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The current flow along the boundary of graphene stripes in
a perpendicular magnetic field is studied theoretically by
the nonequilibrium Green’s function method. In the case
of specular reflections at the boundary, the Hall resistance
shows equidistant peaks, which are due to classical cy-
clotron motion. When the strength of the magnetic field is
increased, anomalous resistance oscillations are observed,
similar to those found in a nonrelativistic 2D electron gas
[New. J. Phys. 15:113047 (2013)]. Using a simplified model,
which allows to solve the Dirac equation analytically, the os-
cillations are explained by the interference between the oc-
cupied edge states causing beatings in the Hall resistance.
A rule of thumb is given for the experimental observability.
Furthermore, the local current flow in graphene is affected
significantly by the boundary geometry. A finite edge cur-
rent flows on armchair edges, while the current on zigzag
edges vanishes completely. The quantum Hall staircase can
be observed in the case of diffusive boundary scattering.
The number of spatially separated edge channels in the local
current equals the number of occupied Landau levels. The
edge channels in the local density of states are smeared out
but can be made visible if only a subset of the carbon atoms
is taken into account.

1 Introduction

Nowadays, graphene is maybe the most studied ma-
terial in condensed matter physics because of its nu-
merous exceptional properties and their potential tech-
nological applications, see [1–6] and references therein
for an overview. In particular the electronic transport of
charge carriers in graphene is of enormous interest due
to the promise of novel electronic devices like foldable
displays and high-frequency transistors [5]. It has also
been shown recently that strain and deformation of a

graphene stripe, as caused by the absorption of atoms for
example [7], give rise to a strong pseudo-magnetic field
[8, 9], which affects significantly the current flow [10].

In this paper, we study magnetotransport along the
edges of graphene stripes. As sketched in figure 1, elec-
trons are injected coherently at one point S on the
boundary of the graphene stripe and focussed by a ho-
mogeneous perpendicular magnetic field B onto another
point P1 on that boundary. In the classical regime (blue
trajectories) resonances are observed, if a multiple of the
cyclotron diameter equals the distance between the in-
jecting and collecting point contacts [11, 12]. For large
Fermi wavelength and long phase coherence length, ad-
ditional interference effects appear. This regime of coher-
ent electron focusing has been studied for the first time
by van Houten et al. in a nonrelativistic two-dimensional
electron gas (2DEG) [13] but it has become a topic of
current interest again, since the first focusing experi-
ments in graphene have become possible [14, 15]. The
magnetic focusing in graphene pn junctions has been
studied theoretically [16] and snake states at such a pn
interface have been predicted [17, 18]. It has also been
suggested to study by coherent electron focusing the
structure of graphene edges [19]. Recently, also the ef-
fects of disorder [20] and spin-orbit interaction [21–25]
have been investigated in a nonrelativistic 2DEG. On the
other hand, graphene stripes in a strong magnetic field
show the quantum Hall effect [26, 27], which is explained
by the transport through edge channels along the bound-
ary of the system, see the red lines in figure 1.

Here, we study theoretically the system properties
from the classical to the quantum regime. In particu-
lar, we discuss the novel effects which emerge, when the
two regimes are bridged by suitable system parameters.
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Figure 1 Magnetotransport in graphene stripes is studied. Elec-
trons are injected at the source S and focussed by a perpendicular
magnetic field B onto the contact P1. We calculate the current ISD

between source S and drain D as well as the voltage drop UP1 P2

between the voltage probes P1 and P2. Using these quantities, we
study the generalized Hall resistance Rxy = UP1 P2/ISD as a func-
tion of B. Cyclotron orbits at low magnetic field are sketched by
the blue trajectories. The edge channel transport of the quantum
Hall effect at high magnetic field is indicated by red lines.

If the scattering at the boundaries is specular, we ob-
serve in this intermediate regime anomalous resistance
oscillations, which are neither periodic in B (classical cy-
clotron motion) nor periodic in 1/B (quantum Hall ef-
fect). Using a simplified model, which allows to solve
the Dirac equation analytically, we explain these oscil-
lations by the interference of the occupied edge chan-
nels. These anomalous resistance oscillations have been
reported recently in a nonrelativistic 2DEG [28]. Beyond
this, in graphene the local current flow is affected sig-
nificantly by the boundary geometry. We show that on
armchair edges a finite edge current is present, while
on zigzag edges the current is shifted to the interior of
the stripe and vanishes exactly on the edge. We also give
a rule of thumb for the experimental observability of
these effects. The quantum Hall staircase is observed in
the case of diffusive scattering at the boundaries, which
guarantees that the phase coherence length is shorter
than the relevant geometric lengths (point contact dis-
tance, system size). We show that the number of spatially
separated edge channels in the local current equals the
number of occupied Landau levels. In the local density
of states (LDOS) the edge channels are smeared out but
can be made visible if only a subset of the carbon atoms
is considered.

