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Abstract – Using time-resolved transconductance spectroscopy, we study the tunneling dynamics
between a two-dimensional electron gas (2DEG) and self-assembled quantum dots (QDs), embed-
ded in a field-effect transistor structure. We find that the tunneling of electrons from the 2DEG
into the QDs is governed by a different time constant than the reverse process, i.e., tunneling from
the QDs to the 2DEG. This asymmetry is a clear signature of Coulomb interaction and makes it
possible to determine the degeneracy of the quantum-dot orbitals even when the individual states
cannot be resolved energetically because of inhomogeneous broadening. Our experimental data
can be qualitatively explained within a master-equation approach.

Copyright c© EPLA, 2014

Introduction. – Self-assembled InAs quantum dots
are ideal model systems to study the energetic structure
and dynamics of fully quantized few carrier systems [1–3].
When incorporated into a suitable diode or transistor
structure, the coupling to a free electron or hole reser-
voir opens up new possibility for tuning the charge and
energy of the dots [4]. It also makes it possible to study
the quantum-mechanical properties in great detail.

When investigating the non-equilibrium transport be-
tween a reservoir and the dot system, the charging and
discharging dynamics are given by the tunneling matrix
element, which gives access to, e.g., wave function map-
ping [5–7] and manipulation [8–10].

As we will show in the following, also the multiplic-
ity/degeneracy of the quantum-dot states has a profound
influence on the tunneling dynamics between the reservoir
and the dots [11,12]. Starting from the observation that
charging and discharging of the dots are governed by differ-
ent relaxation times, we develop a non-equilibrium trans-
port model based on a master equation. The comparison
between the model and the experimental data allows us to
determine the details of the degeneracy of the electronic
p-shell. These details are usually hidden by the unavoid-
able inhomogeneous ensemble broadening of the energy

structure, but can be resolved by studying the charging
and discharging dynamics.

Experiment. – The measurements are performed on
an inverted AlGaAs/GaAs high electron mobility tran-
sistor structure as sketched in fig. 1(a) with an embed-
ded layer of InAs quantum dots. The layer sequence,
grown by molecular beam epitaxy, is schematically shown
in fig. 1(b). The active part of the structure starts with
a 300 nm thick Al0.34Ga0.66As layer, a silicon δ-doping
sheet (3 ·1012 cm−2) and an AlGaAs spacer layer of 16 nm
thickness. Subsequently, a 15 nm thick GaAs layer, which
contains a two-dimensional electron gas, a 10 nm thick
AlGaAs tunneling layer, a 5 nm thick GaAs spacer layer
and the InAs quantum dots are deposited. The dot for-
mation takes place after evaporating the equivalent of 1.9
monolayers of InAs at 525 ◦C. This results in a dot density
of nQD ≈ 8 · 109 cm−2. The dots are covered by 150 nm
of GaAs and a 116 nm thick blocking layer of alternat-
ing AlAs/GaAs layers (3 nm and 1 nm, respectively). The
structure is capped by a protective, 5 nm thick GaAs film.

Using standard lithographic techniques, the samples are
patterned into a 60 μm long and 50 μm wide strip with
source/drain contacts on either side. The central region
is covered by a 50 nm thick gold layer, which serves as
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Fig. 1: (Colour on-line) Device (a) and layer schematics (b) of
the investigated sample: A high electron mobility transistor,
grown with an embedded layer of quantum dots, serving as a
floating gate. The tunneling current into the dots is monitored
via a time-resolved conductance measurement of the 2DEG.

a gate electrode. The application of a gate voltage VG
will shift the energetic position of the states in the quan-
tum dots, which are embedded in the dielectric between
the gate electrode and the two-dimensional electron gas
(2DEG) [13]. This way, the number of electrons per
quantum dot can be adjusted between 0 and 6 [2,4,13].
More specifically, each time the energy difference εm :=
Em −Em−1 of the m-electron ground-state energies Em of
the quantum dot is in resonance with the electro-chemical
potential μF of the two-dimensional reservoir, electrons
can tunnel between 2DEG and quantum dots.

To monitor the tunneling dynamics between the dot
ensemble and the 2DEG, we use a recently developed
transconductance spectroscopy technique [14–16]. At a
time t = 0, a voltage pulse is applied to the gate, and the
time-resolved response of the 2DEG conductivity σ(t) is
recorded. For a positive pulse (upward step in VG) the en-
ergy of the quantum-dot states are shifted downward, so
that electrons can tunnel from the 2DEG into unoccupied
states in the dot layer. Therefore, an exponential decrease
of σ is observed, because mobile charges from the 2DEG
will become localized when they are transferred into the
dots. For the reverse process (when switching back to
the original voltage), charges are transferred back out of
the dots into the 2DEG, so that its conductance will in-
crease again [13,14]. In this way, the conductivity of the
2DEG is a direct measure of quantum-dot charge and the
conductance traces as shown in fig. 2 allow us to directly
compare the charging with the discharging process.

