3) produces an adia-
batically varying potential with strong confinement (corresponding
to large bandgap) at the edges and weak confinement in the middle
of the dot.'”” Figure 6(c) schematically depicts the harmonic potential
for the valence and conduction bands as solid black lines. The
Schrodinger equation of a two-dimensional harmonic oscillator in
Cartesian coordinates

2
(h—A (e +y2)) Vxy) =EBxy) @
2m* 2

is “text-book knowledge” and can be easily solved with the effective
mass m" and the characteristic frequency w, of the harmonic poten-
tial. The eigenstate is the well-known product of the wave function of
the harmonic oscillator with the Hermite polynomial for the x- and
y-directions (see, for instance, Refs. 110 and 111). The eigenenergies in
Cartesian coordinates are therefore given as

Ey n, = (x + 1y + 1)k, 3)

with the two quantum numbers for the x- and y-coordinates:
fy,n, = 0,1,2,.... The quantum numbers 7, and n, give also the
number of nodes of the (envelope) wave function in the x- or the
y-direction, respectively. The ground state with quantum numbers #,,
n,= 0 is an s-like state with no nodes.

A more suitable way for a lens-shaped quantum dot with rota-
tional symmetry is to solve the Schrodinger equation in cylindrical
coordinates, where the radius from the origin r and the angle ¢ are
used as coordinates. The eigenfunctions have now rotational symme-
try (see Fock''” and Darwin'"’ for more details), and two quantum
numbers 7 and [ are needed again to characterize the system and get
the same energies in a different (and more convenient) notation

Eug = (2n+ |I] + 1)hay, 4

where n=0, 1, 2,... is the radial quantum number and I=... -2, —1,
0, 1, 2... is the quantum number for the angular momentum (Note
here that the absolute value of the angular momentum |I| has to be
used to get the eigenenergies.). A linear combination of the wave func-
tions in Cartesian coordinates i, ,(x,y) and ¥, (x,y) (one node in
x- and y-directions) gives clockwise and anticlockwise rotating
wavefunctions

Yo (r, @) = avo(x,y) +ibig,(x,y), (5)
‘po,—l(ﬂ ¢)=a Wl,o(an) - ibn//oyl(x,y). (6)

As an example for the two first excited states, these rotating waves
have angular momenta of /= —1, 1. This means that we can translate
the quantum numbers in Cartesian coordinates with quanta for x- and
y-directions (n,, #,) into quantum numbers that describe clockwise
(right #,) or counterclockwise (left n;) rotation wave functions, ie.,
E = (ny + ny, + 1)hwo = (m + n, + 1)haw. Whenever the number
of clockwise- (n,) and counterclockwise-rotating (n;) quanta differ,
one gets an angular momentum, where the direction of the net circu-
lating quanta yields a plus or a minus sign for .

With this, we can label our single particle quantum states in a
two-dimensional harmonic oscillator that describes sufficiently our
quantum dot for the following experiments: We use the Dirac notation
|n, 1) in Fig. 7, with n as the radial quantum number and ! as the quan-
tum number for the angular momentum. Taken from atomic physics,
the quantum states are sorted in shells that are labeled with s, p, or d,
depending on the angular momentum. However, there are some
strong differences between the 1/r-potential for an atom and a
two-dimensional harmonic oscillator: The quantum states are not
degenerate with respect to the main (radial) quantum number # for a

0,-2) |1,0) 0,2
| ) 11,0 [0,2) doshell
hw
0,—1 1 0
| ) 10,1) o-shell
hw
10,0) s-shell

FIG. 7. The quantum numbers in a two-dimensional harmonic oscillator. In Dirac
notation |n, I}, n'is the quantum number for the radial component (the main quantum
number in atomic physics) and / is the quantum number for the angular momentum.

Appl. Phys. Rev. 6, 031306 (2019); doi: 10.1063/1.5091742
Published under license by AIP Publishing

6, 031306-5


https://scitation.org/journal/are

Applied Physics Reviews REVIEW

two-dimensional harmonic oscillator, i.e., states exist for the same n
with different angular momenta, such as |0, —1), |0,1), |0, —2) and
|0,2). Moreover, the state |1,0) in the d-shell is not a d-like state as in
a hydrogen atom, as it has no angular momentum. In atomic physics,
it would be an s-like state (as it has /= 0) with one node of the wave
function in the radial direction. Here, for a harmonic oscillator, this
state is degenerate with the /= 2-states and, hence, sorted into the
d-shell."”

B. Electronic shell structure

The electronic structure of the two-dimensional harmonic oscil-
lator can be seen in capacitance-voltage (C-V) measurements, where
the quantum dots are embedded in a Schottky-diode structure.”® The
layer structure of such a device is shown in Fig. 4. The quantum dots
are embedded in an undoped (intrinsic) region of GaAs between the
n-doped back contact and the metallic Schottky gate on top of the
structure. The capacitance is measured with respect to the applied gate
voltage V, in Fig. 8. The measured capacitance can be separated
into three parts: (i) the geometric capacitance, (ii) the depletion capaci-
tance, and (iii) the quantum capacitance.

The geometric capacitance of such a p-i-n diode structure is the
same as for a plate capacitor Cg, “);’A, with the dielectric constant
of GaAs and AlGaAs. It is responsible for the constant capacitance
background of about 220 pF in Fig. 8(a). On top of this constant back-
ground is the slope of the depletion capacitance, visible as slightly
rising capacitance between V,=—1.5 and —0.9V. This depletion
capacitance is well known from p-n-junctions''” and used in time-
resolved capacitance spectroscopy measurements on defects (deep
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level transient spectroscopy—DLTS)"''*""” and quantum dots.'*""* !

The depletion capacitance is proportional to the square root of the
doping concentration N, and inversely proportional to the applied
gate bias (with the built-in voltage V,,; of the p-n diode) for an abrupt
junction'"”
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Therefore, for the constant doping concentration, the capacitance
increases quadratically with the applied gate voltage and has a constant
curvature. Weak curvature means a high doping concentration, as it
can be seen in the slightly increasing capacitance in Fig. 8 up to V;
=-09V.

The quantum capacitance”” is the important part which leads to
the observation of the shell structure of the dots in the capacitance-
voltage measurement. It is proportional to the density of states and
can be seen as six pronounced maxima between V,=—0.75V and
0.3V in Fig. 8(a). As schematically depicted in Fig. 8(b), if the gate
voltage is set to V,= —0.75V, the Fermi energy in the n-doped back
contact gets in resonance with the first energy level (the s;-state). In a
capacitance measurement with an applied ac-voltage, the electrons can
tunnel now back and forth between the reservoir and the dot states.
This resonance effect is visible in a maximum in the spectrum due to
the additional quantum capacitance of the dot states (see Russ et al.”’
for more details). The twofold spin degenerate is lifted in a static
capacitance measurement by Coulomb repulsion of the electrons, and
the second dot state in the s-shell (the s,-state) is visible separately at
V= —0.55V. The Coulomb repulsion energy of ~20meV can be
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FIG. 8. Static capacitance-voltage (C-V) measurement of a layer of InAs/GaAs quantum dots. (a) The six charging maxima (1.6) resemble the shell structure of a two-

dimensional harmonic oscillator with s-, p-, and d-shells (see the schematic insets). (b) At a gate voltage of V,

= —0.75V, the Fermi energy in the doped back contact is in res-

onance with the first s-state (s1) in the quantum dots, (c) whereas at —0.15V, the Fermi energy gets in resonance with the first state of the p-shell (p4). The degeneracy of all
states is lifted in a static C-V measurement due to Coulomb interaction. The figure is adapted with permission from Wibbelhoff.”
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determined by the voltage separation between the s;- and s,-states and
using Eq. (1) for the lever arm. At a gate voltage of V= —0.15V, the
Fermi energy gets in resonance with the p-shell (see schematic picture
in Fig. 8). The energy difference between the s- and the p-shell is
mainly due to the quantization energy (~50 meV); however, Coulomb
and exchange interactions have also a significant influence. An
approximate value for the Coulomb and exchange interactions can be
calculated in a first order perturbation theory between two particles by
using single particle wavefunctions of a two-dimensional harmonic
oscillator (see Warburton ef al.*).

The capacitance spectrum in Fig. 8 is recorded on an ensemble
(>107) of quantum dots in a near-equilibrium situation, where the
electron tunneling into and out of the quantum dot states is balanced.
The capacitance of a single self-assembled quantum dot is very small,
on the order of ~attofarad, so that single-dot measurements are very
challenging.”'”” In this “static” capacitance measurement, the degen-
eracy of the states is lifted by Coulomb interaction, and the maxima in
the spectra are homogeneously broadened by the statistical variation
of size, shape, and composition of the dots.

IV. QUANTUM DOTS: OPTICAL PROPERTIES

One of the big advantages of self-assembled quantum dots is the
possibility to combine both transport and optics for measurements on
the electron dynamics. The basics about the optical properties of quan-
tum dots and the main experimental methods, including photolumi-
nescence (PL) and resonance fluorescence (RF), will be summarized
briefly in this section.

A. Photoluminescence spectroscopy

One of the most important optical spectroscopy methods is pho-
toluminescence (PL) spectroscopy.'*'** A laser with a photon energy
greater than the bandgap of the matrix material (here: GaAs with
1.52 V) is used to generate high-energy excitons in the area surround-
ing the dots (blue transition in the upper-right inset of Fig. 9). These
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FIG. 9. Photoluminescence on an ensemble of InAs/GaAs quantum dots. Electron-
hole pairs are generated by laser excitation in the matrix material that surrounds
the quantum dots. These charge carriers can relax into the dot states and recom-
bine as s-s- and p-p-shell transitions.
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electron-hole pairs can relax into the dot states by electron-electron
and/or phonon scattering.'””'** The confined excitons recombine
inside the quantum dots with an energy relaxation Tj-time on the
order of nanoseconds and a wavelength between ~900 and 1300 nm,
depending on their size (and shape and composition).

The photoluminescence measurement on an ensemble of InAs/
GaAs quantum dots is shown in Fig. 9, where the exciton transition
between the s-shell in the conduction band and the s-shell of the heavy
holes in the valence band is visible at 1150 nm. The p-p transition can
be observed at 1125 nm. These transitions have a strong overlap of the
envelope functions of the s-like electron and hole wave functions in
real space, and the atomic part of the Bloch wave functions gives in
addition a strong matrix dipole element (transition between s-like
symmetry in the conduction band to p-like symmetry in the valence
band). The inhomogeneous linewidth is on the order of 50 meV in
such an ensemble measurement on millions of self-assembled dots. As
a consequence, the energy separation between s-s and p-p transitions
(see Fig. 9) is purely due to the quantization between s- and p-shells,
and every influence of Coulomb or exchange interaction (<20 meV)
on the exciton transitions is hidden within the inhomogeneous
broadening.

In order to reveal the emission spectrum from an individual dot
with its few-particle interactions, the number of dots within the excita-
tion spot has to be reduced strongly. In principle, there are two
approaches that are used together to obtain the luminescence spec-
trum of single quantum dots (as shown in Fig. 10): (i) First, in a micro-
photoluminescence (u-PL) setup,”®**!%*1#? 13! the excitation spot size
will be reduced to the diffraction limit, which is approximately 1 um
for the typical wavelength range of InAs/GaAs dots (900-1300 nm).
(ii) Second, the number of dots per area can be reduced to approxi-
mately one per square micrometer. Etching of small mesa structures”’

PL intensity (arb. units)
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FIG. 10. Microphotoluminescence (u-PL) spectrum of a single self-assembled
InAs/GaAs quantum dot. Different maxima originate from different recombination
configurations within the s-s-shell transition (X: exciton; XX: biexciton; X: nega-
tively charged exciton (trion); and X; : “hot trion”). Coulomb and exchange interac-
tions alter the transition energy from the excitonic transition in the presence of
additional electrons/holes in the dot.
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or processing of small metal apertures,'””'" using prepatterning

before the quantum dot growth'™* "™ or selective growth on buried
stressor layers, *”'*" is just some of the possibilities to achieve the sec-
ond goal."””'**

Another possibility that is used without prepatterning (that could
harm the optical properties) is reduction of the InAs film thickness to
a critical point where just a few dots per micrometer square nucle-
ate.""” This can be achieved in MBE and MOCVD growth by stopping
the wafer rotation and growing a thickness gradient of InAs on the
sample, leading to areas with high dot density, areas with no dots, and
areas with the desired density of approximately one dot per square
micrometer. Moreover, the emission wavelength can be blue shifted by
rapid thermal annealing'** '** or indium flushing after the dots were
covered with a thin layer of GaAs.""”'** Annealing or indium flushing
leads to a diffusion of InAs to the surrounding GaAs matrix and
reduction of the dot height, thus blue-shifting the wavelength below
1000nm to a range where Si-based detectors (charge-coupled
devices—CCDs and avalanche photodiodes—APDs) are working with
high quantum efficiency.

Figure 10 shows such a p-photoluminescence spectrum of a
single self-assembled quantum dot, measured at 4K in a Helium bath
cryostat. The wavelength of different charge configurations of the
exciton transitions was blue shifted to about 940 nm. Every maximum
corresponds to an “exciton transition” between the s-shell in the con-
duction and the s-shell in the valence band. The different transition
energies are due to the Coulomb interactions between electrons and
holes (see schematic insets in Fig. 10).°>"*” The exciton transition is
labeled with X and consists of one electron-hole pair."**'*" Two elec-
trons and two holes form the biexciton (XX—an exciton transition
in the presence of another exciton), an exciton with an additional
electron in the s-shell is called a negatively charged trion (X™) or
“hot-trion” (X, ), if the additional electron is in an excited state.'”?

In combination with an electrical diode structure (as depicted in
Fig. 4), an electric field can be applied which changes the electrostatic
energy of the electrons/holes in the quantum dot. Changing the elec-
tric field at the position of the quantum dot has two effects that can be
seen in Fig. 11, where the photoluminescence intensity is shown as a
function of the wavelength and applied gate voltage V: (i) It changes
the probability for electrons to tunnel into the dot. (ii) The transition
energies are shifted as a result of the quantum-confined Stark
effect.””” '*” The transition lines decrease in the wavelength as the gate
voltage is increased in Fig. 11.

Changing the probability for electron tunneling into the dot by
the applied gate voltage changes the average occupation of the dot
with electrons. If the tunneling rate between the dot and the charge
reservoir is higher than the recombination rate (that means, the
tunneling rate is above gigahertz), the quantum dot will be always in
an equilibrium situation with the charge reservoir. In this situation,
increasing the gate bias increases the average occupation in the quan-
tum dot with electrons. Starting from an empty to a quantum dot with
one or two electrons, sharp transitions between the exciton (empty
dot) and charged trions (one or two electrons in addition to the exci-
ton) are visible (demonstrated before in Warburton et al.*’). If the
tunneling rate between the dot and the charge reservoir is much
smaller than the recombination rate (as in Fig. 11), different exciton
transitions overlap strongly in gate voltage (without sharp transition
between different exciton complexes). The number of electrons inside
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FIG. 11. Microphotoluminescence 2D-(u-PL) map of a single self-assembled InAs/
GaAs quantum dot. Different bright orange lines correspond to different excitonic
transitions. Changing the gate voltage changes the probability of the number of
electrons present in the dot during the photon emission. The small decrease in the
wavelength of every transition line for the increasing gate voltage is due to the
quantum-confined Stark effect.

the dot for a specific gate voltage depends now strongly on the capture
rates of the electrons and holes into the dot states in the photolumines-
cence measurement.