2 System

We study a graphene stripe with a size of 140 nm ×
90 nm, see figure 1. Metallic contacts with a width of

3 nm are attached at the edges of the stripe separated by
a distance of L = 110 nm (measured between the mid-
dle of the contacs). We calculate the current ISD flow-
ing between source S and drain D due to an infinites-
imal bias voltage, as well as the voltage drop UP1 P2 be-
tween the voltage probes P1 and P2. Using these quan-
tities, we study the generalized Hall resistance Rxy =
UP1 P2/ISD as a function of an homogeneous perpendic-
ular magnetic field B = −Bez. The Fermi energy is set
to μ = 0.06t = 168 meV, where t = 2.8 eV is the coupling
between nearest neighboring carbon atoms at a distance
a = 0.142 nm [3]. In the experiment, usually the elec-
tron density is constant while the chemical potential is
oscillating. However, this would only slightly displace
the transitions between the Hall plateaus and would not
qualitatively change our results, see also [29]. For sim-
plicity, we do not take into account the Zeeman spin
splitting, see remarks in section 4.4. We also assume that
the influence of the temperature is negligible and thus,
set it to zero. We consider graphene stripes with a zigzag
boundary in between S and P1, as well as with an arm-
chair boundary, see the inset of figure 4. Other possi-
ble edge reconstructions, see e.g. [30–32], are not con-
sidered here. Note that the orientation of the graphene
lattice with respect to the used coordinate system is not
changed in the two stripes. Armchair edges run along
the x-axis, whereas zigzag edges are oriented along the
y-axis, see the inset of figure 4.

3 Calculations

In this section, we begin with a short introduction into
the nonequilibrium Green’s function (NEGF) method,
which is applied to study quantitatively the magneto-
transport in graphene stripes. Afterwards, we solve the
Dirac equation in a magnetic field for a graphene sheet
bounded by a single infinite potential wall. This simpli-
fied model will help us to get insight into the results of
the Green’s function calculations.

3.1 The nonequilibrium Green’s function method

We start from the tight-binding Hamiltonian of the
graphene stripe

H = −t
∑
〈i j〉

∣∣φA
j

〉 〈
φB

i

∣∣ + H.c., (1)

where 〈i j〉 means nearest neighbors at a distance a with
coupling t. The |φA/B

i 〉 are the pz orbitals of the carbon
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atoms on sublattice A and B, respectively, see the red and
black marked atoms in the inset of figure 4. In graphene
nanoribbons it can be necessary to take into account
also the interaction to second and third nearest neigh-
bors [33–35]. However, for the graphene stripes studied
here, it is sufficient to consider only nearest neighbors,
as our main results remain qualitatively unchanged if
also second and third nearest neighbors are taken into
account.

In the tight-binding Hamiltonian the effect of the
magnetic field B is taken into account by the Peierls sub-
stitution [36]

ti j (B) = ti j (B = 0)ei e
h

∫
dl·A, (2)

where A is the vector potential of the magnetic field. The
path integral is along the straight connection between
the position of carbon atom i and j.

The Green’s function of the graphene stripe is defined
as [37–39]

G =
[

E − H −
Nc∑

k=1

�k

]−1

, (3)

where E is the energy of the charge carriers. The influ-
ence of each of the Nc contacts is taken into account by
an imaginary self-energy

�k = −iη
∑

ri

|ri〉 〈ri | (4)

with broadening η = 1.25t = 3.5 eV, representing metal-
lic contact regions. The sum is over all carbon atoms
which are coupled to the same contact k.

The transmission from contact j to contact i is then
given by

Ti j = 4Tr
(
Im (�i) GIm

(
� j

)
G†) . (5)

and the total current at the ith contact reads

Ii = 2e
h

∑
j

Ti j
(
μ j − μi

)
, (6)

where μi/j is the chemical potential of contact i and j,
respectively. The generalized Hall resistance is then given
by

Rxy = UP1 P2

ISD
= h

2e2

∑
j

(
RP1 j − RP2 j

)
Tj S

TDS + ∑
i j TDiRi j Tj S

, (7)

where

R−1
i j =

{−Ti j i �= j,∑
k�=i Tik i = j.

(8)

The sums in (7) are over the contacts with unknown
chemical potential, whereas the sum in (8) is over all con-
tacts including source and drain.

The local current of electrons, which originate from
the source with energy μ and which flow from atom j to
the neighboring atom i, is given by [40, 41]

Ii j = 2e
�

Im
(

H ∗
ji AS

ji

)
, (9)

where the Hi j are the matrix elements of the Hamilto-
nian (1). The spectral function for electrons from the
source is defined as

AS = − 2
π

GIm (�S) G+. (10)

The diagonal elements of the spectral function give the
local density of states (LDOS), which is accessible to
these electrons.

Finite system size effects, such as standing waves be-
tween the system boundaries, would distort the magne-
totransport strongly. Therefore, diffusive boundaries are
used at those edges, which are not important for the
focusing experiment, see the dashed edges in figure 1.
Diffusive boundaries are implemented mathematically
by additional virtual voltage probes, which randomize
phase and momentum of the charge carriers and thus,
suppress standing waves in the system. The chemical po-
tential of the virtual reservoirs is determined by the con-
dition that no charge carriers can be gained or lost at
a virtual reservoir (current conservation constraint), see
[28, 42, 43] for details.