Taking the geometric distance between the 2DEG and
the dot layer, dtunn, as well as the distance between the
2DEG and the gate, dtot, the energy shift ΔE caused
by the voltage step ΔVG is easily calculated as ΔE =
edtunn

dtot
ΔVG = e

λΔVG. Here we chose the simple but well
established [17,18] energy conversion based on the geomet-
ric lever arm1 λ = dtot

dtunn
= 7.

1Since the 2DEGs wave function is shifted away from the AlGaAs
spacer, we have used a Poisson-Schrödinger solver to more accurately
determine the lever arm to λ = 7.
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Fig. 2: (Colour on-line) Conductance change Δσ while charg-
ing (0 → 1) and discharging (1 → 0) the first electron (VG =
−0.67 V). The time constants are determined to τ0→1 = 2.3ms
and τ1→0 = 3.2 ms, respectively, by fitting a stretched exponen-
tial (solid lines) to the transients. The inset shows the temper-
ature dependence of the averaged time ratio ν̄ = (ν1 + 1/ν2)/2
(see eq. (10)). For sufficiently low temperatures we find a max-
imum ratio of ≈ 1.4 while ν̄ → 1 for high temperatures. The
solid line shows the temperature dependence, calculated from
a master equation (see text).

For small excitation voltages ΔVG this allows us
to derive the density of states in the dot layer
D(E) from the measured total change in conductivity
Δσ = |σ(0) − σ(∞)| from

Δσ

ΔVG
=

Δneμ
ΔE
eλ

= λe2μ
Δn

ΔE
= λe2μD(E), (1)

where μ is the mobility of the 2DEG, and Δn is the change
in the 2DEG carrier density, caused by the tunneling elec-
trons2. Figure 3(b) shows the thus obtained density of
states in the dot layer. We observe two clearly distinct
maxima, corresponding to the charging of the two s-states
around VG = −0.6 V and a broader distribution, corre-
sponding to the charging of the four p-states in the range
between −0.3 and 0.3 V. The peaks are broadened be-
cause of the size distribution of the self-assembled quan-
tum dots. On samples with even better size homogeneity,
the four p-states can also be clearly resolved [13].

Turning to the dynamics of the tunneling process, we
find a significant difference for the charging compared
to the discharging process as shown in fig. 2. Here, a
small energy shift of ΔE ∼ 1.4 meV in the chemical po-
tential at a gate voltage VG = −0.67 V allows a frac-
tion of the dot ensemble3 to become charged (0 → 1)

2Here, we have assumed the mobility μ to be independent of the
carrier density. Including the n-dependence of μ (see, e.g. [19]) will
not change the interpretation of our data.

3At this gate voltage, half of the QDs are singly charged while
the others are empty. In an energy window of 1.4meV only 7% of
the QDs will participate in the transfer processes.
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Fig. 3: (Colour on-line) (a) Measured (dots) and calculated
(lines) tunneling ratios using νm from table 1 for all transi-
tions weighted with the average occupation of the ensemble.
(b) Conductance change (i.e. density of states) due to charge
transfer into the QDs. Shaded areas show fits to the measured
density, which has been used for the calculation shown in (a).

or discharged (1 → 0) with a single electron. From a
stretched exponential fit4, we obtain time constants of
τ0→1 = 2.3 ms and τ1→0 = 3.2 ms, which clearly differ
from each other. As shown in the inset of fig. 2, the ra-
tio between the charging and discharging relaxation rate
decreases with increasing temperature. This raises two
questions: 1) What is the physical origin of this asymme-
try and 2) how can this asymmetry be used to gain insight
in the internal structure of the quantum dots? To answer
both questions we model the charge relaxation after the
voltage pulse within a master-equation approach.

Theory. – At first glance, an asymmetry between
charging and discharging the dots may appear counter in-
tuitive. After all, Fermi’s Golden Rule [20,21] Γi→f =
2π
�

|〈f | H ′ |i〉|2 ρf for the transition rate from an initial
state i to a (fixed) final state f is symmetric, Γi→f =
Γf→i ≡ Γ(ε), as a consequence of the hermiticity of the
tunneling Hamiltonian H ′ and energy conservation which
ensures that the (many-body) density of states for the
initial and the final state are equal to each other (here
practically given by the density of states of the 2DEG).
The dependence of Γ(ε) on the quantum-dot energy level
ε reflects the energy dependence of the tunnel amplitudes
(density of states of the 2DEG is practically energy inde-
pendent).