The excitonic transitions of the quantum dot can be described as
a two-level system, where the empty dot is the ground state |0) and
the exciton configuration is the excited state [1). A two-level system
will always have single-photon character. This single photon emission
makes self-assembled dots promising building blocks for future appli-
cations in quantum information technologies.'* '** Many groups
have investigated and optimized the single-photon emission from a
single self-assembled quantum dot'*” ' to get, for instance, highly
indistinguishable photons’”'** '’ or address single electron (or hole)
spins. The electron or hole spin can be used as a stationary spin-qubit,
where it can be detected'® " and manipulated'”*'"* by optical
means, and the information of the spin state can be transferred to
single photons as flying qubits by a spin-photon interface.”” " The
orientation of the electron spin in the quantum dots is then encoded
in the polarization of (at best) the single and indistinguishable photon.

Extracting these single photons into one direction is the next
major challenge. For instance, the quantum dots can be coupled to a
waveguide'”” in a photonic crystal.'*’ The waveguide guides the pho-
tons into the right direction (a fiber of fiber coupler), while the pho-
tonic crystal shortens the lifetime'®' by the Purcell-effect,*” giving a
higher number of photons per second in the so-called weak coupling
regime. The same effect has a microcavity in the weak coupling
regime, experimentally explored by a number of groups.'™ '“° In the
strong coupling regime,'””'” the light-matter interaction between the
excitons in the quantum dot and the cavity modes gets so strong that
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the photon is reabsorbed, emitted, and reabsorbed, giving rise to Rabi
oscillations.

B. Resonant excitation and resonance fluorescence

Another optimization of the single photon generation is to use
resonant excitation. In the photoluminescence measurements before,
the excitons are generated in the surrounding matrix material of the
quantum dot in a photoluminescence measurement. The charge car-
riers relax into the dot states randomly, and the charge state is not
always perfectly controllable, as visible in the two-dimensional photo-
luminescence map in Fig. 11. Moreover, the spectral resolution in PL
measurements is mostly limited by the resolution of the spectrometer
(about 30 ueV). A much higher spectral resolution can be achieved by
using resonant excitation methods,'”’ where the laser excitation
energy equals the transition energies. No charge carriers are generated
in the vicinity of the dot, and the light-matter coupling of a two-level
system (as a text-book system in quantum optics'*>"'**) can be studied
directly.

The spectral resolution is no longer limited by the spectrometer;
it is given by the uncertainty of the applied gate voltage (as the Stark
effect shifts the transition energy) and the spectral bandwidth of the
laser light. As a consequence, the resonant light scattering has a much
higher spectral resolution of up to 0.05 peV. However, the challenge is
now to separate the resonantly scattered photons from the excitation
laser light. One possibility is to interfere the coherently scattered quan-
tum dot photons with the excitation laser again in a so-called differen-
tial transmission (or reflection) measurement.”” "’  Another
experimental method is the resonance fluorescence, which will be
briefly discussed in the following,”"’

In the first experiments of resonance fluorescence on a semicon-
ductor quantum dot,”*”""*"* the photon emission from the dot was
detected at normal incidence to the sample surface, while the laser
excites the dot from the side. Muller et al.” used in addition a planar
mirror cavity to further reduce the light scattering into the detection
optics. With the same intention, Melet et al.”® excited the dots in a
ridge waveguide structure.

A different geometry for the resonance fluorescence experiments
is excitation and detection along the same axis,’ "% a5 schemati-
cally depicted in Fig. 12. The sample is placed on a piezostage that can
move in all three dimensions. Together with a high-numerical aper-
ture (NA) microscope objective and a solid immersion lens (SIL) on
top of the sample, these parts are placed in a Helium cryostat, operat-
ing at T=4.2K. The microscope objective focuses the excitation laser
to a spot size of about 1 um, while the zirconium SIL enhances the
coupling efficiency back into the detection path.'””

The resonance fluorescence setup works now as follows: A tun-
able and frequency-stabilized laser that is coupled into a single-mode
excitation fiber (see Fig. 12) is collimated in free space and passes a
high-quality polarizer (extinction ratio >107) before reflected into the
direction of the quantum dot sample by a 90/10 beam splitter. 90% of
the laser light is transmitted onto a photodiode that is used to monitor
the laser light excitation power; the other 10% is used for the resonant
excitation. After dot excitation, the scattered quantum dot photons are
collected by the microscope objective again and pass the same 90/10-
beam splitter before directed through a second polarizer. The CCD
camera gives an image of the sample surface with the focused laser
spot for alignment.
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FIG. 12. Schematic picture of a resonance fluorescence setup. The laser light from
the excitation fiber is collimated, passing a linear polarizer and a 90/10 beam split-
ter before focused onto the sample by a microscope objective through a solid
immersion lens (SIL). The sample with a layer of self-assembled quantum dots is
mounted on a piezostage that can be moved in all directions. The quantum-dot pho-
tons are collected by the objective again, passing two beam-splitters and a second
linear polarizer before being focused onto the detection fiber. The photo-diode is
used to monitor the laser power, while the CCD camera provides an image of the
laser spot on the sample surface.

The second polarizer is set to cross-polarization. The laser light is
scattered on the sample surface, conserving mostly the polarization
angle, while the self-assembled quantum dot rotates the polarization
angle. As a consequence, the directly scattered laser light photons are
blocked, while parts of the quantum dot photons can pass the second
polarizer and will be directed into the detection fiber. By adjusting
both polarizers precisely, the laser background can be suppressed by a
factor of more than 107, and the ratio of the laser to dot photons
reaches the values of more than 1:1000, i.e., counting single photons
on an avalanche photon diode (APD) gives just one “wrong” laser
photon on 1000 “correct” dot photons.

Resonant excitation (including resonance fluorescence and differ-
ential transmission) is perfectly suitable to study the text-book quan-
tum optics of resonant interaction between a two-level system and the
light field'”*'****® and realize the optical manipulation of quantum
states.””” Moreover, in combination with single photon detection,
strong light-matter coupling in Rabi-oscillations,””**"” the observation
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of the Mollow-triplet, photon entanglemen and photon
light squeezing”'”’ have been demonstrated in resonance measure-
ments. This review shows in this chapter another possibility to use the
resonance fluorescence: As a fast detector for nonequilibrium electron
dynamics of a single self-assembled quantum dot.

Coming back to the light-matter interaction, the two levels of
ground (empty dot) and excited (exciton) states are separated by an
energy difference of E = hiwy. In a semiclassical approach (the light
field is treated by a monochromatic electromagnetic wave), the time-
dependent Schrodinger equation has to be solved for a laser energy
that is close to the transition energy. The light field is treated as a
perturbation to the system. Without any damping or dephasing, the
probability 7,() for finding the system in the upper state |1) is then

mi(t) = cos®(Qut/2), (8)

with the Rabi frequency Qg = 1y, Eo/h, where p, is the dipole matrix
element and &, the amplitude of the electric field. This equation is
slightly modified, if the laser energy is not exactly in resonance with
the transition

2
ni(t) = QR cos?(Qt/2), 9)

where
QF = Q2 + 50, (10)

with d as the detuning,'”*'”* The frequency of the Rabi oscillations
increases, while the amplitude decreases as the laser light is more
detuned to the resonance.

The probability of finding the system in the upper level n,(f) (the
same is true for the lower level) oscillates back and forth between the
two levels with the Rabi angular frequency Q (or Qr without detun-
ing). Increasing the laser excitation power decreases the transition
time from an empty dot to a dot containing one exciton. This creates a
coherent superposition between the ground |0) and excited |1) states:
[W(t)) = a(£)|0) + B(£)|1), where the probability n,(t) is the square
of the complex amplitudes: o (¢) = |a(t)|* and ny (£) = |B()|%.

However, in an experiment, it is not easy to observe the Rabi
flopping as coherent oscillations. The experimental observation needs
strong laser beams, and the laser has to be pulsed, so that the pulse
energy can be varied and the final superposition state can be deter-
mined by changing the pulse duration or the laser intensity.”*””*""
Moreover, every quantum mechanical system is subject to decoher-
ence (damping) that changes the amplitude and phase of the quantum
state. At low laser powers, the Rabi oscillation period would be longer
than the decoherence time. Therefore, high powers are needed to
shorten the Rabi period time, at least as sufficiently high that the
period is shorter than the radiative lifetime (ie., the spontaneous
emission time).

The decoherence is characterized by two time constants T; and
T;. In the derivation from Bloch et al.”"” for nuclear magnetic reso-
nance, T; corresponds to inelastic scattering events, whereas T; corre-
sponds to elastic, energy-conserving, scattering events. The inelastic
events (T7) change the amplitude of the state. For instance, for a spon-
taneous emission event, the decay to the ground state occurs spontane-
ously and destroys in this moment completely the coherence of the
wave function. The T;-time is related to an elastic scattering process
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that destroys just the phase of the wave function (for instance by
electron-electron scattering). In most situations, both dephasing pro-
cesses (elastic and inelastic) are present, and the total dephasing rate is
given by

1 1 1

S .2 11
T, 2T1+T;’ (an

where T is still the above-mentioned time constant for the dephasing
by population decay. However, T, gets here (as in most of the litera-
ture studies, too) a different meaning. It is now the sum of the dephas-
ing by population decay T; and the so-called “pure dephasing”
time T5.

The environment is a strong source of different dephasing pro-
cesses for quantum dots, where mainly the spin noise and charge noise
dominate the T -time. Charge noise shifts the quantum dot transition
energies via the quantum-confined Stark effect.”"”'>*"” Charge carrier
fluctuations in the environment dominate in nonresonant excitation
experiments and samples with high defect densities. The spin noise
originates from the small fluctuations in the spin bath of about 10°
nuclear spins in the dot.”"*'*"**" The orientations of the nuclear spins
are randomly distributed and are not equalized to zero.””' The hyper-
fine contact interaction couples the effective Overhauser field of the
fluctuation nuclear spins to the electron spin in the dot.

A system with dephasing mechanisms cannot be described by
the Schrodinger equation, as it is only valid for pure quantum states.
Using the density matrix for incoherent statistical mixtures'”" gives
the average occupation probability in equilibrium of the upper level
with the dephasing time constants T} and T, (Ref. 58)

1 T,/ T,Q?
S 2A0? +1)T2 4 Ty TQ*

n (12)
This equation describes the resonance fluorescence signal as a function
of the excitation power. As the number of photons emitted by the dot
is directly proportional to the occupation probability of the upper level
n; (in a steady-state situation) and the laser excitation power P is
linked to the Rabi frequency Q o< P, Eq. (12) describes also the fluo-
rescence intensity as a function of the laser power (shown as a solid
line in Fig. 13 for a trion transition). The fluorescence intensity is cal-
culated by I(P) =Iyn(P) at constant detuning dw by using Eq. (12)
and can be fitted to the data in Fig. 13. The resonance fluorescence
intensity starts to saturate above P = 0.1 uW/um? where the average
occupation n, approaches n = 0.5 (i.e., the dot is half of the time occu-
pied with an exciton or a trion) and the recombination rate equals the
absorption rate. This will be of importance later.

The intensity of exciton and trion transitions for different laser
excitation energies and gate voltages is shown in Fig. 14(a). The
applied gate voltage induces the quantum-confined Stark effect'* that
shifts the resonance frequency. The exciton transition energy shifts
from 1.30885eV at V,=0V to 1.3093 eV at V,=0.26 V. At this gate
voltage, an electron tunnels into the quantum dot and the exciton
transition is quenched. The trion transition is located at lower energy
due to the stronger attractive electron-hole Coulomb interaction than
the repulsive electron-electron interaction.

The fluorescence signal from the exciton and trion transitions is
shown independently in Figs. 14(b) and 14(c), respectively, for a fixed
laser excitation energy. Clearly visible in Fig. 14(b) are the two
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resonances that are the two bright exciton transitions, separated by the
fine-structure splitting."”"**>~*** The single resonance in Fig. 14 corre-
sponds to the trion transition. The fine-structure splitting can be tuned
by piezoelectric-induced biaxial stress to zero to obtain entangled pho-
ton pairs,””**® another important ingredient for quantum informa-
tion technologies, for instance, in quantum repeaters in a visionary
quantum internet (see Wehner et al.”” and references therein).

V. TIME-RESOLVED ELECTRICAL
TRANSCONDUCTANCE SPECTROSCOPY

Section V will review the recent progress on time-resolved (non-
equilibrium) transconductance spectroscopy on an ensemble of dots.
The InAs/GaAs quantum dots are embedded in a high-mobility elec-
tron transistor structure (as shown in Fig. 5). A two-dimensional elec-
tron gas (2DEG) is used, on the one hand, as a charge reservoir for
electrons that can tunnel through a tunneling barrier into the dot

states. On the other hand, the 2DEG is a very sensitive charge detector.
The measurement techniques of a conduction channel (the 2DEG
here) has lots of similarities with the readout process in a Flash mem-
ory.”*® The quantum dots are the storage unit, and the electron gas is
the readout channel in a quantum dot memory device.*" '

Laser power (uW/um?)

FIG. 13. Intensity of the resonance fluorescence as a function of the laser excitation
power. The orange data point shows the resonance fluorescence counts of the
quantum dot for the increasing laser power. The number of counts increases line-
arly until it saturates for an excitation power of more than 0.1 W/um?. The solid
line is a fit to the data, using Eq. (12) for the average occupation probability of the

upper level in equilibrium. A. Experimental method
To understand the measurement principle of the time-

resolved electrical transconductance spectroscopy, I would like to
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FIG. 14. Resonance fluorescence (RF) of a single self-assembled InAs/GaAs quantum dot. (a) A two-dimensional RF scan of an exciton (X) and trion (X™) transition for differ-
ent excitation laser energies and gate voltages. The exciton transition is shifted to higher energy as the gate voltage is increased from V, =0V up to 0.26 V. At a gate voltage
of V= 0.26V, an electron can tunnel into the dot from the reservoir. The fluorescence signal of the exciton is quenched, and the trion transition can be observed at lower ener-
gies between V,=0.26V and 0.36 V. (b) A line-cut at a constant energy of 1.3096 eV for the exciton transition with its fine-structure splitting. (c) A line-cut at a constant energy

of 1.3041 eV which shows the trion transition.
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add first some remarks to the capacitance-voltage spectroscopy (C-
V), already explained in Sec. ITI B. This should help us to under-
stand the ingredients of time-resolved measurements on nonequi-
librium dynamics.