3.2 Dirac equation in a magnetic field

For Fermi energies close to E = 0, the physics of
graphene takes place at two points K and K ′ in momen-
tum space. At these points the dispersion relation is lin-
ear E(k) = �vF |k| and the charge carriers behave as rela-
tivistic massless particles described by the Dirac Hamil-
tonian

HK/K ′ = vF

(
0 px ∓ i py

px ± i py 0

)
(11)

with vF = 3at/2�. Note that in order to derive from
the tight-binding Hamiltonian (1) the Dirac Hamilto-
nian (11) in its common notation [1, 3, 6], we also applied
an unitary transformation

U =
(

1 0
0 i

)
. (12)
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The effect of the magnetic field is taken into account
by minimal gauge invariant coupling p → p− e A, where
A = Byex is the vector potential chosen for the armchair
stripe, see figure 4 (bottom). To solve the Dirac equation,
we insert the two linear equations into each other, keep-
ing in mind that [ px, py] = −ieB�. By means of the ansatz
ψB(r) = eikxχB(y), we obtain the Schrödinger equation of
a harmonic oscillator

Ẽ χB(y) =
[

p2
y

2m
+ 1

2
mω2

c (y − yk)2

]
χB(y), (13)

which is shifted by yk = 	2
Bk and rescaled in energy Ẽ =

E 2

2mv2
F

+ �ωc
2 with ωc = eB

m and 	2
B = �

eB . Thus, the eigenen-

ergies are given by

Eν = ±
√

2mv2
F �ωc ν, ν ≥ 0. (14)

The eigenstates on sublattice B read χB ∼ Dν( y−yk
	B

),

where Dν(y) ≡ Dν(
√

2y)/
√

ν! are rescaled parabolic cylin-
der functions [44]. The eigenstates on sublattice A follow
directly from χB , the Dirac equation and the recursion re-
lation (∂y + y)Dν(y) = √

2νDν−1(y), see [44]. The solution
of the Dirac equation at the K ′ valley can be obtained
easily by interchanging the two sublattices, see (11). The
eigenenergy spectrum is unchanged and hence, twofold
degenerate. Thus, the eigenfunctions are given by

ψK (r) = cν eikx
(∓Dν−1(ξ )

iDν(ξ )

)
, (15a)

ψK ′ (r) = cν eikx
(

Dν(ξ )
∓iDν−1(ξ )

)
, (15b)

where cν is a normalization constant, ξ ≡ (y − 	2
Bk)/	B

and Dx<0 ≡ 0. The different signs of the eigenstates cor-
respond to the signs of the eigenenergies. We also ap-
plied the unitary transformation (12) in order to get the
correct phase between the wavefunctions on the sublat-
tices. For the zigzag stripe, see figure 4 (top), we choose
the vector potential A = −Bxey, to get the eigenstates

ψK (r) = cν eiky
(∓iDν−1(ζ )

iDν(ζ )

)
, (16a)

ψK ′ (r) = cν eiky
(

Dν(ζ )
±Dν−1(ζ ),

)
, (16b)

where ζ ≡ (x + 	2
Bk)/	B . In an infinitely extended system,

the index ν has to be an integer n = 0, 1, 2 . . . (Landau

level index), because the eigenfunctions have to be nor-
malizable. In this case, the parabolic cylinder functions
can be simplified by Dn(y) = e−y2/2 Hn(y)/

√
2nn!, where

Hn(y) are the Hermite polynomials.

3.3 Dirac equation with an edge in a magnetic field

To understand the magnetotransport in graphene
stripes, we solve the Dirac equation bounded by an
edge under the effect of a magnetic field. In general,
the solution of the Dirac equation is given by a linear
combination of the solutions at both valleys

�(r) = c1 eiK ·rψK (r) + c2 eiK ′ ·rψK ′ (r), (17)

where c1 and c2 are complex constants. At the zigzag
edge, we obtain by means of (16)

�zz(r) = ei( 2π
3 x+ky)

[
c1 ei 2π

3
√

3
y
(∓iDν−1(ζ )

iDν(ζ )

)

+ c2 e−i 2π

3
√

3
y
(

Dν(ζ )
±Dν−1(ζ )

)]
. (18)

As only carbon atoms of one sublattice appear at a zigzag
edge, see the inset of figure 4 (top), the wave function has
to vanish only on one of the two sublattices. The condi-
tion �A(x = 0) = 0 leads to the two solutions

c1 = 1, c2 = 0 : Dν−1(	Bk)
!= 0, (19a)

c1 = 0, c2 = 1 : Dν(	Bk)
!= 0. (19b)

Thus, for given 	Bk =
√

�k2/eB the index ν is determined
by the zeros of the rescaled parabolic cylinder func-
tions. The first set of solutions is located at the K valley,
whereas the second set is located at the K ′ valley. The re-
sulting energy bands (14) are depicted in figure 2 (top).
At large k the discrete Landau levels for integer values
of ν = n can be observed. The distance of these Landau
levels decreases with