We describe the charge dynamics by a master equa-
tion [22] ṗm =

∑
m′ �=m Γm′→mpm′ − ∑

m′ �=m Γm→m′pm

4We have used a stretched exponential fit for the data, because it
accounts best for the ensemble average over many dots in our exper-
iment. Other methods of evaluation, e.g. using a single exponential
fit or rescaling of the time axis, gave the same results within the
experimental uncertainty of 10%.

in terms of the quantum-dot charge m (and its
probability pm), which contains only partial information of
the initial and final many-body states. The 2DEG degrees
of freedom and the dm-fold (spin and/or orbital) degen-
eracy of the quantum-dot state with m electrons are inte-
grated out. Averaging the Fermi-Golden-Rule expression
Γ(ε) over all initial and summing over all final states with
the given quantum-dot charge yields the transition rates

Γ+
m ≡ Γm−1→m = km−1→mΓ(εm)f(εm), (2)

Γ−
m ≡ Γm→m−1 = km→m−1Γ(εm)[1 − f(εm)], (3)

where the Fermi function f(ε) stems from the average
over the 2DEG occupation. Only transitions with
m ↔ m − 1 need to be taken into account, because the
electron-electron interaction energy (Coulomb blockade)
is much larger than both the thermal energy and the ex-
citation energy induced by the voltage pulse. The integer
km→m′ counts how many quantum-dot states with charge
m′ can be reached from each of the states with charge m.
Due to selection rules, km→m′ may be smaller than the
degeneracy dm′ . Nevertheless, their ratios are equal,

ξm =
km−1→m

km→m−1
=

dm

dm−1
. (4)

Let us consider the m-th charge transition for an indi-
vidual quantum dot. From the master equations for the
probabilities pm−1 = 1 − pm, we obtain the kinetic equa-
tion for the average charge N =

∑
m mpm,

Ṅ(t) = mΓ+
m + (m − 1)Γ−

m − (Γ+
m + Γ−

m)N(t), (5)

which is solved by

ΔN(t) ≡ N(t) − Neq = (N0 − Neq) exp(−t/τ) (6)

with the relaxation time τ given by

1
τ

= Γ̃m [1 + (ξm − 1)f(εm)] , (7)

where Γ̃m = km→m−1Γ(εm), and the equilibrium occupa-
tion

Neq = m − 1 +
ξmf(εm)

1 + (ξm − 1)f(εm)
. (8)

We would like to mention that for a given (fixed) final
state energy εm, the relaxation time τ does not distinguish
between charging and discharging, i.e., whether the initial
charge N0 was larger or smaller than Neq.

Experimentally, on the other hand, the applied gate
voltage pulse changes the energy εm of the quantum dot
by a small amount ΔE. For small voltage pulses, the en-
ergy dependence of the tunnel barrier can be neglected,
i.e., Γ(ε) ≈ Γ = const. However, as seen from eq. (7) even
a small change in εm can have a strong influence on the
tunneling time when two conditions are fulfilled: 1) the
temperature is small (kBT < ΔE), so that the Fermi func-
tion f has a steep slope near εm and 2) the degeneracies
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Table 1: Degeneracy ratios ξm and relaxation time ratios νm, calculated for different models of shell filling at T = 2.5 K. Also
shown are measured tunneling ratios ν, determined by fits to the charging and discharging data (cf. fig. 2) at the charging
voltages of the m-th electron. Best agreement is found for the model of an elongated dot.

Model ξ1 ν1 ξ2 ν2 ξ3 ν3 ξ4 ν4 ξ5 ν5 ξ6 ν6

degenerate 2 1.6 1
2 0.6 4 2.6 3

2 1.3 2
3 0.8 1

4 0.4
Hund’s rule 2 1.6 1

2 0.6 4 2.6 1
2 0.6 2 1.6 1

4 0.4
elongated 2 1.6 1

2 0.6 2 1.6 1
2 0.6 2 1.6 1

2 0.6
measured 1.5 0.7 1.6 0.7 1.5 0.7

of the charging states m and m − 1 are different, so that
ξm 
= 1.

For example, at the transition m = 1 with d0 = 1 and
d1 = 2, the relaxation rate is τ−1 = Γ[1 + f(ε1)]. At
this point, we should emphasize again the importance of
the charging energy. For negligible charging energy, the
charging and discharging of each quantum-dot level (with
orbital and spin degree of freedom) is independent of the
other levels. Therefore, degeneracies would not play any
role, ξ = 1, and the relaxation time would be energy in-
dependent. The finite asymmetry is, therefore, a clear
signature of Coulomb interaction. A similar conclusion
has been drawn from measurements of the width of tun-
neling resonances in quantum dots that are asymmetri-
cally coupled to source and drain electrodes [23]. There
the dependence of the width on the polarity of the ap-
plied bias voltage could also be traced back to the energy
dependence of Γ[1 + f(ε)]. On the other hand, identical
relaxation times for charging and discharging have been
recently observed on an electrostatically-defined quantum
dot, coupled to a large top-gate capacitance (such that,
the charging energy is negligible) [24].