In the “C-V spectroscopy,” the applied gate voltage V, sets the
Fermi energy in the back contact with respect to the confined states in
the quantum dots (cf. Fig. 8). Starting at high negative gate voltages
(Vg < —0.9V), the quantum dots are completely empty. Increasing
the gate voltage successively fills the dots with electrons until they are
completely charged with six electrons at V,=0.3 V. In this sense, the
static gate voltage defines the initial charge state of the dots. In the C-
V measurement, this static gate voltage is superimposed by a small ac
voltage (~5-10mV) that is the “excitation source.” It excites the sys-
tem “quantum dot-charge reservoir” slightly into a nonequilibrium
situation, so that the electrons tunnel into and out of the quantum
dots to reach the equilibrium condition again. The ac tunnel current
(plus phase) between the dot and the reservoir is finally measured as a
capacitance signal. To summarize, for a dynamical measurement, we
need the following: (i) an initial state preparation, (i) excitation to
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drive the system into a nonequilibrium situation, and (iii) time-
resolved detection of the signal (capacitance in the C-V spectroscopy).

In the same manner, we can now understand the time-resolved
electrical transconductance spectroscopy, which I will explain in more
detail by using Fig. 15. An initial gate voltage V,; is applied between
drain and gate contacts [red line in Fig. 15(a)], which sets the initial
equilibrium occupation of the quantum dots with electrons [step (i)].
As an example, displayed in Fig. 15(b), the dots are completely empty
for a certain high negative gate voltage V,;, as the Fermi energy Ep
in the reservoir is below the lowest level in the dots. Increasing this
initial gate V,,; voltage will increase the initial average occupation with
electrons.

Besides the average occupation with electrons in the dots,
the gate voltage determines the charge carrier density in the two-
dimensional electron gas n,p, see Fig. 15(b). The electron gas is
depleted for the initial (negative) gate voltage V,, and hence, the
conductance G(t) & 6 = enyp(t)u(n) is reduced [orange line of
the source-drain current I ; in Fig. 15(a)]. The relation between
conductance G,p and conductivity ¢ in 2D is given by the aspect

FIG. 15. Schematic principle of the time-resolved transconductance measurement. (a) An applied source-drain voltage V;, gives a certain source-drain current /sy that is
directly related to the conductance G() of the two-dimensional electron gas (2DEG). (b) Schematic band structure for an initial gate voltage V;,, where the quantum dots are
completely empty before the gate pulse V. The electron density n,p, is reduced in the 2DEG before the gate pulse is applied (t < 0). (c) At t=0, the gate pulse is applied so
that the Fermi level is shifted higher in energy with respect to the quantum dot states. The response of the conductance G(f) of the 2DEG is @ a fast increase in the conduc-
tance due to charging of the 2DEG and @ a slower transient, which is due to the tunneling of electrons into the dot states (cf. Fig. 16). These “missing electrons” are labeled
as holes. (d) Schematic band structure after the applied gate pulse V; at t > 0. The electron density in the 2DEG is increased, and the tunneling of electrons into the quantum

dot states takes place.
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ratio of the length I to width w of the two-dimensional channel:
0= Gyp & This relation can be easily understood by comparison
to the 3D case: In three dimensions, the conductivity (as an uni-
versal material property) can be derived from the absolute (mea-
sured) value of the conductance, multiplied by the length [ and
divided by the cross-section A of a wire: ¢ = Gsp 4. In 2D, the
cross section is just a width w, giving the formula for the 2D case.

Now follows step (ii): The excitation into a nonequilibrium situa-
tion by an applied gate pulse V, [upper red line in Fig. 15(c)]. The
reaction of the system is twofold: @: On a time scale of the RC time
constant of the device, the two-dimensional electron gas will be filled
with electrons, visible as a sharp increase in the source-drain current
[or conductance G(f)] at point @ in Fig. 15(c). @: Electrons tunnel
through the tunneling barrier into the quantum dots on a longer time
scale, leaving “missing electrons” (holes) in the two-dimensional elec-
tron gas.

In a very simplified picture, the holes in the 2DEG reduce the
conductance G(f) by reducing the charge carrier density n,p.
However, I have to explain this effect a little bit more precisely in terms
of “How is the conductance in the 2DEG changed by electrons stored
in the quantum dots?” Electrons that tunnel through the tunneling
barrier reduce the conductance in the electron gas in principle in two
ways: First, a charged layer of dots depletes a proportional number
of electrons in the 2DEG, given by a relation to the lever arm L [see
Eq. (1)].” In this sense, the missing electrons (called holes before) are
actually given by an depletion of the 2DEG by the charged quantum
dots. On the other hand, the conductance G is determined by its con-
ductivity ¢, which is given by the charge carrier density “as well as” its
mobility: G o< 0 = enyppi(n). However, detailed investigations have
shown that the influence of the charge dots as Coulomb scatters can
be neglected,””*** and the charge carrier mobility z(n) changes mainly
by the depletion of the electron gas.

This allows us to assume that the conductance change AG is
mainly proportional to the number of charge carriers Angp trans-
ferred into the quantum dots

AG x AHQD. (13)

For small excitation voltages AV,, the density of states D(E) can
be derived from the total change in conductivity A (with Ac < AG)

Ao Ampep ., , Angp .,
AVg = ﬁ =Jeu AE Ae“uD(E). (14)
el

The change in conductance AG can be easily measured by a change
in the current I,; using a current amplifier for a constant applied
voltage between the source and the drain contact (cf. Fig. 15).
These transconductance measurements are carried out in a liquid
helium bath cryostat at T=4.2 K for a constant source-drain volt-
age of typically V; ~ 10 mV. The measurement is triggered by a
function generator that sets the gate voltage V, with respect to the
source contact.

A typical measurement of a conductance transient G(f)—that is
directly related to the electron tunneling into the dot states—is shown
in Fig. 16. After the abrupt change in the gate voltage at t = 0, the fast
increase in the conductance (t,p =~ us) at point @ is visible. This fast
increase in the charge carrier density in the electron gas is limited by
the RC time constant, given by the RC characteristics of the device and

REVIEW scitation.org/journal/are

the experimental setup. Here, the response time of the electron gas is
on the order of f,p ~ 1 us. The RC constant has to be significantly
faster than the tunneling time because this difference in time constants
enables us to evaluate the charging of the quantum dots independently
from the charging of the 2DEG.

After this short RC time constant, the dot states are in a nonequi-
librium situation with the electrons in the 2DEG. As a consequence,
tunneling of electrons into the dot states decreases the conductance on
a time scale of the average electron tunneling time [point @ in Figs.
15(c) and 16], on the order of a few milliseconds in Fig. 16. The change
in conductance AG(t) = Gy — G(t) is proportional to the number of
transferred electrons nqp.

B. Near-equilibrium measurements

After the introduction of the measurement principle to
obtain a transconductance transient, the next step is to explain
the procedure to derive a spectrum from these transients of the
electron dynamics. This time-resolved transconductance spec-
troscopy can be divided into two different measurement schemes:
the “near-equilibrium measurements,” explained in Secs. V B and
V C and the “nonequilibrium measurements,” described in Sec.
VD later on.

In the near-equilibrium measurements, a set of transients for dif-
ferent gate voltages and “fixed small pulse amplitude” AV probe the
electrical density of states (DOS) of the many-particle ground states in
a near-equilibrium situation. The wording “near-equilibrium” can be
understood in the sense that the system “dot-2DEG” is only slightly
driven out of equilibrium by the small additional voltage pulse ampli-
tude AV. The observed transient is the relaxation process into equilib-
rium again by electron tunneling into (or out of) the quantum dot
states. The electron system “inside” the dots is always in equilibrium
during this measurement scheme.

rcharging 2DEG (t,;)
== charging QDs (ms)

/,
7

Gf

Conductance G (a. u.)

Time t (ms)

FIG. 16. Time-resolved transconductance measurement of the electron tunneling.
At t=0, the gate pulse is applied and the conductance G of the 2DEG is mea-
sured. The response of the conductance G(t) of the 2DEG is @ the fast increase in
the conductance due to charging of the 2DEG (here: rise time fp ~ us) and @ a
slower transient (here: top ~ ms), which is due to the tunneling of electrons into
the dot states, as described before in Fig. 15. Adapted with permission from Beckel
et al, Phgls. Rev. B 89, 155430 (2014). Copyright 2014 the American Physical
Society.”
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FIG. 17. Operation principle for the near-equilibrium transconductance spectrum. (a) The initial gate voltage V"

sets the initial charge state of the quantum dots from n=0...6
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electrons. The pulse voltage ng is slightly higher to charge/uncharge the quantum dots with just one electron. (b) Schematic picture of the density of states in an ensemble of
self-assembled dots and (c) electron tunneling process into different many-particle ground states.

This set of transients is obtained by a pulse scheme that is
explained by the schematic representation in Fig. 17. The spectrum
starts with an initial gate voltage V., [see Fig. 17(a)], where the quan-
tum dots are uncharged, i.e., the Fermi level in the 2DEG is well below
the s-shell of the dots [Figs. 17(b) and 17(c)]. As mentioned, this initial
gate voltage sets in the following the initial charge state. Now follows
the excitation into a slightly nonequilibrium situation by an applied
gate pulse Vgl. The Fermi level in the 2DEG is now above the s;-states
in the dots, and electrons can tunnel into the s-shells of the quantum
dots [Fig. 17(c)], reducing the conductance of the 2DEG.

The pulse amplitude AV = V; — V., should be smaller than the
energy spacing between different charge states n=1.6. This ensures
that only one electron per QD is charged or discharged, and moreover,
the QD itself is not in a nonequilibrium situation where, for instance,
an electron is charged into the p-shell without occupation of the s-
shell. Decreasing the pulse amplitude AV means also for an ensemble
of millions of quantum dots that a smaller fraction of dots are charged
with an additional electron for a certain gate pulse Vgl. The next frac-
tion of smaller-sized dots with higher energy of the s;-state will be
charge for the next gate pulse between V?, and V2.

Finally, after the pulse at Vg1 and simultaneously recording the
charging transient G(¢), the gate voltage is set back to V}; and the elec-
trons tunnel back into the 2DEG again. The complete set of transients
is obtained by setting step-like the next initial gate voltage V7, to the
previous pulse voltage Vg1 [see Fig. 17(a)], charging the QDs initially
from zero up to six electrons [Fig. 17(c)]. The spectrum is obtained by
plotting the amplitude in the conductance change (AG in Fig. 16) as a
function of the gate voltage V.

Figure 18 shows such a near-equilibrium spectrum for
AV=40mV. The gate voltage is increased from Vy=—1V (empty
quantum dots) up to 0.5V (completely filled quantum dots). The
y-axis shows the transient amplitude AG(t=20) ms for a situation,
where the dot-2DEG system has reached equilibrium (it is the differ-
ence in conductance AG between t =0 and 20 ms in Fig. 16). It corre-
sponds directly to the density of states in equilibrium.

The dot density of the sample is about 8.3 x 10° cm 2, deter-
mined by atomic force microscopy studies of similarly grown dots on
the sample surface. The gated area is 1.3 x 10> um?, which leads to a
large ensemble of 1 x 10" probed dots. The inhomogeneous ensemble
broadening is about 10meV. The direct Coulomb interaction ES
between the two electrons in the s-shell can be obtained by the lever-
arm A=7 and the voltage separation between the two s-states:
ES = 20 meV. For the s-states in Fig. 18, this is sufficient to resolve
clearly two distinct peaks. However, the repulsive Coulomb interaction
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0.0
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FIG. 18. Near-equilibrium transconductance spectrum. The amplitude of the change
in conductance AG vs the applied gate voltage V;. Six individual peaks of the
charging of the two-dimensional harmonic oscillator are visible from electron tunnel-
ing into the many-particle ground states. Reproduced with permission from Appl.
Phys. Lett. 95, 022113 (2009)]. Copyright 2009 AIP Publishing.”**
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in the p-shell for a two-dimensional harmonic oscillator is smaller
Ejp = Epypuz Eg = 10meV  and  Epy = JEG =17.5meV  (see
Warburton et al® for a simple model calculation). Therefore, the
ensemble broadening is too large to resolve clearly the p-states sepa-
rately. Only a small dip can be seen between the p, and p; states in Fig.
18, due to the larger Coulomb interaction between these two states.

Coming back to the comparison with the capacitance voltage
spectroscopy (C-V): As mentioned in the motivation for every
time-resolved nonequilibrium dynamics measurement, this near-
equilibrium transport measurement acts like “time-resolved capaci-
tance spectroscopy,” where the amplitude of the transient corresponds
to the absolute value of the current and the time constant is related to
the phase shift between the applied voltage and the current in an ac
capacitance measurement.”’ A comparison with the capacitance-
voltage measurement in Fig. 8 shows these similarities; however, the
transport spectroscopy in Fig. 18 has a much higher resolution for a
weakly coupled dot-2DEG system, which will be demonstrated in the
following.

C. Weakly coupled hole states

Weakly coupled means that the tunneling rate is very small, and
the relaxation rate into equilibrium exceed seconds, still giving a high-
resolution spectrum of the equilibrium ground states. This will be
shown here for hole states in InAs/GaAs quantum dots that exhibit
the same level structure with s-, p-, and d-shells.

Figure 19 shows two conductance transients for one fixed offset
gate voltage V, and a pulse height of AV’ =50 meV. At t= 0, a positive
voltage step with AV lifts the Fermi level in the two-dimensional hole
gas above the confined hole states. The holes tunnel out of the quan-
tum dot states into the hole gas, schematically displayed in the upper-
left inset in Fig. 19. A transient with increasing conductance and
amplitude AG is visible. Due to a thick tunneling barrier (see Nowozin

T T T T T T T T T T T T T

T=42K

N

Hole capture

Conductance G (arb. units)

0 20 40 60 80 1
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FIG. 19. Time-resolved conductance measurement of hole tunneling into InAs
quantum dots. For a positive voltage step of AV =50meV at t =0, the Fermi level
in the two-dimensional hole gas (2DHG) is lifted up and holes can tunnel from the
dots into the 2DHG (see the schematic inset in the upper left corner). A transient
with increasing conductance and amplitude AG is visible. Vice versa, att=60s, a
more negative voltage is applied and the holes tunnel from the 2DEG into the dot
states (lower right inset) while a decreasing conductance transient is measured.
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et al”’"*> for more details on the sample structure), the tunneling
time is above 10 s, five orders of magnitude longer than observed
before for the electron tunneling in Fig. 16. Vice versa, a more negative
voltage is applied at t =60 s, and the holes can tunnel from the hole
gas back into the dot states again (lower right inset in Fig. 19). A
transient with decreasing conductance is measured between t=60
and 120 s.