√
n. When the apex of the parabola

yk = 	2
Bk approaches the wall by decreasing k, the energy

bands are bent upwards and their degeneracy is lifted.
Also a dispersionless state Eν=0 = 0 at the K valley can
be seen. The occupied edge states at the Fermi energy
(dashed horizontal line) are indicated by dots.
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Figure 2 Energy bands of graphene bounded by an edge in a mag-
netic field of B = 15.6 T. At large k we observe discrete Landau
levels. When k is decreased, the energy bands are bent upwards
and their degeneracy is lifted. In the case of a zigzag edge (top)
the red curve indicates solutions at the K valley, while the blue
curve gives solutions at the K ′ valley. In the case of an armchair
edge (bottom) the valleys are mixed, which leads to two sets of
solutions indicated by the blue and red curve. The occupied edge
states at the Fermi energy (dashed horizontal line) are marked by
blue and red dots.

At an armchair edge, we obtain by means of (15)

�ac(r) = ei( 2π
3 +k)x

[
c1 ei 2π

3
√

3
y
(∓Dν−1(ξ )

iDν(ξ )

)

+c2 e−i 2π

3
√

3
y
(

Dν(ξ )
∓iDν−1(ξ )

)]
. (20)

As at armchair edges both sublattices appear, see the in-
set of figure 4 (bottom), the wave function has to vanish
on both of them. The condition �A(y = 0) = �B(y = 0) =
0 requieres that the coefficient determinant of the linear
equation system for c1 and c2 vanishes

Dν−1(−	Bk) ∓ Dν(−	Bk) = 0 (21)
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Figure 3 Average DOS in the studied graphene stripes. The blue
curve gives the DOS in the zigzag stripe, while the red curve gives
the DOS in the armchair stripe, see the inset of figure 4. The DOS of
both stripes agrees well with the DOS from the Dirac Hamiltonian
(green curve). The peak in the DOS of the zigzag stripe at E = 0 is
caused by the dispersionless surface state, which does not exist in
armchair stripes. However, also the armchair stripe has a nonzero
DOS at E = 0, because of contact induced states. The dashed ver-
tical line indicates the Fermi energy.

and leads to the solutions

c1 = 1, c2 = ±1. (22)

Thus, at an armchair edge both valleys are intermixed.
The two eigenenergy bands in figure 2 (bottom) show
not only that their degeneracy is lifted in vicinity of the
edge but also shallow valleys, which are not present at a
zigzag edge. The solution of the Dirac equation at zigzag
and armchair edges in a magnetic field can also be found
in [45–48].

4 Results and discussion

4.1 Density of states

Let us discuss briefly the density of states (DOS) in the
studied devices, which is shown in figure 3. For ener-
gies E > 0.02t the DOS in the zigzag and the armchair
stripe agree well with the DOS Ddi(E) = 16|E |

9πta2 from the
Dirac Hamiltonian. However, the zigzag stripe shows a
distinct peak at E = 0, which cannot be observed in the
case of an armchair stripe. This peak can be attributed
to the dispersionless state shown in figure 2 (top), which
does not contribute to electron transport and is located
on the surface of the stripe. A surface state is possible
at a zigzag edge, because only carbon atoms of a sin-
gle sublattice appear there. Thus, at the edge the wave

C© 2015 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 5www.ann-phys.org
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function has to vanish only on one sublattice, while the
surface state resides on the other sublattice. At an arm-
chair edge atoms from both sublattices appear and a sur-
face state is not possible, see [3, 31, 49, 50] for details.
However, in figure 3 the DOS of the armchair stripe is also
nonzero at E = 0. These are states induced by the con-
tacts [51], which contribute to the observed finite con-
ductivity of graphene at the Dirac points [26, 27, 52–54].
As a consequence of this, at μ = 0.06t = 168 meV, the
carrier densities in the zigzag stripe nzz = 3.7 · 1012 cm−2

and the armchair stripe nac = 3.3 · 1012 cm−2 are some-
what higher than expected from the linear DOS of the
Dirac Hamiltonian ndi = 2.5 · 1012 cm−2.

4.2 Cyclotron motion and the quantum Hall effect

The Hall resistance Rxy as a function of the magnetic
field B, calculated by means of the NEGF method (7), is
shown in figure 4. In the case of specular reflections at
the boundary between S and P1 (blue curve), the Hall
resistance of both stripes shows at low magnetic field
0 T < B < 10 T a series of equidistant peaks located ap-
proximately at

Bn = 2μ

evF L
n, n = 1, 2, 3, . . . , (23)

see the dashed vertical lines. At these magnetic fields a
multiple n of the cyclotron diameter 2| p|/eB equals the
distance L between injector and collector. Cyclotron or-
bits can be clearly seen in figure 5, which shows the lo-
cal current and the local density of states (LDOS) of elec-
trons originating from S with energy μ. Note that the
shown local current and the LDOS have been averaged
over the honeycomb cells. These current flow paths can
be measured by scanning tunneling microscopy [55].

Extended quantum Hall plateaus in a strong magnetic
field B > 10 T can be observed, if the boundary in be-
tween S and P1 is diffusive (red curve), or if the magnetic
field is reversed and the current passes by the other diffu-
sive boundaries (see the end of section 3.1). The current
is carried through edge channels along the boundaries,
see figure 6. The quantum Hall effect in graphene can
be understood easily by the eigenenergy spectra shown
in figure 2. The number of the occupied edge states
at the Fermi energy equals 2n + 1, where n is the Lan-
dau level index. As every occupied edge state is a bal-
listic conductor, which contributes with 2e2/h to the to-
tal conductance, the Hall resistance reads Rxy = h

2e2
1

2n+1 ,

n = 0, 1, 2, . . .. This explains the quantum Hall staircase
observed in figure 4, which is one of the definitive fin-
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−

[ ]
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−

[
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]

]

Figure 4 Hall resistance Rxy as a function of the magnetic field
B for the zigzag stripe (top) and the armchair stripe (bottom).
The blue curve gives Rxy in the case of specular reflections at
the boundary between S and P1, whereas for the red curve the
scattering at this boundary is diffusive. The Hall resistance starts
with peaks, which can be understood by classical cyclotron orbits
(23), see the dashed vertical lines. In a strong magnetic field B >

10 T, we observe superimposed upon the quantum Hall plateaus
anomalous resistance oscillation, which cannot be explained by
cyclotron orbits.

gerprints of a relativistic 2DEG [26, 27, 56–58], because
it differs significantly from the nonrelativistic case [37].
In figure 4 we can also observe that the transitions be-
tween the Hall plateaus differ slightly in the two stripes.
This can be explained by the shallow valleys in the band
structure at an armchair edge, which are not present at
a zigzag edge or when the scattering at all boundaries is
diffusive.

4.3 Anomalous resistance oscillations

In the case of specular scattering between S and P1 and
in magnetic fields B > 10 T, we observe – superimposed
upon the quantum Hall plateaus – anomalous resistance
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Figure 5 Local current (arrows) and LDOS (shading) of electrons originating from S with energy μ. In the zigzag stripe (left column) and
the armchair stripe (right column) cyclotron orbits can be clearly seen. At the armchair edge a distinct edge current can be observed,
which is not present at the zigzag edge. Note that the shown local current and the LDOS have been averaged over the honeycomb cells.

Figure 6 The edge channel transport of the quantum Hall effect can be observed clearly, when the direction of the magnetic field is
reversed. A finite current flows at the armchair edge (right), whereas the current vanishes at the zigzag edge (left). This can also be seen
in the transverse current through the dashed vertical line in figure 9. In the LDOS only a single broadened edge channel can be recognized,
instead of spatially separated edge channels.

oscillations, which cannot be understood by classical cy-
clotron motion. In particular, when only two Landau
level are occupied (16 T < B < 26 T), the oscillations be-
come very clear and regular. Their frequency increases
rapidly whenever a Landau level is pushed towards the
Fermi energy and a transition between Hall plateaus
appears (compare blue and red curves in figure 4).
Finally, the oscillations vanish completely, when only a
single edge channel is occupied (B > 26 T), and the Hall

plateau Rxy = 1 appears (not shown in figure 4). These re-
sistance oscillations can be understood by means of the
solution of the Dirac equation. In the zigzag stripe the
edge states are given by (18) and (19). We superimpose
the plane wave part of the occupied edge states

∣∣ψgr

∣∣2 =

〈∣∣∣∑n
i=1 ei

(
ki+ 2π

3
√

3

)
L + ∑n+1

i=1 ei
(

qi− 2π

3
√

3

)
L
∣∣∣2〉

S,P1

(2n + 1)2 , (24)

C© 2015 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 7www.ann-phys.org
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Figure 7 Normalized absolute square of the superimposed plane
wave part of the occupied edge channels (24), (red curve) agrees
well with the Green’s function calculation of the Hall resistance
(blue curve). All resistance oscillations can be understood by the
interference of the edge channels. The anomalous oscillations are
beatings, which appear when only some few edge channels are
occupied.

where 〈·〉S,P1 means spatial averaging over the finite width
of the injector and collector contacts. The occupied edge
states in the K valley are denoted by ki and the states in
the K ′ valley by qi , see the red and blue dots in figure 2.
The normalized absolute square of these superimposed
plane waves agrees almost perfectly with the NEGF cal-
culation, see figure 7 (top). Thus, all focusing peaks can
be understood by the interference of the plane wave part
of the occupied edge states. The anomalous resistance
oscillations are beatings, which appear when only some
few edge channels are occupied. These beatings are very
clear and regular if only two Landau levels are occupied.
Their frequency increases rapidly, whenever the highest
occupied Landau level approaches the Fermi energy, be-
cause its intersection point with the Fermi energy and
thus, the corresponding kmax (or qmax) increases strongly.
The difference of kmax to the other, much smaller kn leads

to a high frequency beating. Finally, when only a single
edge channel is occupied, the beating and thus, the os-
cillations in the Hall resistance vanish. In the armchair
stripe, the solution of the Dirac equation is more com-
plicated, see (20), (21), and (22), because the valleys are
intermixed. We found best agreement to our Green’s
function calculations, see figure 7 (bottom), if we use also
for the armchair stripe (24), where the ki and qi denote
the two sets of solutions.