The transients in Fig. 19 display the emission of holes from and
the capture into the states of the quantum dot ensemble. The ampli-
tudes of the transients are directly related to the number of holes that
are transferred during each voltage pulse. Plotting the amplitudes of
the conductance change AG vs the gate voltage V, (it is a DC offset
bias) at which the transient was measured, a structure similar to the
one observed in the C-V measurements in Fig. 8 is visible in Fig. 20.
At a temperature of 4.2 K, the dominant emission and capture process
for the holes is pure tunneling through the barrier, and clearly distinct
maxima for hole charging into the s;- to the p4-state are visible. The
better resolution in comparison to the electron spectrum in Fig. 18 has
two reasons: (i) the inhomogeneous broadening is slightly reduced to
9meV in this hole sample (see Nowozin et al”"). (ii) Measurements
and calculations using the 8-band-k-p-model””' show a stronger hole
repulsion energy in the p-shell due to Coulomb interaction
(~15meV), giving a larger separation energy in the spectrum. Even
for a smaller quantization energy of the hole states between the s- and
p-shells (about 20 meV), the spectrum shows as a consequence of the
stronger Coulomb repulsion clearly visible peaks in Fig. 20.

When the temperature is increased above 4.2K, the peaks
become less distinct, and they vanish completely above 70 K. For
increasing temperature, thermally assisted tunneling is the dominating
process, where the holes are thermally activated to a higher state and
then tunnel through the barrier.'”*°
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FIG. 20. Near-equilibrium transconductance spectrum of the hole states. The
change in conductance AG for hole tunneling into the dot states vs the applied off-
set gate voltage V;. For increasing temperature, the visibility of the six charging
peaks decreases; however, the s-shell is still visible up to 70 K. Adapted with per-
mission from Nowozin et al., Phys. Rev. B 84, 075309 (2011). Copyright 2011 the
American Physical Society.””’
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D. Nonequilibrium quantum dot states

In the previous measurements, the quantum dots themselves
were always in an equilibrium situation, and the many-particle ground
states for an occupation with 1...6 electrons (or holes) were observed
in the transconductance spectrum. However, for the visionary applica-
tion of quantum computation, accessing the excited states—that form
with a ground state a quantum bit (Qubit)—is the first ingredient.
Moreover, the coherent superposition of both states and the coupling
of different qubits are further challenges. It will be shown in the
following Secs. V' D and V E that the time-resolved transconductance
spectroscopy enables us to access the nonequilibrium excited states in
an all-electrical measurement scheme.

All we have to do is to change the pulse sequence slightly to pre-
pare these nonequilibrium states inside the quantum dots and observe
their relaxation dynamics into equilibrium. The new pulse sequence
for the nonequilibrium measurements is schematically demonstrated
in Fig. 21. The initial gate voltage V};; controls again the number of
electrons loaded initially into the quantum dots (from zero up to six
electrons). However, in this nonequilibrium measurement, it is fixed at
a constant value for the entire measurement: V., = V2, = ... = V2.
It follows again the pulse bias V', as depicted in Fig. 21(a). As the ini-
tial gate voltage is fixed in the nonequilibrium measurement, the pulse
amplitude AV" = V¢ — Vi, increases. Note this difference between
the near-equilibrium pulse sequence and spectrum in Sec. V B and the
nonequilibrium measurements here. In the “nonequilibrium” mea-
surement, the initialization gate voltage V7. is fixed, while the gate
pulse V' is increased in steps. The pulse amplitude AV changes dur-
ing the measurement. In the near-equilibrium measurement, however,
the initial gate voltage is changed, while the pulse amplitude is fixed.

Increasing the amplitude of the pulse AV leads to a situation,
where more and more QD states are accessible for electron tunneling

REVIEW scitation.org/journal/are

from the 2DEG. This is schematically demonstrated in Fig. 21, where,
for instance, the pulse bias Vg" in Fig. 21(a) fills all states in the p-shell
[shown in Fig. 21(b)]. The overall amplitude of the conductance tran-
sient G(f) will increase for increasing pulse amplitude [see Fig. 21(c)],
and hence, AG(?) is a step-like function, as schematically illustrated by
the black line in Fig. 21(d). Steps in the conductance amplitude AG(#)
always appears for pulse voltages V,, where another dot state is avail-
able for electron tunneling. The density of states (the nonequilibrium
spectrum) can be obtained by taking the first derivative of the conduc-
tance change AG(f) with respect to the gate voltage V,, as derived in
Eq. (14) and schematically depicted by the orange line in Fig. 21(d).
Taking the amplitude of the transients G(f) at a time much larger than
the electron tunneling time yields the same equilibrium spectrum as
before in the near-equilibrium spectrum. This means that the equilib-
rium spectrum of the quantum dot states is obtained in a nonequilib-
rium measurement. Much more important is the fact that the
reduction of the evaluation time ¢ in AG(f) (using the amplitude of the
conductance change AG(t) at shorter time scales) allows us to access
spectra of nonequilibrium situations in the quantum dots; this will be
discussed later in this section.

I will now come to the measurement: Starting first from an initial
gate voltage V;,;= —0.8 V, where the quantum dot ensemble is empty
[see the schematic picture in Fig. 22(a), left]. The conductance change
AG(t) reflects again the average electron occupation number n(t) of
the quantum dots. Figure 22 shows this change in conductance AG(#)
for four different charging times from a nonequilibrium situation at
0.02 ms up to the equilibrium situation at 20 ms as a function of the
applied gate pulse V,. The schematic pictures in Fig. 22(a) display how
the average number of electrons in equilibrium n,, increases by
increasing the gate pulse voltage V, up to 0.3V [upper figure in Fig,
22(c)]. For every gate voltage V,, the conductance change increases
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FIG. 21. Schematic illustration of the operation principle for a nonequilibrium transconductance spectrum. (a) The pulse sequence starts with an initialization voltage V]m. =

ini

V2, = ...Vl that is fixed at the same value for the entire spectrum. It controls the initial electron occupation before the gate pulse V' is applied. The pulse voltage Vg" is then

step-like increased, starting from the s;- up to the p,-state [as shown in (b)]. (c) Schematic representation of the conductance transients, where the amplitude AG increases
with the increasing number of electrons that are transferred between the 2DEG and the QDs. (d) The black solid line shows the amplitude of the conductance change vs
applied pulse voltage V;, showing a step-like increase for every additional charged QD state. The first derivative of the conductance vs pulse voltage dAG(t) /dV; yields the

nonequilibrium spectrum.
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with increasing time from # = 0.02 ms up to =20 ms since more and
more electrons are transferred.

At t=20ms, the previously discussed shell structure is already
visible in Fig. 22 as pronounced steps in AG(t) vs V,. At the shortest
time of = 0.02 ms, only one electron per dot has tunneled. This gives
the possibility to populate an excited state in the p-shell [depicted
for t=0.02ms in Fig. 22(c), bottom] or d-shell, where no electrons
have tunneled into the s-shell. For intermediate times as t= 0.2 ms,
electrons form complex exited state configurations, where relaxation
inside the dots and further tunneling drive the system into equilibrium
at t=20ms.

Figure 23(a) shows now this first derivative dAG/dV, (the den-
sity of states) as a function of the gate voltage and the transient time ¢
for a measurement that starts at 0.5 ms after the gate pulse. The initial
gate voltage was set to Vi, = —0.9 V, where the quantum dots were
completely empty. The data show the evolution of the density of states,
as the dots are subsequently filled with up to six electrons by tunneling
from the charge reservoir.

Let us start with the discussion of this spectrum at the short delay
time of t=0.5ms after the gate pulse, displayed in Fig. 23(b). The
tunneling time into the s-shell is on the order of 7,=6ms (and
7,=1.4ms into the p-shell), so that in good approximation only
tunneling into the empty dots is observed. This nonequilibrium spec-
trum shows three distinct peaks with an almost equal energy spacing
of ~52 meV, where one electron tunnels into the s-, p-, or d-shell [see
Fig. 23(b)]. It is a single-particle spectrum of a two-dimensional har-
monic oscillator (with the characteristic equidistant level spacing) with
the nonequilibrium states p* and d” of the p- and d-shells, respectively.

REVIEW scitation.org/journal/are

FIG. 22. Time evolution of the change in
the conductance AG(t) ~ n(t) as a func-
tion of the pulse voltage V. (a) Schematic
representation of the final equilibrium charge
state ng, in the quantum dots for different
gate (pulse) voltages. (b) Conductance
change AG(f) vs pulse voltage V, for differ-
ent charging times {. The equilibrium situa-
tion is reached after 20ms, where
pronounced steps in the conductance at dif-
ferent gate voltages are related to the
tunneling into different many-particle ground
states. (c) Schematic pictures for the charge
state n(f) for increasing charging time ¢ from
0.02ms up to 20 ms, for a fixed gate (pulse)
voltage V.
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It is a “quantum-dot hydrogen spectrum” of an artificial atom in a
semiconductor. Note here that the orange solid lines in the nonequilib-
rium spectra are only connections between the data points (open
circles) for different applied gate voltages V.

In the opposite limit—long charging time in comparison to the
average tunneling time t > &, t,—the signal reflects the spectrum
under the equilibrium condition in Fig. 23(c). For the delay time
shown here (f=10ms), again two maxima are observed for one and
two electrons inside the s-shell around V,= —0.6V, i.e., the s; and s,
states, respectively. The spectrally broader structure between —0.2 and
0.2V corresponds to the four charging peaks of the p-shell (cf. Fig. 8).
The spectrum in equilibrium in Fig. 23(c) is a result of electron tunnel-
ing into the excited states with subsequent relaxation into the ground
state and further electron tunneling from the reservoir. A more
detailed discussion of the time-resolved evolution of the states from
nonequilibrium into equilibrium can be found in Marquardt et al.*”’
and Beckel et al.””’

Changing the initialization gate voltage to V;,;= —0.6 V yields a
singly charged dot with one electron in the s-shell at the beginning of
the pulse sequence (schematically depicted by one electron in the s-
shell for the initial state in the upper-left corner of Fig. 24). When
already an electron is present, the second electron transferred during
the gate pulse V, will form a two-electron configuration and hence the
excitation spectrum of artificial quantum dot helium (shown in
Fig. 24). A new clear resonance can be found at Ve=-053V, which
can be identified as tunneling into the two-electron (singlet) ground
state s,, in agreement with the previous capacitance and near-
equilibrium measurements.
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FIG. 23. Evolution of the density of states in a quantum dot ensemble from nonequilibrium to equilibrium. (a) Colored surface plot of the density of states—derived from
dAG/dV,—as a function of time t and applied pulse voltage V,. The initialization voltage at t =0 was set to —0.9V, so that the quantum dots are completely empty. (b) The
nonequilibrium spectrum at t=0.5ms after the charging pulse exhibits three pronounced peaks with an almost equidistant energy spacing of ~52 meV. It is a nonequilibrium
quantum dot hydrogen spectrum with the level spacing of a two-dimensional harmonic oscillator and the excited states p* and d* of the p- and d-shells, respectively. (c) At
t=10ms, the system is in the equilibrium situation, where the well-known charging peaks of the s- and p-shells for 1...6 electrons are observed. Reproduced with permission

from Marquardt et al. Nat. Commun. 2, 209 (2011). Copyright 2011 Springer Nature.

Except from the s,-state, the spectrum has completely changed in
comparison to the QD hydrogen spectrum. A double-peak structure
can now be observed (at V,= —0.26 V and —0.2 V) and attributed by
comparison with theoretical calculations®” as tunneling into the non-
equilibrium (excited) two-electron singlet s; and triplet #; states. The
energy difference of about 10meV is a direct measurement of the
exchange interaction energy in self-assembled quantum dots, which
has been studied in complementary experiments using photolumines-
cence measurements.””** From a deconvolution of the double-peak
structure, it can be estimated that on the low-energy side of the reso-
nance V,=0.31V, about 99% of those dots will be prepared in the
triplet state. The broad resonance above a gate voltage of V,=0V can
be attributed by comparison with the theory to closely lying states with

contributions of single-particle states in the d-shell.

E. Spin-to charge conversion

Unfortunately, the spectral resolution in Fig. 24 is just sufficient
to observe the singlet/triplet splitting of the p-shell; however, it is not
sufficient to resolve the singlet and triplet states in the d-shell. In order
to obtain a better energy resolution, a method in the time-resolved
transconductance spectroscopy can be used which is known from
transport measurements on lithographically defined dots: The spin-to-
charge conversion’®**” that translates the spin degree of freedom into
different tunneling times for singlet and triplet states.

This “conversion principle” uses the fact that the decay times for
the internal relaxation mechanism of the spin singlet s; and triplet £,
states differ strongly in time. The excited p-state singlet can decay into
the s, ground state by spin conservation, i.e., without a spin-flip of the
electron. Different energy relaxation channels have been identified,

and a lot of work has been published in this area to understand the
relaxation process in self-assembled quantum dots (see, for instance,
Refs. 240 and 241). The main contributions for the energy relaxation
are Coulomb interaction (electron-electron scattering in an Auger-
type process””) and electron-phonon coupling or polarons,” ie.,
strong carrier-phonon interaction. This energy relaxation from the
excited spin singlet state into the singlet ground state is known to be
very fast, on the order of picoseconds,l“ faster than the time resolu-
tion of the time-resolved transconductance measurements here.

The spin relaxation time T from the excited triplet ¢; down to
the singlet ground state s, needs besides the energy relaxation a spin-
flip. The spin-flip can be caused by different interactions, such as (i)
electron-electron exchange,23 (ii) electron-hole exchange,z'13 (iii) the
hyperfine interaction with the spin of the nuclear bath,”* and (iv)
spin—orbit coupling.”*” The spin-flip plus energy relaxation is much
slower, with 25 us in the following experiments even slower than the
average tunneling time.”**

For the experiments of the spin-to charge conversion in Sec. V E
and the electron spin relaxation in the following Sec. V'F, a sample
structure with a thinner tunneling barrier is used.”** The tunneling
time from the reservoir into the QD states is now much faster on the
order of a few 10 ps. The experiment itself works in the same manner
as the nonequilibrium transconductance spectroscopy (see the opera-
tion principle again in Fig. 15) with an important difference: The
discharging transients will be measured (in contrast to the charging
transients before).

The experimental operation in detail is given as follows: (i) The
initial gate voltage is set to V;,;= —0.53V, so that the initial charge in
the quantum dot layer is one electron per dot. (i) A short charging
pulse with a length of t.=10 us is applied. This charging pulse fills a
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FIG. 24. Spectroscopy of excited states in quantum dot helium. The initial gate volt-
age Vj is chosen so that already one electron is charged into the sq-state in equi-
librium (initial state in the upper-left corner). The lowest resonance observed at
Vy=—0.53V is due to tunneling into the two-electron ground-state s,. Around
—0.25V, two resonances are visible which correspond to the tunneling of a second
electron into the p-shell. The splitting is the exchange energy between the excited
p-shell singlet s, and triplet state ¢;. Reproduced with permission from Marquardt
et al., Nat. Commun. 2, 209 (2011). Copyright 2011 Springer Nature.

second electron into the quantum dots, giving an excited two-electron
spin-singlet or -triplet state (depending on the pulse gate voltage). (iii)
The gate voltage is set to the initial voltage V;,; again, and the discharg-
ing transient is recorded. Figure 25 shows a representative discharging
transient at a gate voltage of V;,; = —0.53 V, where the spin-triplet
state of the p-shell was initialized by the gate pulse.