In a magnetic field B < 16 T, the simplified model
shows smaller highly oscillating peaks, which are due to
the interference of numerous plane waves. These highly
oscillating peaks are more pronounced in the armchair
stripe, where additional interference between the K and
K ′ valley takes place, which is not present in the zigzag
stripe, compare (21) and (19). The highly oscillating
peaks are not present in the NEGF calculations due to
the diffusive boundaries. Probably they neither appear
in the experiment due to the presence of decoherence.
In a stronger magnetic field, the highly oscillating peaks
disappear and the simplified model agrees very well with
the NEGF calculations, because the superposition of only
few eigenstates (see figure 2) leads to beatings. The os-
cillation are almost independent from the edge geome-
try, apart from slight differences in their frequency and
phase.

The beatings, which appear in the case of only two
occupied Landau levels, can be used to determine pre-
cisely the distance between the injector S and collec-
tor P1. In figure 7, the almost perfect match of the po-
sitions of all extrema in the range 13 T < B < 26 T is ob-
tained only, if L = 110 nm is chosen in (24) for the dis-
tance between S and P1. In order to explain, why in arm-
chair stripes the classical focusing peaks deviate slightly
from their expected positions, see figure 4 (bottom), we
could assume hypothetically a slightly larger distance
L = 120 nm between injector and collector. In this case,
the classical focusing peaks would appear exactly at the
expected positions, but the beatings would absolutely
not fit to (24). Also finite size effects can be ruled out as
these deviations are not present in zigzag stripes of the
same size. One reason for the shift of the classical focus-
ing peaks could be the distinct edge current observed
only at armchair edges or edge dependent scattering
[59].

Although the charge carriers in graphene behave as
relativistic massless fermions, the studied stripes show
properties similar to a nonrelativistic 2DEG [28]: Clas-
sical focusing peaks in weak magnetic fields, followed
by anomalous resistance oscillations when the magnetic
field strength is increased. In both systems the resistance
oscillations can be explained by the interference of the
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Figure 8 Hall resistance of larger graphene stripes calculated by means of (24). Contacts with a width of 20 nm are attached at
a distance of 450 nm. Right: When the Fermi energy is set to μ = 260 meV, corresponding to a carrier density of ngr = 6.0 ·
1012 cm−2, only classical equidistant focusing peaks can be observed. As reported in [19], the classical focusing peaks of higher or-
der (n > 4) are clearly visible at armchair edges (top) but are suppressed at zigzag edges (bottom). Left: When Fermi energy μ =
80 meV and carrier density ngr = 5.7 · 1011 cm−2 are lowered, we find classical equidistant focusing peaks followed by anomalous
oscillations.

plane wave part of the occupied edge states. However,
in graphene the linear dispersion, the valley degeneracy
(symmetry points K and K ′ in momentum space) as well
as the non-trivial edge geometry add subtle but impor-
tant new aspects. In this way, at first sight the local cur-
rent flow looks similar in both systems (cyclotron orbits,
edge channels), compare figure 5 with figure 2 in [28].
However, the boundary geometry has a distinct effect
on the local current flow, see figure 6, which will be dis-
cussed in section 4.5.

4.4 Experimental observability

Due to computational limitations, the studied stripes are
relatively small (L = 110 nm) and the considered mag-
netic fields are quite strong (Bmax = 30 T). In these strong
fields, also the Zeeman spin splitting of the Landau lev-
els can be relevant [58, 60, 61] but we do not expect that
the spin splitting changes qualitatively our findings. Al-
though it is technically possible to realize such system
parameters, this is not essential to observe our findings
in an experiment. The important factor in an experiment
is the maximal number of resolvable focusing peaks nmax,
which is limited due to decoherence and partial diffusive
scattering at the boundary. In order to observe anoma-
lous resistance oscillations due to the interference of
some few edge channels, the distance L between injec-
tor and collector as well the Fermi energy μ have to be
tuned in such a way that the maximal number of possi-

ble specular reflections fulfills the rule of thumb

nmax ∼ 1
6

L
a

μ

t
, (25)

which can be derived easily by (14) and (23). Of course,
mean free path and phase coherence length also have
to be comparable with L. To our knowledge in most fo-
cusing experiments such system parameters have been
used that the regime of coherent electron focusing and
the quantum Hall effect are well separated, see e.g.
Figure 10 in [13]. However, signs of the anomalous
oscillations can be observed in different geometries
[62, 63].