As a consequence of different relaxation times of triplet and sin-
glet states, the electrons that were injected into the p-shell exhibit two
different time constants in the discharging transient, visible in Fig. 25.
As the triplet state #; has a longer relaxation time, the electrons in the
p-shell will stay longer in the excited state and tunnel through an ener-
getically smaller tunneling barrier into the 2DEG. The amplitude of
the faster part of the transient in Fig. 25 is therefore directly related to
the number of electrons in the excited p-shell triplet (t, ). The excited
singlet state s will relax fast into the s, ground state, and hence, prepa-
ration of an excited singlet state shows a slower transient from the sin-
glet ground state. This is the spin-to-charge conversion: The spin
orientation in the excited state can be seen in the time constant of the
discharging process, and the amplitude of the slower part of the tran-
sient is directly related to the number or electrons in the excited singlet

state s; (by the fast relaxation process s; — $).
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FIG. 25. Transient of the discharging process by tunneling of electrons back into
the charge reservoir. The semilogarithmic plot shows a double-exponential decay
that originates from electron tunneling from the s, ground and the t! excited state.
Reproduced with permission from Appl. Phys. Lett. 111, 092103 26717] )]. Copyright
2017 AIP Publishing.

Fitting the transients for different gate (pulse) voltages V, leads to
these amplitudes for tunneling out of the p-state (fast process) and the
s-state (slow process). Both of these amplitudes are plotted in orange
(fast) and (slow) blue lines in Fig. 26, respectively. The triplet and sin-
glet states of the p- and the d-shell can be clearly separated by their
time constants, and the singlet-triplet spacing of about 13 meV agrees

Density of states (arb. units)

0.2 0.0 02 04

Gate voltage Vg (V)

FIG. 26. Spectra for the singlet and triplet states in the p- and d-shells. Discharging
amplitudes for the slow (blue) and fast (orange) contributions in Fig. 25 as a func-
tion of the pulse voltage V. Clearly visible are the singlet and triplet states of the p-
and d-shells for slow and fast discharging times, respectively. Reproduced with per-
mission from Appl. Phys. Lett. 111, 092103 (2017). Copyright 2017 AIP Publishing.
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perfectly with the exchange interaction in similar self-assembled quan-
tum dots.”

F. Electron spin relaxation

The “spin-to-charge”-conversion technique can be used to deter-
mine in an all-electrical measurement scheme the spin-relaxation time
of the two-electron excited spin-triplet state (t; and t}) into the singlet
ground state s,. For this, the pulse voltage is set so that the electrons
are injected into the triplet state. A certain number of quantum dots
are transferred by p-state charging from the s; ground state into the £;
excited state, cf. Fig. 26(b). The charging time ¢, is stepwise increased
from 8 s up to 80 us. Increasing the charging time increases the num-
ber of dots that are charged with electrons in the triplet state. At the
same time, the possibility for a spin relaxation process rises, bringing
these dots back into the singlet ground state s,. The fraction of dots in
the excited triplet state to the fraction of dots in the singlet ground
state can be obtained by analyzing the discharging signal.

The amplitudes of the fast contribution Az in the discharging
signal are given as blue data points in Fig. 27(a), whereas the orange
dots depict the amplitude of the slow component A,,. The amplitude
of the fast discharging dominates strongly for short charging times f,,
indicating the filling of the excited triplet state #; via tunneling from
the back contact. As the charging time increases, the amplitude of the
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FIG. 27. Triplet-to-singlet spin relaxation. (a) The emission amplitudes are shown
as a function of the charging time ;. The amplitude of the fast component is given
by the blue data points, while the slow component is given in orange. The solid
blue and orange lines are fits to the data by a simple rate equation model. (b)
Schematic illustration of the involved processes. Reproduced with permission from
Appl. Phys. Lett. 111, 092103 (2017). Copyright 2017 AIP Publishing.
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fast discharging component increases, on one hand, as more and more
dots are populated with excited triplet states. On the other hand, the
slow contribution [orange datapoints in Fig. 27(a)] increases as the
electron in the p-shell relaxes down to the ground state s-shell.
However, the spin relaxation of the ¢ -state should lead to a decrease
in the amplitude of the fast contribution Ag,g, for long charging times
above 30 us, while a saturation of the amplitude is observed in Fig.
27(a). This behavior can be explained by tunneling of a third electron
into the dots after a spin relaxation process has occurred, filling up the
pi-state [see Fig. 27(b)]. The p;-state filling leads to the same fast dis-
charging signal as the excited spin triplet state.
A more quantitatively analysis can be done by a rate equation
model of the population of the involved four states [n(s1),n(t;),
n(s2), and n(py) in Fig. 27(b)]. Taking into account the sequence
shown in Fig. 27(b), the following rate equations describe the
situation:

it 1, (15)
dné:z) _ nf(,t:) B n(;z)7 )
dngl) _ n(;z)’ 18)

where 7, is the characteristic time constant for electrons tunneling into
the p-shell and 7,,; the spin relaxation time. The amplitudes of the fast
and slow discharging components can be determined from n(s;) and
n(t,) + n(p1), respectively. Note here that only a fraction 4 of quan-
tum dots in the inhomogeneous ensemble is charged with a third elec-
tron for the applied charging voltage (see Eltrudis et al”** for more
details).

The calculated discharging amplitudes are shown as blue and
orange solid lines in Fig. 27(a) for the fitting parameters of
Tp = 14 s, 1y = 25 us, and Z=0.6. The spin relaxation time is
achieved for InAs quantum dots to the above-mentioned 7,4 = 25 us
without an applied external magnetic field at liquid helium tempera-
ture. Such spin-relaxation processes in zero-dimensional quantum
dots have been intensively studied in a situation, where the energy sep-
aration of the two spin states is small (for instance achieved by a mag-
netic field in a Zeeman-split s-shell),”>**>****>* and spin relaxation
times of up to 20 ms were found.”* In lithography-defined dots in a
two-dimensional electron gas, the s- to p-shell relaxation was studied,
where the energy difference is in the order of 1-6 meV, and relaxation
times of 200 us up to 2.58 ms were found.”***

G. Influence of the degeneracy on the relaxation times

We have until now neglected any degeneracy of the dot states
that will influence the electron dynamics. However, the electron
tunneling rate will increase by increasing the degeneracy of the final
states, as more possible tunneling paths are available. This is a direct
consequence of Fermi’s Golden rule” """ y,_ = ZH |(i|H'|f)p; for
the transition rate from an initial state i to a ﬁnal state f with the
tunneling Hamiltonian H' and the final density of states p; The final
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density of states (the degeneracy) increases the tunneling rate. I will
discuss the influence of the degeneracy (or better: multiplicity as the
number of possible transition paths from the initial to the final state)
on the electron dynamics. I will show that the time-resolved transcon-
ductance measurements allow us to determine the degeneracy of the
electronic p-shell by comparison of the experiments with a model
based on a rate equation approach.

Moreover, the knowledge of the sequence of the degeneracy for
filling the p-shell can answer the question, if this filling sequence of the
many-particle ground states in a self-assembled quantum dot (as an
“artificial atom”) is equal to the orbital filling with electrons in an
atom. In an atom, Hund’s rules describe this filling sequence. For
instance, the first rule states that the total spin quantum number in
one shell should be maximized, i.e., all degenerated states in one shell
should be populated first with parallel spins before a second antiparal-
lel spin is added. From the observation of different charge relaxation
times into equilibrium, a symmetry breaking together with a lifting of
the degeneracy is observed and Hund’s rule is not valid for a nonde-
generated p-shell, as shown in the following (see also Beckel at al.”*”
for more details).

Before going into the details of the degeneracy of the quantum
dot states, I want to start with a very simple picture of the electron
dynamics between the 2DEG (as charge reservoir) and the dot states.
Figure 28 displays schematically the 2DEG with its average occupation
with electrons, given by a Fermi-distribution function f{(E). The quan-
tum dot is simplified with three states, having no degeneracy by angu-
lar momentum or spin. Assuming that the second state with energy E,
is somehow aligned with the Fermi energy in the 2DEG, electrons can
tunnel into and out of the quantum dot, as the Fermi distribution is
not a step-like function for temperatures T > 0 K. The average occupa-
tion with electrons at the Fermi energy in the 2DEG is f (Er) = 0.5 for
T > 0K; hence, after tunneling into the second level of the dot, an elec-
tron inside the dot with energy E, has again a certain probability to
tunneling back into the 2DEG, as unoccupied states are available in
the electron reservoir. It is a dynamic equilibrium of charging/
uncharging the second dot level by tunneling [The first dot state with
energy E; is always charged, as the Fermi distribution equals unity,

2DEG Simplified QD
(no degeneracy, no spin)  The ...
E n+1
Er I'(Ep) ’
———— e E n
_— 2
IE) | o1 E,  n
.. state
f(E)

FIG. 28. Electron dynamics between a simplified quantum dot and an electron res-
ervoir. The two-dimensional electron gas (2DEG) is schematically depicted with its
average occupation with electrons vs energy, given by the Fermi-distribution f(E).
The simplified quantum dot has three electron states without degeneracy due to
angular momentum or spin. The intrinsic transition rates T'(E,) (rates without the
influence of degeneracy and Fermi distribution) are equal for tunneling into and out
of the dot, respectively.
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while the third dot level is always uncharged for a Fermi distribution
of f(E;) = 0.].

The question is now, what is the average occupation of the sec-
ond level with electrons, i.e., the probability p, of finding the dot in the
2-charge state (charged with two electrons)? The answer is, it is given
by the rates of tunneling into and out of the dot, hence, by the follow-
ing rate equations for p, and p;:

d
% = ki_2D(B)f (B2)ps
ko T(E) (1~ f(Ex))ps, (19)
dpi _ _dpy
at — dt’

with probability of finding the dot in the 1-electron charge state as p;.
This set of two rate equations describes a simple situation as shown in
Fig. 28, where the electron dynamics changes the charge state of the
dot between singly and doubly charged (n=1 and n=2). Only the
charging with one additional electron or discharging process of one
electron plays a role. I use now the relations for the tunneling rates
into the dot ;" and out of the dot y,, (for the n-th charge state)

Vn+ = Vn—t1-n = kn—1-nD (En)f (En),
Yo = Vnon-1 = knﬂn*lr(En)[l _f(En)]' (20)

The Fermi-distribution f accounts for the fact that the initial state in
the two-dimensional electron gas can be occupied, or the final state in
the 2DEG has to be unoccupied [1 — f(E,)]. The prefactor k accounts
for the number of possible paths from the initial to the final state, in
the present example of a simplified quantum dot in Fig. 28 with no
(spin-)degeneracy ki, = k. = 1.

For a more realistic dot with degenerated states, the prefactor k
differs for transitions between different charge states. Figure 29 shows
the possible configurations for a quantum dot charged with n=0...4
electrons. A configuration is a possible arrangement of electrons in
different (degenerated) states. The degeneracy leads to the so-called
multiplicity d,, the number of possible configurations for a given num-
ber of electrons n in the dot. Degeneracy is linked to the states itself,
and multiplicity (as it is used here) is linked to electrons occupying
the states, i.e., the number of configurations in Fig. 29. Multiplicity is
the degeneracy of the charge configurations, and the wording
“degeneracy” is, hence, often used for charge configurations, too.

For example, one electron (n= 1) in the s-shell has two possible
configurations, as the spin degeneracy (d; = 2) allows us to occupy the
s-shell with either spin-up or spin-down (see Fig. 29). Two electrons
(n=2) in the s-shell have only one possible configuration (you cannot
distinguish if the right or left electron has spin-up or spin-down), i.e.,
d, =1. As a consequence, the possible paths k from n=1ton=21is
ki_> =1, while it is in the opposite direction: k,_,; = 1. You may
wonder why we do not have to count also two possibilities for k;_.,, as
depicted by a second, dotted-slim black arrow from n=1 to n=2.
For the n = 1-state, the electron has either spin-up or spin-down, not
both at the same time, i.e., we have to count from “only one” initial
configuration to all possible final configurations, as already seen in
Fermi’s golden rule before. I have depicted the other possible transi-
tions from other initial configurations with dotted and slim arrows in
Fig. 29. The same holds for the transition by electron tunneling
between the n=0 and n=1 states, where k;_,o = 1 and ko, = 2,
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respectively. See Fig. 29 for all the other possible configurations and
transitions up to n = 4.

The number of possible charge configurations (the multiplicity
d,) can be reduced by lifting the degeneracy or by selection rules
(Hund’s rule). Figure 30 depicts the possible electron configurations
for n=3 and 4 in an elongated quantum dot. The elongation will lift
the degeneracy of the p-states by AE on the order of a few meV, as
now the dot has a stronger confinement in the direction of the smaller
width and the rotational symmetry is not valid anymore. As a conse-
quence, the energetically favorable p-state will be occupied first with
two electrons (see Fig. 30) for n=4, and the multiplicity will be
reduced to d; =2 and d, = 1, respectively.

The multiplicity will also be changed, if a dot with rotational
symmetry follows Hund’s rule for the p-shell. As an example, the
fourth electron for #n =4 has to have parallel spin, which reduces the

scitation.org/journal/are

not all transitions
depicted for
n=3 to n=4 / l k4_>3= 2

=3
= 4 FIG. 29. Possible configurations and tran-
3 sitions in a self-assembled quantum dot
with rotational symmetry with no interac-
tion. Different charge configurations for
the electron number n=0...4 in the dot
are depicted with the multiplicity/degener-
acy (see the text) d, and the number of
possible transition paths k,_.,.4s and
Kn1—n- The number of transitions k are
given by the number of final accessible
2 configurations for a given initial electron
configuration. The thinner dashed arrows
in red and black depict possible transitions
for different initial electron configurations,

giving the same value for k.

multiplicity to dy =2 (both spins in the p-shell have parallel up- or
down-spin).
However, even if k,, is smaller than d,,, the ratio is constant (check
Fig. 29)
le*lHn dn

Cn - knﬂnfl - dnfl ’ (21)

This ratio {,, between the possible paths for in- and out tunneling has
a strong effect on the transition (“tunneling”) rates y, and y;.
Determining the tunneling rates allows us to trace back to the degener-
acy of the states and, hence, obtain information on the (rotational)
symmetry and applicability of Hund’s rule for self-assembled quantum
dots.

For this, we use again the near-equilibrium transconductance
measurement,””” as describe in Sec. V B, where the density of states for
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FIG. 30. Possible configurations and transitions for n=3 and 4 in an elongated dot
without rotational symmetry. The reduced symmetry reduce the degeneracy and,
hence, the number of charge configurations d;, and the number of possible transi-
tion paths k,_.,.1 and ky_n_1.

the many-particle ground states of the dot ensemble for 1 to 6 elec-
trons is observed, see Fig. 32(b). However, we will now look into the
details of the charging/discharging time constants.

Figure 31 shows as an example the dynamics of the tunneling
process for charging and discharging the dots with one electron into
the s-shell (that means the transition between n=0 and n=1). A sig-
nificant difference in the time constant (3.2ms-2.3ms) can be
observed for a small energy shift of AE ~ 1.4 meV in the Fermi energy
(chemical potential) at a gate voltage V,= —0.67 V. Only a small frac-
tion of about 7% of the quantum dots participates in the charge trans-
fer process, and every dot that participates is charged or discharged
with only a single electron, as described before in our simplified model.

1.5

Number of electrons

n=
0 1
s\ —
\\://—JE\&t//
- —
10 3.2ms

Conductance G (arb. units)
o
(6)]
T

0.0 : ' :
0 2 4 6 8
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FIG. 31. Conductance transients for charging (0 — 1, orange dots) and discharg-
ing (1 — 0, blue dots) with the first electron into the s-shell. The time constants for
tunneling infout differ by a factor of ~1.4 and are determined by fitting a stretched
exponential function (solid lines) to the transients. Adapted with permission from
Beckel et al., Europhys. Lett. 106, 47002 (2014). Copyright 2014 Institute of
Physics.””
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The time constants of 7o_,; = 2.3 ms and 7,_,y = 3.2 ms are obtained
by a stretched exponential fit.””" It accounts best for a quantum dot
ensemble, where the time constants differ slightly from dot to dot and
are averaged over many dots. It is already clearly visible that the charg-
ing time from n =0 to n=1 is faster than the discharging from time
fromn=1ton=0.

It is now important to mention that the rates for tunneling into
and out of the dot 7, and y,,, respectively, are not the quantities that
are obtained in the time-resolved transconductance. The rate equa-
tions (20) contain both tunneling rates (" and y,), e.g, in the mea-
surement, the overall “relaxation rate” into equilibrium is obtained.

Let us consider again only the n-th transition for an individual
quantum dot (the dot is just charged or discharged with one additional
electron) and realize that actually the total number of electrons per dot
N(#) is measured in the time-resolved transconductance measurement
by G(t) (see Sec. V A). We have to solve the rate equations to derive
N(#), which is the sum over all charge states # times their probability
Pu: N(t) =3, np,. As we only allow charging or discharging with
one electron, we get

N(t) = np, + (n—1)p, (22)
and a rate equation for the n-th charge state
dpa(t) 4 -
=1 -1 —) - 2
it VuPn-1 = VP (23)

For only two possible charge states, the quantum dot has to be in the
state (n — 1) or n: p,_1 = 1 — p,. We obtain the following rate equa-
tion for the total charge:

dN(t) d

= 3 (pa(t) = (= D)1 = py))
- pn(t) n(t)
= T’IW* (}’l - 1)7

=n(Vypn1 = VuPn) — (n =)y pa1 = V) (24)

Using again the relation p,_; = 1 — p, and rewriting everything lead
to

dN(t

—dg ) = nyj; + (11 — l)"/; — ('V:; + 'V;)N(t)v (25)
which is solved by

AN = N(t) = Nyg = (No = Neg) exp (=£/7),  (26)

with the time constant

S ==kl (G- W EITNE) @)

and the occupation in equilibrium

Gof (En)
1+ (gn - 1)f(En) ’

The relaxation 7,, into equilibrium, accordingly the time constant
7=1/y,,, gives the time evolution in the transient observed in the
time-resolved transconductance measurement. We can now see that
the relaxation rate depends on the ratio in degeneracies/multiplicity of
different charge states n and n — 1in {,, cf. Eq. (21).

Nyg=n—1+ (28)
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The previous equations are valid for an individual quantum dot
or an ensemble with sharp energy distribution. However, the transcon-
ductance measurements are done on an ensemble of dots with an
inhomogeneous energy distribution. In such a case, we have to inte-
grate Eq. (26) over all energies of the quantum-dot levels

AN(t) o jdE [Ne(E % AE) — Neg(E)]e /), (29)

where N (E = AE) and N,, are the equilibrium occupation of the
quantum dots before and after the voltage pulse, respectively. The
actually measured time constant of the relaxation is a result of an aver-
age of energy-dependent time constants t(E) within the subensemble
which are charged and discharged.

As a consequence of that averaging over many time constants,
Eq. (29) has to be solved numerically, and the time constants are
extracted by a fit to the simulation data. Putting the asymmetry in the
charge relaxation time into the ratio

_ Th—n—1

v, = (30)

Tn—1—n

allows us to compare the experimental data (black data points with
error bars) of v with theoretical simulations for different filling
sequences of the s- and p-shells (different lines), shown in Fig. 32(a).
Figure 32(b) shows again the density of equilibrium states for sequen-
tially filling of the dot states from n=1 in the s-shell up ton==6 of a
completely filled p-shell.

Three different models have been calculated, assuming that the
dots have (i) rotational symmetry with noninteracting particles, (ii)
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FIG. 32. Asymmetry in the relaxation times. (a) Measured (dots with error bars)
and calculated (different lines) ratios v, (see the text) for electron tunneling into
and out of the quantum dots. Comparison between calculated and measured ratios
shows that the quantum dots have no rotational symmetry; instead, they are elon-
gated. (b) The density of states (DOS), measured by the transconductance spec-
troscopy (orange line). The shaded areas with blue lines show fits to the measured
data. Adapted with permission from Beckel et al., Europhys. Lett. 106, 47002
(2014). Copyright 2014 Institute of Physics.””’
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rotational symmetry with Hund’s rule applied, and (iii) a potential
that is elongated and the degeneracy of the p-shell is lifted into a p,-
and a p,-state. The sequence for the multiplicity will be different for
the p-shell in each case, where the sequence would be (i) ds, d, ds, and
ds=4, 6, 4, and 1 for rotational symmetry with no interaction, (ii) 4,
2, 4, and 1 with Hund’s rule, and (iii) 2, 1, 2, and 1 for an elongated
dot (see Figs. 29 and 30). The results of the simulations are plotted in
Fig. 32(a) and compared with the experiment.

The model for an asymmetric (elongated) quantum dot with
lifted p-shell degeneracy shows the best agreement with the experi-
mental data and is in agreement with other measurement techniques
on self-assembled quantum dots, especially with the results from
wave-function mapping. It demonstrates that the time-
resolved spectroscopy is a very powerful tool to gain insights into the
electronic states and their degeneracy.

We have always assumed that maximal one electron per quan-
tum dot is transferred between the 2DEG and the dot states.
However, if the pulse amplitude is increased, this assumption is
not valid anymore, and during the relaxation process, electrons
can tunnel in such a way that any transition between every n and
n' charge state is allowed. Then, the charge carrier dynamics can be
described by a more general rate equation (also called “master
equations”)

dpn
(‘Z = ;{Fn@npn/ - n[z#nrnﬁn’Pn' (31)

It describes the probability in general for finding a quantum dot
charged with n electrons for a set of transition rates for charging
I'y_, and discharging I',,_,, respectively. For more information in
master equations, see Beenakker.”®”

VI. SINGLE ELECTRON DYNAMICS IN AN OPTICAL
DETECTION SCHEME

Up to now, the charge carrier dynamics of an “ensemble” of
self-assembled InAs quantum dots was probed by the time-
resolved transconductance measurements. This limitation of prob-
ing millions and millions of dots simultaneously can be overcome
by using an optical detection scheme: Resonance fluorescence in a
confocal microscope.

A. Time-resolved observation of single electron
tunneling into a single dot

We come back to the resonance fluorescence signal that depends
on laser energy and gate voltage (cf. Fig. 14): Fig. 33(b) shows a zoom-
in into such a 2D-scan of the exciton and trion transitions, where three
different areas can be identified. For gate voltages below 0.26 V
(labeled with 1), the quantum dot is always empty [as schematically
depicted in Fig. 33(a), left], and the exciton transition with the two
fine-structure lines is visible. For higher gate voltages than V,=0.27,
the Fermi level in the charge reservoir is always above the s-shell in the
dot, and hence, the dot is filled [Fig. 33(a), right], and the trion transi-
tion is observed in the resonance fluorescence. Between these two con-
figurations in the gray shaded area of Fig. 33(b), the Fermi level is
aligned to the s-states in the dot within the energy broadening of the
Fermi distribution. Both transitions of exciton and trion are visible
simultaneously in such steady-state measurements as the electrons
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FIG. 33. Resonance fluorescence of a single InAs quantum dot. (a) Schematic pic-
tures of the electron tunneling between the charge reservoir (with Fermi energy Er)
and the quantum dot. (b) Resonance fluorescence measurement for different gate
voltages V, and laser excitation energies at the exciton X to trion X~ transition. At
a gate voltage of V,=0.255V (labeled with 1), the dot is always empty and the
exciton transition X is visible. At a gate voltage of 0.274V, the quantum dot is
always filled with one electron and the trion transition X is observed. At position 3,
the dot is filled half of the time, as the electron tunnels back and forth into and out-
of the dot; both transitions are visible simultaneously.

tunnel back and forth between the dot and the reservoir [as schemati-
cally depicted in Fig. 33(a), middle]. The gate voltage controls the aver-
age time the dot is occupied with an additional electron, and hence,
the intensity ratio between exciton/trion changes in the gray-shaded
area.

The resonance fluorescence can be used now to probe the non-
equilibrium charge carrier dynamics between the dot and the reservoir
in the voltage range of the gray shaded transition area in Fig. 33(b).
The measurement principle of this “optical detection scheme for trans-
port measurements” works as follows: To charge and discharge the
quantum dot (and observe the charging/discharging time resolved in a
tunneling transient), a voltage pulse is applied to the gate contact,
while the resonance fluorescence on the exciton or trion transition is
measured. The optical excitation of the exciton transition is switched
off, if an electron tunnels into the dot. At the same time, the trion tran-
sition is switched on for a charged quantum dot. The on-off switching
is due to the fact that the energy shift of the excitonic transition (due
to the Coulomb interaction) is much larger than the excitonic line-
width (~1 peV).

In order to measure the electron tunneling between the reservoir
and the dot, an electrical pulse sequence is applied to the gate electrode
that consists of two voltage settings: (i) An initial voltage V,; is chosen
so that the dot is uncharged (or charged) and the exciton transition
(or trion transition) is out of resonance with the diode-laser frequency.
In this case, no resonance fluorescence signal is observed, as visible for

REVIEW scitation.org/journal/are

times ¢ < 0 in Fig. 34(a). (ii) The second pulse voltage V shifts the lev-
els of the quantum dot via the quantum-confined Stark effect in reso-
nance with the laser. This Stark shift is faster than the average
tunneling time of the electrons, and the fluorescence signal of the exci-
ton is observed just after the gate pulse [at t=0 in Fig. 34(a)]. The dot
is now in a nonequilibrium situation with the reservoir, and the Fermi
level in the contact is energetically higher than the lowest level in the
s-shell [cf. Fig. 33(a), inset 3]. Relaxation into equilibrium by electron
tunneling is observed by averaging over many voltage pulse cycles in
an “n-shot measurement” as an exponential decay in the fluorescence
signal in Fig. 34(a) for different pulse voltages. The vanishing exciton
signal is due to the additional electron inside the dot, as in equilibrium
the trion transition would be in resonance at different laser energies.

Figure 34(a) shows the quenching of the exciton transition for
three different voltage pulses, where at point 1 (Vy=0.255 V), the res-
onance fluorescence signal is nearly constant. At this pulse voltage, the
Fermi level in the back contact is below the levels in the s-shell of the
dot and no tunneling occurs (in agreement with the observation in the
static fluorescence measurement in Fig. 33). The origin of the small
decrease in the fluorescence intensity is a second tunneling path into
the dot that contains already an additional exciton by the laser excita-
tion, as explained in more detail later.

For a gate voltage of V,= 0.267 V at point 3 in Fig. 34, a stronger
exponential decay of the fluorescence signal is visible with a saturation
value of about 40% of the maximum amplitude. In such an n-shot
measurement, which is an average over the quantum jumps of the
electron between the dot and the reservoir, the average normalized
amplitude [see also Fig. 34(b)] describes the average time the electron
is in the reservoir or in the dot. At V,=0275V, the exciton transition
quenches completely and the electron tunnels into the dot with a prob-
ability of 100%. The s-shell is now always occupied with one electron
in equilibrium, and the fluorescence of the exciton is absent.

The amplitude in equilibrium at =40 ms (i.e., for a pulse dura-
tion much longer than the inverse tunneling rate) for different gate
voltages measures the average occupation of the dot and, of course,

 (b)

RF (normalized)

Tunneling probability

A 1 1

40 0.26 0.28
Time (us) Vg (V)
FIG. 34. Transients of single electron tunneling. (a) Time-resolved resonance fluo-
rescence, measured on the exciton transition during an applied gate voltage pulse.
The transient displays the tunneling of an electron into the dot, which is detected by
a quenching of the intensity in an n-shot measurement. (b) Equilibrium amplitude at
different gate voltages, resembling the Fermi-distribution in the charge reservoir.
Data are reproduced from Ref. 263.
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also the average occupation in the reservoir, which is determined at
finite temperature by the Fermi distribution. Figure 34(b) displays a fit
to the Fermi distribution, which yields a temperature of 4.2 K, in per-
fect agreement with the sample temperature in this experiment.

B. Electron-exciton interaction

The important difference between the all-electrical measurements
in Sec. V and the optical measurements is the additional influence of
the optical generation of excitons. This electron-hole pair generation
has important consequences on the tunneling dynamics: The exciton
will influence the tunneling rate, and the electron occupation probabil-
ity can be tuned by the optical excitation, i.e., the laser excitation
power.”*” The first phenomenon (the influence of the exciton on the
electron tunneling) will be discussed in this subsection, while the tun-
ing of the tunneling rate will be addressed later on.

A model to calculate the electron, hole, and exciton energy
depending on the applied gate voltage is described in Seidl et al,”’
where these energies are given by the Coulomb interaction and the
electrostatic potential. Taking the resonance fluorescence measure-
ments into account, an electron-electron on-site Coulomb energy of
28 meV, an electron-hole on-site Coulomb energy of 33 meV, and a
confinement energy of 172meV are found for the present dot. As a
result of this model, the gate voltages can be derived, where electron/
hole tunneling into or out of the dot occurs. The tunneling voltages
are given as intersections of the lines in Fig. 35 for the energies of the

Tunneling into filled dot
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FIG. 35. Energies of different many-particle states in the dot vs gate voltage. The
solid orange lines display the calculated energy for a singly-charged dot with an
additional hole E(h), the exciton state E(X), and the negatively charged trion
E(X™). The blue lines show the energies of the negatively singly E(e) and doubly
charged dots E(2e) in comparison to the empty state £(0). Gate voltages where
tunneling into the empty dot and into the excitonic state is possible are marked with
gray dashed lines.
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hole (E(h)), the exciton (E(X)), and the trion (E(X )) state and the
empty (E(0)), the singly- (E(e)), and the doubly-charged dot (E(2e)).