Because of the excellent agreement of the simplified
model (24) and the Green’s function calculations, see
figure 7, we can use this simplified model to study larger
stripes, for which NEGF calculations are demanding. We
consider stripes at which 20 nm wide contacts are at-
tached at a distance of 450 nm. This is approximately
the same geometry used in the recent focusing experi-
ment in graphene [14] as well as in a theoretical study
[19]. When the Fermi energy is set to μ = 260 meV cor-
responding to a carrier density of ngr = 6.0 · 1012 cm−2,
the system is in the regime of classical equidistant fo-
cusing peaks (nmax ∼ 49), see figure 8 (right). In agree-
ment with results reported by Rakyta et al. [19], the fo-
cusing peaks of higher order (n > 4) are clearly visible
at armchair edges but are suppressed at zigzag edges.
When Fermi energy μ = 80 meV and carrier density
ngr = 5.7 · 1011 cm−2 are lowered, we bridge the regime
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Figure 9 Transverse current (blue curves) through the dashed lines
in figure 6. A finite current flows on the armchair edge (bottom)
but the current vanishes on the zigzag edge (top). The current,
calculated by the eigenstates of the Dirac equation (red curve),
agrees with the NEGF calculation and allows to attribute the dif-
ferent edge currents to the different boundary conditions of the
stripes. We can identify two spatially separated edge channels,
which equals the number of occupied Landau levels (with E ≥
0). Due to the boundary conditions, the edge channels are more
densely packed in the zigzag stripe.

of coherent electron focusing and the quantum Hall
regime (nmax ∼ 15), see figure 8 (left). The Hall resistance
starts with equidistant classical peaks, but anomalous
oscillations follow when the strength of the mag-
netic field is increased. This gives us confidence that
the predicted resistance oscillations can be observed
experimentally.

4.5 Edge current flow

In figures 5 and 6 we observe that a finite current flows
on the armchair edge, whereas the current vanishes on
the zigzag edge. This can be seen clearly in figure 9 (blue
curve), which shows the transverse current through the

Figure 10 Energy resolved transverse current through the dashed
lines in figure 6. Warm colors indicate a current from P1 to S while
cold colors correspond to a current in the opposite direction. As
shown by the shading close to the edges of the stripes (i.e. close to
x = 0 and y = 0, respectively), a finite current flows on the arm-
chair edge (bottom), which is not present on the zigzag edge (top).
The number of spatially separated edge channels equals the num-
ber of occupied Landau levels (with E ≥ 0), although the two edge
channels closest to a zigzag edge are hardly distinguishable. Sur-
prisingly, close to the Landau levels regions of counterpropagating
current can be observed (blue regions). However, the total (inte-
grated) current is quantized and does not change its sign.

dashed vertical lines in figure 6. It can be understood,
if we calculate the transverse current by means of the
eigenstates of the Dirac equation [6, 48, 64, 65]

Idi(r) ∝
2n+1∑
i=1

ψA,ki ψB,ki ∝
2n+1∑
i=1

ci Dν,kiDν−1,ki , (26)

where ci is a normalization constant and the sum is
over the occupied edge states, see the dots in figure 2.
At zigzag edges the parabolic cylinder functions have
to be zero, see (19), which results in zero edge cur-
rent. At armchair edges, the sum of the parabolic cylin-
der functions has to be zero, see (21), which allows for
a finite edge current. The transverse current calculated
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by means of (26) agrees well with the Green’s func-
tions calculations, see the red curves in figure 9. In the
transverse current at B = −15.6 T, we can identify two
spatially separated edge channels. Thus, the number of
spatially separated edge channels in the local current,
averaged over the honeycomb cells, equals the number
of occupied Landau levels (with energy E ≥ 0), compare
with figure 2. The lifting of their degeneracy at the edge
is not resolved in the local current. Due to the boundary
conditions, in the zigzag stripe the two edge channels are
more densely packed and harder to separate than in the
armchair stripe. Note that the total edge current is ap-
proximately independent from the edge geometry. The
energy resolved transverse current in figure 10 confirms
these findings. Surprisingly, it also shows counterpropa-
gating currents close to the Landau levels, see the blue
shaded regions, in which the current flows in the oppo-
site direction as in the red shaded regions. However, note
that the total (integrated) current is quantized and does
not change its sign. The counterpropagating currents are
also found when the NEGF method is applied to a non-
relativistic 2DEG. At this point, their origin is not un-
derstood, but they are also observed by Wang et al. [48]
using the eigenstates of the Dirac equation. Also the de-
pendency of the current on the edge geometry is re-
ported in their work. Beyond that, we show in figure 5
that a distinct armchair edge current appears also in
the regime of coherent electron focusing. This distinct
armchair edge current in focusing experiments could be
measured experimentally by means of an additional volt-
age probe placed on the stripe’s edge or by contacting
edge channels individually, as in [66, 67].