The intersection between the energy of the exciton and the trion
gives the gate voltage, where an electron tunnels into a dot that is
already charged with an exciton. The energy difference to the gate volt-
age where an electron tunnels into an empty quantum dot is 25 mV
(gray shaded area). This smaller gate voltage for tunneling into the
charged dot explains the small decrease in the amplitude of the fluo-
rescence signal in Fig. 34(a) at Vo= 0.255V and shows that the optical
exciton generation has a strong influence on the electron dynamics.
The electron can tunnel already into the exciton state where no tunnel-
ing into the empty dot would be possible.

C. Tuning the tunneling rate by the optical excitation

As the optical exciton generation influences the electron dynam-
ics, it can also tune the electron tunneling into the quantum dot and
the overall relaxation rate into equilibrium. More precisely, an opti-
cally generated exciton as an electron hole-pair will occupy with cer-
tain probability py the s-shells in the dot. As we have seen in Sec. V G,
an electron in the s-shell changes the multiplicity and, hence, the
tunneling rate for another electron into the dot. Increasing the incident
laser power increases the probability px and changes the tunneling and
hence the relaxation rate into equilibrium. This will be demonstrated
and explained in this section.

At this point, I would like to mention again that there is a strong
difference in the “tunneling rate” and the “relaxation rate”: In the n-
shot time-resolved measurement in Fig. 34, the relaxation rate into
equilibrium is observed, which depends on the tunneling rate into the
dot and the rate out of the dot, as already explained in Sec. V G. The
tunneling rate is the correct wording for one path (into or out of the
quantum dot), while the relaxation rate is the overall rate into an equi-
librium situation.

With the optical excitation of an exciton, we have now another
“tuning knob” (parameter) to change the tunneling rate of electrons
from the 2DEG into the s-shell and change, as a consequence, the
overall relaxation rate y,, into equilibrium. How this optical tuning
knob influences the relaxation dynamics should be described again by
a rate equation model,””**” in which the exciton generation has to be
added.

Before starting with the equations, we have to do some more
wording and introduce a fluorescent and a nonfluorescent state, see
Fig. 36. Both states consist of two substates again. The two substates of
the fluorescent state are the empty quantum dot (|0)) and the dot filled
with a single exciton (|X)). The wording fluorescent comes from the
fact that the laser should now excite the exciton transition, i.e,, it drives
the system between these two substates. The nonfluorescent state
includes also two substates, where the dot is occupied with one elec-
tron (|e)) and the negatively charged trion (|X ")), both not optically
active (as the chosen laser frequency will only drive the exciton
transition).

One more sentence for explanation: The reason for introducing a
fluorescent and nonfluorescent state is that we acutely measure the
fluorescent state in the resonance fluorescence, i.e., this state is observ-
able in the same manner as we introduced the total number of elec-
trons N(¢) in the electrical measurement in Sec. V G before.

The excitation of the exciton (the transition |0) — |X)) is possi-
ble with an absorption rate y,,,. The exciton |X) can recombine with
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FIG. 36. Energy scheme of the fluorescent and nonfluorescent states. For a gate
voltage of about V; =0.265V, the energy of the |0) state is aligned with the energy
of the |e) state. Arrows indicate optical and transport transitions with their respec-
tive rates 7.

the recombination rate y,,. (the transition |X) — |0)), and py is the
probability for finding an exciton in the dot (the average occupation)

Vabs
px=—"—. (32)
Vabs T Vrec
It can be derived from the differential equation in the steady state

dpx/dt =0

d
%:yabs(l _pX) — Vrec PX- (33)

Keep in mind that for the equations that follow, “px” is the average
exciton occupation in the dot which is directly related to the laser
power.

An electron can also tunnel into an empty quantum dot with a
tunneling rate defined as yy,, and tunnel out of the dot with a rate Yoy,

256,257

where the in- and out-tunneling rates can be expressed by

T = klnrf(E)7 (34)
Your = kou'(1 = f(E)), (35)

where I is the intrinsic tunneling rate (just given by the tunneling bar-
rier) and f(E) the Fermi distribution. The prefactors kj, and ko,
describe the number of possible paths for tunneling in and out of the
dot [see Eq. (21)]. Two spin directions are possible for tunneling one
electron into an s-shell of an empty dot, i.e., k;,, = 2, while for tunnel-
ing one electron out of the dot, ko, = 1. As the quantum dot can be
optically excited with an exciton in the resonance fluorescence, an
electron can also tunnel into an excitonic state with the tunneling rate
7% . The gate voltage is set in the experiment to a situation, where
for the electron tunneling into an exciton the Fermi distribution in
the reservoir equals always unity, so that Eq. (35) simplifies to
X _ X
T = kX : rln'

The degeneracy of the s-shell and, hence, the number of possible
paths for tunneling into the s-shell under optical excitation change
with laser power. At low power, the dot is most of the time empty, and
the degeneracy for tunneling into the dot is kx = 2. At high excitation
power, the average exciton occupation saturates at one half since the
dot is half of the time filled with an exciton. The average degeneracy/
multiplicity for tunneling into an exciton is lowered to kxy=1.5, ie,,
tunneling into the dot is optically blocked for high laser power.

scitation.org/journal/are

Coming back to the rate equations: With different discussed rates
and the assumption that the recombination rate 7, is much higher
than the tunneling rates, rate equations for the fluorescent and nonflu-
orescent states can be written as follows (cf. Fig. 36), where the proba-
bility for the exciton occupation px is given by Eq. (33):

t
pfd—(t) = —(1 = px) 71 £y (£) + Y0us Py (£)

pnf(t) _ 7M. (37)
dt dt

The first summand in Eq. 37 describes the reduction (the minus
sign) of the fluorescent state py by electron tunneling (with rate y;,)
into the empty dot |0), where the probability of having an empty QD
in the fluorescent state is given by 1 — py (no exciton means empty
dot). Analogously, the second summand describes the increase in the
fluorescent state by electron tunneling out of a charged dot in the non-
fluorescent state, and the third summand is for tunneling into the exci-
ton state with rate y5. The average exciton occupation can be tuned
here by the laser power from px=0 up to saturation at px= 0.5 (see
upper insets in Fig. 37 as a schematic representation).

Using the boundary conditions p(0) =1 and py + p,s = 1 yields

—pr(H)px,  (36)

(f) _ (’ym B yOut)e_th + Yout
Vm

pr , (38)

with the relaxation rate

Tm = Pou + (1= Px) V1 + Vi Px- (39)
The time-resolved measurements in Fig. 34 show directly the occupa-
tion probability of the dot with an electron. The decrease in the
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FIG. 37. Optical tuning of the transport relaxation rate. The relaxation rate y,, for
the electron tunneling into equilibrium (orange dots) and the intensity of the fluores-
cence signal (black dots) as functions of the laser excitation power. The relaxation
rate 7, is reduced by optical blocking of the electron tunneling from the reservoir
into the dot. Reprinted with permission from Kurzmann et al., Phys. Rev. Lett. 117,
017401 (2016)]. Copyright 2016 the American Physical Society.

Appl. Phys. Rev. 6, 031306 (2019); doi: 10.1063/1.5091742
Published under license by AIP Publishing

6, 031306-27


https://scitation.org/journal/are

Applied Physics Reviews

resonance fluorescence signal is related to electron tunneling into the
dot (transition from the fluorescent to the nonfluorescent state in Fig.
36), quenching the probability p(t) of finding an optically excited exci-
ton. p(t) reflects the measured transients with a decay constant 7,,
given by Eq. (39).

The transients in Fig. 34 were measured in saturation of the exci-
ton transition. Saturation means here that the laser drives constantly
the transition from |0) — |X) (absorption) and back |X) — |0) (stim-
ulated emission). The quantum dot undergoes Rabi oscillations, where
the absorption rate is at least as high as the recombination rate
Vabs = Vrec- Saturation is achieved here for laser excitation powers
larger than 1 fW/cm? in Fig. 37. In this situation, the quantum dot is
half of the time filled with on exciton, which means py=0.5. This
leads interestingly to a constant relaxation rate 7y, in Eq. (39)

Y =T (1 = f(E)) + 0.5 2f(E)T + 0.5y},
=T +05-7%, (40)

independent of the Fermi distribution and in very good agreement
with the measure transients in Fig. 34. This is very counter-intuitive,
as from pure transport experiments, we would expect that the relaxa-
tion transients should depend on gate voltage, as it changes the tunnel-
ing rates 7, and yo,, by the alignment of the Fermi energy and, hence,
the relaxation rate y,, into equilibrium.

As shown in Eq. (39), the overall relaxation rate y,, depends on
the tunneling rate for electrons into the dot y;,, which again depends
on the number of possible paths kj, in Eq. (34). Tuning the average
occupation with an exciton by the laser excitation from p,=0 to
Ppx=0.5 decreases kj, from 2 down to 1.5. This optical tuning of the
relaxation rate y,, by changing the average occupation of the dot with
an exciton p,, (an optical blocking effect) can be seen in these time-
resolved measurements too. Increasing the laser power (black dots and
line in Fig. 37) decreases the relaxation rate 7,, from 220 ms! by the
predicted factor of 1.5 down to ~150ms ' (orange dots in Fig. 37).
This optical blocking could be used to control tunneling rates by opti-
cal means, where the switching speed is only limited by the Rabi fre-
quency of the optical transition. It is important to note here that the
definition of “saturation” is normally slightly different in quantum
optics experiments. I have used saturation here for a situation that the
QD is half-time filled with an exciton. In the quantum optics litera-
ture,'”* saturation is defined for a situation, where the resonance fluo-
rescence signal equals half its maximum value. As an example,
saturation would be in the literature in Fig. 37 for a RF intensity of
about 40 kCounts/s at a laser power of ~0.4 W/cm®.

D. Nonequilibrium measurements on the trion
transition

The nonequilibrium measurements of the relaxation process
were measured until now by resonant excitation on the exciton transi-
tion. However, in principle, every optical transition of the dot can be
used. This section shows results, where the trion transition has been
used as an optical nanodetector. The trion transition is quenched in
the case of an electron that tunnels out of the dot, and the optical
detection leads to more interesting nonequilibrium effects: The obser-
vation of an Auger recombination within a single self-assembled quan-
tum dot.

REVIEW scitation.org/journal/are

For a time-resolved measurement on the trion transition, the dot
is at the beginning already charged with an electron for times t < 0 us
in Fig. 38. At t=0, a gate voltage pulse Vj shifts the Fermi energy
slightly down in energy and the electron can tunnel out of the dot with
a certain probability. Again, the overall relaxation rate y,, is measured
in Fig. 38. The gate voltage pulse changes slightly the rates between
tunneling into the dot 7, and tunneling out of the dot y,,; and, hence,
the overall relaxation rate. Figure 38 shows transients for different gate
voltages. For V,=0.252'V, the intensity of the resonance fluorescence
of the trion decreases to almost zero at t =40 ms. In this situation, the
dot is always uncharged in equilibrium, and the exciton transition is
out of resonance with the excitation laser (no resonance fluorescence
counts).

An increasing equilibrium amplitude of the resonance fluores-
cence signal is observed for increasing gate voltage, a similar behavior
to the measurements before, as the Fermi distribution in the charge
reservoir determines this amplitude. However, a very interesting
observation can be made in the transient for a gate voltage of
V,=10.276 V: The Fermi function equals unity for this gate voltage,
ie, the electron charged into the dot before t=0 should have no
tunneling path back into the reservoir (as all states are occupied) and
the fluorescence intensity should stay constant at its maximum value
for t=0. The origin of this transient is the nonradiative Auger
recombination.

E. Auger recombination

The atomic Auger process is a many-particle scattering process,
where in an atom the transition energy of an electron between two
states is transferred to another electron. The Auger electron leaves the
atom with a well-defined kinetic energy, a fact that is used for an ele-
ment specific analysis by Auger-spectroscopy.”®” In a semiconductor
nanostructure, such as a self-assembled or colloidal quantum dot,”’
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FIG. 38. Time-resolved resonance fluorescence on the trion transition. At t=0, the
electrical pulse shifts the Fermi energy in the reservoir below the s-shell of the
quantum dot, and tunneling of an electron from the dot into the reservoir takes
place (see the inset), quenching the fluorescence of the trion transition. Reprinted
with permission from Kurzmann et al, Phys. Rev. Lett. 117, 017401 (2016).
Copyright 2016 the American Physical Society.
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the electronic transition occurs between the conduction and the
valence band. The electron-hole recombination energy can be trans-
ferred to another charge carrier within the dot that is scattered into the
environment. This effect has been studied very intensively in colloidal
quantum dots,”** *** where a fast Auger recombination time in the
range of picoseconds™*””*” quenches the optical transition lines, a neg-
ative influence that limits the efficiency of colloidal dots in optical
devices.ZTlFZTZ

The Auger scattering time is orders of magnitude longer in self-
assembled quantum dots (due to the larger lateral size of these dots)
on the order of nano- to microseconds, if extrapolated from the size
dependence of the Auger process.””” However, it has still an negative
influence on the optical transitions, shown in this section about the
Auger recombination of the trion transition in a self-assembled quan-
tum dot.”’* For the negatively charged exciton (the negative trion), the
Auger effect removes the additional electron from the dot, leaving it in
its empty ground state [see the inset in Fig. 39(b)].

The Auger recombination can be studied first in a two-color laser
excitation experiment. The first laser is set in resonance with the
energy of the trion transition and the second with the energy of the
exciton transition (at the same gate voltage). The observation of the
trion and exciton transitions at the same gate voltage [see spectra in
Fig. 39(b)] works here as follows: The Auger recombination discharges
the quantum dot completely under resonant excitation on the trion
transition, leaving the dot empty as long as no electron tunneling with
rate y;,, = 0.18 us™! from the charge reservoir has occurred. The
uncharged dot can be excited on the exciton transition as long as it is
empty, observed at the same gate voltage in Fig. 39(b).

The resonance fluorescence intensity of the trion and exciton has
been measured for a wide range of laser powers, shown in Fig. 39(a).
The exciton intensity is by more than an order of magnitude larger
than the trion intensity. This observation can be easily explained by
the fact that as long as no electron has tunneled back into the dot from
the reservoir, the trion transition is quenched. This reduces the inte-
grated intensity of the trion, where the reduction is directly related to
the tunneling rate y;,,. The lower intensity of the trion compared to the
exciton indicates an Auger recombination rate 7, higher than the
tunneling rate y,,. The quantum dot is most of the time empty in this
nonequilibrium situation.

The Auger recombination rate can be determined by an n-shot
time-resolved resonance fluorescence measurement, see Fig. 40(b).
This measures the relaxation rate from a nonequilibrium into a
steady-state situation, where the Auger rate y, (trion — empty dot)
competes with the tunneling rate y;, (empty dot — trion), cf. Fig.
40(a). Resonant excitation of the trion transition by only “one laser” is
used in the following experiment. At =0, the laser is switched on,
and the dot that contains an electron is excited into the trion state with
an absorption rate 7, see Fig. 40(a). When the dot is charged with a
trion, Auger recombination can occur with rate 7, switching the trion
transition off until an electron tunnels into the dot again (with rate
Y1n)- The evolution from a dot that is charged with a probability of
100% with a trion to the steady-state situation is observed as exponen-
tial decay with the relaxation rate y,, in Fig. 40(b).

For low laser excitation power, where the average trion occupa-
tion is px- = 0.003, the time evolution of the normalized fluorescence
signal is nearly constant, as the dot is most of the time in the singly
charged state [left picture in Fig. 40(a)] and the Auger recombination
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FIG. 39. Auger recombination of the trion transition. (a) Intensity of the resonance
fluorescence signal of the trion (black) and exciton (orange) transitions at a gate
voltage of V,=0.318V for different laser excitation powers. (b) Simultaneously
measured resonance fluorescence spectra of the trion (black dots) and the exciton
(orange dots).

is negligible. Increasing the laser excitation increases the probability of
the dot to be in the excited trion state py- [middle picture in Fig.
40(a)] and hence the probability for an Auger recombination process.
With increasing px-, the decrease in the steady-state value in the nor-
malized fluorescence becomes more pronounced and increases to 80%
for saturated excitation (px- = 0.5). The reduction of the fluorescence
signal in the steady-state depends on the ratio between Auger recom-
bination ), and tunneling rate yy,, which are effected by the size of the
dot (Auger rate)””” and the tunneling barrier (tunneling rate).

The time evolution of the fluorescence signal (here of the trion
transition with probability px- for an occupation with a trion) is given
by the differential equation

dpr

E = ylnpnf(t) - yapf(t) pX’v (41)
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FIG. 40. Time-resolved measurement of the Auger recombination. (a) Schematic
illustration of different processes that are involved in the relaxation process into
equilibrium (tunneling rate y;,, Auger recombination rate 7,, absorption 755, and
recombination rate 7). (b) Time-resolved measurement on the trion transition.
The laser is switched on at t=0 for different laser excitation powers. The laser
power changes the average occupation of the dot with a trion from py- = 0.003 up
to saturation px- = 0.5. The lines are calculations of the decay rate using a rate
equation model. Adapted with permission from Kurzmann et al., Nano Lett. 16,
3367 (2016). Copyright 2016 American Chemical Society.

where p,rand pyare the occupation probabilities of the trion transition
Pr (fluorescent state) and the empty dot p,,r (nonfluorescent state). The
average occupation of the trion state is given by px-, where the satura-
tion curve in Eq. (12) describes its dependence on the excitation
power, detuning, and dephasing time.

The initial condition ps(0) = 1 is used to obtain

2ot

Yin + VaPx-€ '™
) =—""", (42)
pf( ) Y + VaPx-
with the relaxation rate
Ym = Vin T YaPx> (43)

where py(t) directly reflects the measured transients in Fig. 40 with the
relaxation rate y,,. To determine the Auger recombination rate, the
tunneling rate y,, has been obtained from the time-resolved measure-
ments of the excitonic resonance fluorescence.”*

Fitting one transient in Fig. 40(b) with a given value of px-
[obtained by the saturation curve of the trion transition vs laser power,
shown in Fig. 39(a)] yields an Auger rate of y, = 2.3us™!. Using this
Auger rate with the fixed value for the tunneling rate y;, and the
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appropriate value for the trion population px- gives a perfect agree-
ment for each transient in Fig. 40(b).

Interesting is a comparison with the Auger rate in colloidal quan-
tum dots. For instance, CdSe dots with a radius of r = 2 nm exhibit an
Auger rate of y, = 0.1 ps,”*” orders of magnitude faster than the
rate in self-assembled quantum dots here. The reason for this strong
difference can be found in the size-dependence of the Auger rate,
which scales with r—65;”"° other effects, as the bandgap or the elec-
tronic structure play only a minor role.””””’® Using this size depen-
dence, an Auger rate of 2.8 us~! is estimated for a self-assembled
dot with a lateral size of 20nm (radius of r=10nm), in very good
agreement with the measurement.

It is worth noticing that the relaxation rate and, hence, the inten-
sity of the excitonic transition depend on both the tunneling rate and
the Auger rate in Eq. (43). A strong suppression of the fluorescence
intensity can only be observed if the Auger rate is similar or even larger
than the tunneling rate. Otherwise, if an Auger process empties the
dot (transition from the fluorescent to the nonfluorescent state), it will
be replaced immediately by electron tunneling from the reservoir
(transition back from the nonfluorescent to the fluorescent state). This
dependence can be seen in the intensity of the trion transition as
the ratio between the tunneling and Auger rate, given for t — oo in
Eq. (42)

Vn Vin
o0) =—tn i (44)
pf( ) Vin + Va PXx- Ym

This equilibrium amplitude of the trion as the probability of the fluo-
rescent state py is shown in Fig. 41 for two different laser excitation
powers, where the average occupation with a trion in nonequilibrium
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FIG. 41. The influence of the Auger recombination on the fluorescence intensity Ps.
Calculations of the normalized steady-state trion intensity (which is directly given by
the occupation probability p; of the fluorescent state) as a function of the ratio
between tunneling and Auger rate, 7, and y,, respectively. The calculations are
shown for two different laser excitations, leading to small pxy- = 0.01 (orange line)
and high average occupations px- = 0.5 (blue line) with a trion in nonequilibrium.
Adapted with permission from Kurzmann et al., Nano Lett. 16, 3367 (2016).
Copyright 2016 American Chemical Society.
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is px- = 0.01 (orange line) and px- = 0.5 (blue line), respectively.
The average population with a trion px- [that follows the saturation
curve in Eq. (12)] is the population “before” Auger recombination can
take place (in this sense, the occupation with a trion in nonequilibrium
at the beginning of the transients in Fig. 40). The probability of the
fluorescent state in Fig. 41 is the average occupation with a trion in
equilibrium, “after” an equilibrium condition has been established
between Auger and tunneling events.

Clearly visible in Fig. 41 is that the ratio between tunneling and
Auger rates determines strongly the intensity of this trion transition.
For large tunneling rates in comparison to the Auger rate y;, > 107,
the trion transition is always “on,” a situation that has been observed
for most samples with self-assembled quantum dots, where the
electron tunneling time from a nearby charge reservoir is below nano-
seconds.””  After Auger recombination, the electron tunnels
“immediately” into the dot and the excitation of the trion transition is
possible again. On the other side, for a small tunneling rate
(73 < 107*y,), the trion fluorescence is completely quenched for any
laser excitation power, a situation that is often observed for colloidal
dots.””” The dot is empty after an Auger recombination process, and it
takes a long time to return back to the fluorescent state. The thick
tunneling barrier yields the low tunneling rate that is only a factor of
10 smaller than the Auger rate in the present sample. The resonance
fluorescence intensity of the trion in equilibrium can be tuned by the
excitation laser power, as calculated in Fig. 41 (black vertical line) and
measured in Fig. 40.

The interplay of the Auger recombination and the electron
tunneling not only has a strong influence on the intensity of the
trion transition but also affects strongly the linewidth. Figure 42(a)
shows time-dependent measurements on the trion transition. It
covers times ranging from t = 0, where the dot is singly charged in
a nonequilibrium situation, to t = 3 us, where in a steady-state sit-
uation, the charge state depends on the interplay of tunneling and
Auger processes. An increasing linewidth from 1.3 peV up to 2.1
ueV is observed in Fig. 42, demonstrated for t=0 and t=10 s,
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respectively. This line broadening can be explained by the influ-
ence of the detuning Aw on the relaxation rate y,, [see Eqgs. (43)
and (12)]. The relaxation rate depends on the trion population
Px-» which again depends strongly on the detuning again, visible in
Eq. (12). More detuning from the maximum of the resonance leads
to a smaller Auger recombination effect, increasing the amplitude
of the resonance at the edges in comparison to the center, effec-
tively increasing the linewidth.

The linewidth w of any excitonic transition already depends on
the laser excitation power, via the so-called “power broadening,”'**
which is the linewidth at =0

2
W(t:()) :E 1 +QZT1T2, (45)

where the Rabi frequency Q is determined by the laser excitation. The
linewidth with Auger recombination at =10 us can be calculated by
using Egs. (12), (44), and (56) (without any adjustable parameter)

(46)

2
W(t — oo) — L\/T% W(t - O) (ya + zyln) — 4’ya.

T2 Zyln

The linewidth (the full width half maximum—FWHM) vs the
laser power at t=0 and t= 10 us is plotted together with the calcula-
tions from Egs. (45) and (46) in Fig. 42(c), demonstrating a very good
agreement between the experiment and calculations. Moreover, the
T>-time can be estimated from the width at t=0 for very low laser
excitation to be T, =975 ps, which agrees with previous measure-
ments in the literature.”

This last section has shown that the Auger recombination leads
to a decrease in intensity and an increase in the linewidth. Therefore, it
has a twofold negative influence on the optical properties of the quan-
tum dots, in general on all semiconductor nanostructures, especially
colloidal dots. However, an electron reservoir in the vicinity of the
nanostructure which replenishes the ejected carrier with an injection
time faster than the Auger recombination could improve the optical
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FIG. 42. Time-resolved measurements on the trion transition line. (a) Evolution of the frion transition line after switching on the excitation laser at t=0, where a strong
decrease in the amplitude is observed. (b) The normalized trion resonance at =0 and t= 10 us shows the broadening of the transition line due to the Auger recombination.
(c) Linewidth of the trion at =0 and t= 10 us for different laser excitation powers. The lines are fits to the data. Adapted with permission from Kurzmann et al., Nano Lett.

16, 3367 (2016). Copyright 2016 American Chemical Society.
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properties, where the influence of the electron tunneling on the coher-
ence needs further investigations.

VIil. CONCLUSION AND OUTLOOK

This work has summarized the latest results of electrical and opti-
cal measurements on the nonequilibrium charge carrier dynamics in
self-assembled InAs/GaAs quantum dots. All-electrical transconduc-
tance spectroscopy was used, where a two-dimensional electron gas
serves as a fast and sensitive detector for the electron dynamics in an
ensemble of quantum dots. Electron tunneling and Auger recombina-
tion in a single dot were observed in time-resolved resonance
fluorescence.

The self-assembled quantum dots are embedded in a high-
electron mobility transistor (HEMT) structure for the electrical mea-
surements in the first part. The electron gas in the transistor serves as
both an electron reservoir for charging and discharging the quantum
dots and an all-electrical detector. If an electron tunnels into the dot,
the charge carrier density in the electron gas is reduced, and hence, the
conductance change is measured with a high bandwidth (up to
1MHz) in a current measurement. Even more, in contrast to static
capacitance-voltage measurements, this transient measurement tech-
nique can measure the charge carrier dynamics and density of states
for very weak coupling between dots and the charge reservoir. This
was demonstrated for hole tunneling, where transient times into equi-
librium of the order of 60 s were observed. The time evolution of the
density of states in an ensemble of quantum dots can be measured
from nonequilibrium to equilibrium. In the nonequilibrium situation,
the spectral resolution is even at liquid helium temperature high
enough to resolve the excited spin and charge configurations of
quantum-dot hydrogen and helium artificial atoms. A long spin-
relaxation time of 7,,;=25 us of the excited two-electron spin triplet
state was determined. Moreover, the influence of the shape of the dots
on the degeneracy of the p-states and, as a consequence, the electron
charging sequence has been verified by observing an asymmetry in the
charge relaxation times for charging/discharging the dots.

The simple experimental technique allows many further experi-
ments toward an electrical control and detection of many-particle
states for quantum information processing, for instance, quantum
states in laterally or vertically coupled dots and preparation of more
complex excited many-particle configurations. The spin-relaxation for
three- or four-electron configurations and the influence of few-particle
interactions on the spin-lifetime could be studied. It is also well known
from flash memories that a conductive channel can be very fast (in a
quantum dot device, a readout time of 3 ns has been demonstrated in
Nowozin et al.'”) and scaled down to feature sizes below 20 nm. In
this sense, the electrical measurement technique could be used in the
future to measure the time-resolved nonequilibrium transport on a
single self-assembled quantum dot. High-temperature (more than
10K) electrical quantum operations and high-resolution spectroscopy
would be possible, providing more insights into few-electron systems
with their interactions.

In the second part, single dot resolution has been achieved in a
resonance fluorescence measurement, where also the interaction
between optical excitation and the single electron dynamics has been
studied. In contrast to transport measurements, a relaxation rate is
found which can be tuned by the resonant excitation as a consequence
of optical blocking, i.e., a reduced tunneling rate when the dot is
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already occupied with an electron-hole pair. These findings open up a
new route to optically tune the tunneling rate between a dot and the
charge reservoir, with a time-resolution, which is only limited by the
Rabi frequency of the optical transition. The relaxation transients in
the optical measurements were achieved by an “n-shot”-integration of
many pulse sequences. With a maximum count rate in the resonance
fluorescence of more than 10/s, fast real-time measurements (band-
width of more than 100 kHz) of single electron tunneling between the
reservoir and the dot (measurements of “quantum jumps” as telegraph
noise) are possible in the future. This telegraph noise of quantum
jumps in real-time measurement into the s- and p-shells can be
analyzed with full-counting statistics, revealing interactions and corre-
lations between the tunneling electrons.”’**”” The time-resolved
resonance fluorescence measurements also revealed the Auger-
recombination rate in self-assembled quantum dots. An Auger-rate of
the order of per microsecond—orders of magnitude smaller than for
colloidal dots—has been determined, leading also to a spectral broad-
ening by a factor of two of the trion transition. Self-assembled quan-
tum dots can be used now as a perfect model system to understand the
Auger process in a semiconductor nanostructure in more detail, like
the size dependence and the influence of the environment (band struc-
ture, electron reservoir, and nearby quantum dots).

Finally, as an overall outlook, the combination of both techni-
ques—the electrical transconductance spectroscopy and the time-
resolved fluorescence—would lead to a highly versatile experimental
tool to study and control quantum states in the solid state. An electri-
cal preparation of nonequilibrium states in combination with an
optical manipulation and readout could be used to control quantum
bits locally by electrical means and switch-on nonlocal interaction by
single photon channels, a step forward to a quantum network.'®
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