4.6 Local density of states

The local density of states (LDOS) in figure 6, averaged
over the six carbon atoms of the honeycomb cells, shows
only a single broadened edge channel. This can be seen
clearly in figure 11 (black curves), which gives the LDOS
along the dashed vertical line in figure 6. In order to
make individual edge channels visible in the LDOS, we
have to select only a subset of the carbon atoms, see the
blue and red curves for which only the atoms marked in
the inset are taken into account. Note that in the arm-
chair stripe two subsets give numerically identical re-
sults, see the blue curve. When every carbon atom is
considered individually, the LDOS oscillates rapidly be-
tween the blue and red curves in figure 11. These oscilla-
tions have been reported in theoretical studies [45, 64, 68,
69], but to our knowledge an experimental confirmation
is missing. The energy resolved LDOS, calculated nu-
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Figure 11 LDOS of the zigzag stripe (top) and the armchair stripe
(bottom) along the dashed vertical lines in figure 6. The LDOS av-
eraged over the six carbon atoms of the honeycomb cells (black
curve) shows a single broadened edge channel. Individual edge
channels become visible, when only a subset of the atoms is
taken into account, see marked atoms in the legend. Note that in
the armchair stripe two subsets give numerically identical results
(blue curve).

merically by means of the NEGF method, is depicted in
figure 12. Far from the edge the discrete Landau levels
can be observed clearly. If the LDOS is averaged over the
honeycomb cells (left column), the bending of the energy
bands can hardly be discerned. It becomes more visible,
if only a subset of the carbon atoms is taken into account
(middle and right column). In this way, we can observe
how in the zigzag stripe (top row) the zeroth Landau level
at E = 0 splits into a dispersive edge state on the sublat-
tice B (right) and a non-dispersive surface state on the
sublattice A (middle). This surface state is not present in
the armchair stripe. Similar results can also be obtained
by means of the eigenstates of the Dirac equation, see
[46]. Anyway, in the experiment it is not possible to select
a subset of the carbon atoms. Thus, the measured LDOS
looks similar to the figures in the left column, see [70].
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Figure 12 Energy resolved LDOS in the studied zigzag stripe (top row) and armchair stripe (bottom row). In the left column the LDOS
has been averaged over the six carbon atoms of the honeycomb cells. Landau levels can be observed far from the edges. However, the
bending of the energy bands in vicinity of the edge is seen more clearly in the figures of the middle and right column, where the LDOS
is averaged only over the subset of atoms shown in the inset. In the zigzag stripe it can be seen how the zeroth Landau level (at E = 0)
splits into an edge state (top, right) and a non-dispersive surface state (top, middle), when the edge is approached. This surface state is
not present in the armchair stripe.

5 Conclusions

In this paper, we have studied theoretically magneto-
transport in graphene stripes. In these stripes electrons
are injected at one point of the boundary and focused by
a perpendicular magnetic field onto another point of that
boundary, see figure 1. We have calculated by the NEGF
method the generalized Hall resistance as a function of
the magnetic field, see figure 4. In weak fields equidistant
focusing peaks appear, which correspond to classical cy-
clotron orbits (23), see figure 5. When the magnetic field
is increased, anomalous resistance oscillations are ob-
served, which cannot be explained by classical cyclotron
motion.

By means of a simplified model, we have shown that
all calculated resistance oscillations can be understood
by the interference of the plane wave part of the occu-

pied edge channels, see figure 7. The anomalous resis-
tance oscillations are beatings, which appear when only
some few edge channels are occupied and only some few
plane waves are superimposed. Thus, the oscillations are
very clear and distinct, if only two Landau levels are oc-
cupied. The frequency of the resistance oscillations in-
creases rapidly, when the magnetic field is increased and
a Landau level is depleted, because the momentum of
the corresponding plane wave (and hence, its frequency)
is also increasing rapidly, see figure 2. Due to compu-
tational limitations, the studied graphene stripes have
been relatively small and the magnetic field has been rel-
atively strong. However, due to the good agreement of the
simplified model with the NEGF calculations, we have
used this model to show that our findings are expected
to appear also in larger stripes at lower magnetic fields.
As the resistance oscillations, classical focusing peaks as
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well as the beatings, are due to the interference of the
edge channels, we have also given a rule of thumb (25)
for the required number of specular reflections.

Studying the effect of the edge shape of the graphene
stripes on the magnetotransport, we found that a finite
current flows on the armchair edge, whereas the current
vanishes on the zigzag edge, see figures 6 and 9. By means
of the simplified model, the different edge currents can
be traced back to the fact that at an armchair edge car-
bon atoms of both sublattices appear, while at a zigzag
edge only atoms of one sublattice are present, see the in-
set of figure 4. We have also shown in figures 9 and 10 that
the number of spatially separated edge channels in the
local current equals the number of occupied Landau lev-
els. The discrete Landau levels can be seen clearly in the
LDOS in figure 12. However, the bending of the Landau
levels in vicinity of the edge as well as spatially separated
edge channels can be hardly recognized, if the LDOS is
averaged over the six carbon atoms of the honeycomb
cells. They can be made visible, if the LDOS is averaged
only over a subset of the carbon atoms.
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[70] G. Li, A. Luican-Mayer, D. Abanin, L. Levitov, and E. Y.

Andrei, Nat. Commun. 4, 1744 (2013).

14 C© 2015 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimwww.ann-phys.org