For an individual quantum dot or an ensemble with a
sharp distribution of the quantum-dot resonances, asym-
metric charge-relaxation times can only be observed when
the final gate voltage after the voltage pulse for charging
is different from the one for discharging, such that the cor-
responding quantum-dot level positions are separated by
at least kBT . In our sample, however, the opposite limit
of a rather broad distribution is realized. To describe this
case, we integrate over all energies for the quantum-dot
levels in the ensemble and obtain an expression that is
independent of the gate voltage after the pulse,

ΔN(t) ∝
∫

dε
[
Neq(ε ± ΔE) − Neq(ε)

]
e−t/τ(ε). (9)

Here, Neq(ε ± ΔE) and Neq(ε) are the equilibrium occu-
pation of the quantum dot before and after the voltage
pulse, respectively. The upper (lower) sign corresponds to
charging (discharging). The pre-exponential factor in the
integrand selects only those quantum dots which change
their occupation after the voltage pulse. An asymmetry
of the relaxation times now appears because relative to
the Fermi energy, the dot energies lie by ΔE lower for
charging than for discharging. Due to the energy integral,
the charge relaxation is no longer governed by a single

exponential decay. To characterize the relaxation by a
single time constant, we numerically perform an exponen-
tial fit of eq. (9).

We quantify the asymmetry in the charge relaxation
time by the ratio

νm =
τm→m−1

τm−1→m
. (10)

For the reasons discussed above, νm is a function of tem-
perature. It ranges from ξm for kBT � ΔE to 1 for
kBT 
 ΔE.

Results and discussion. – Let us now consider the
first two transitions m = 1 and m = 2 for filling the s-shell
with the first and the second electron, respectively. Spin
degeneracy implies d0 = 1, d1 = 2 and d2 = 1, which yields
ξ1 = 2 and ξ2 = 1/2. Due to finite temperature, ν1 and ν2
should be closer to 1 than ξ1 and ξ2. Indeed, we measure
ν1 = 1.4 and ν2 = 0.85 at T = 4 K. Deviations from the
expected relation ν1 = 1/ν2 may be attributed to an en-
ergy dependence of the tunneling barrier Γ(ε). This effect
can be accounted for by averaging ν1 and 1/ν2 to ν̄ = 1.3.
A temperature-dependent comparison between measured
and calculated values of ν̄ is shown in the inset of fig. 2.
We find qualitative agreement: ν̄ ranges between 2 and 1
and decreases with temperature, where the crossover tem-
perature is given by kBT ∼ ΔE. Quantitatively, the mea-
sured values of ν̄ are somewhat smaller than the calculated
ones. A better agreement can be achieved by assuming
a higher electron temperature, caused by Ohmic heating
of the 2DEG through the measurement current and the
voltage pulse. Also, fluctuations of the distance between
quantum dots and 2DEG, i.e., variations of Γ within the
dot ensemble, may contribute to the discrepancy.

So far, we have only looked at transitions involving
the s-shell. Now, we turn to the filling sequence up to
the sixth electron occupying the p-shell of the quantum
dots. Even though for electrons, the s, p, d . . . shell fill-
ing sequence has been verified repeatedly [1,4,12,15,25],
it was not quite clear whether Hund’s rule applies to
the filling of the p-shell [18,26] or whether it is lifted
by an anisotropy of the confinement potential in the
dot [7,9,25]. Our time-resolved transconductance spec-
troscopy provides an excellent tool to clarify which sce-
nario is realized. In fig. 3(a), the data points show the
experimental ratios ν as a function of gate voltage for a
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temperature of 2.5 K. To compare with our model, we
consider three different scenarios: i) a circular dot with
non-interacting charge carriers, which gives degeneracies
in the p-shell {d3, d4, d5, d6} = {4, 6, 4, 1}, ii) a circular
dot, but taking Hund’s rule into account, leading to de-
generacies {4, 2, 4, 1}, and iii) an elongated dot with de-
generacies {2, 1, 2, 1}. The resulting ξm and the calculated
νm are listed in table 1.

Since the separation of the charging states in the p-shell
is comparable to the inhomogeneous width of the QD en-
semble, different transitions may occur during a single
switch in energy. To account for this overlap, we use the
decomposition of the density of states shown as shaded ar-
eas in fig. 3(b) to weight the processes with the percentage
of dots at a certain occupation m. In fig. 3(a), the thus
obtained ν(VG) are shown as dash-dotted, dashed, and
solid lines for the models i)–iii), respectively. Without
any adjustable parameters, we find very good agreement
with the model for an elongated dot, where all but the
spin degeneracies have been lifted by the asymmetric po-
tential. The other models are incompatible with the data.
This finding is in agreement with wave-function mapping
experiments [7,16,27].

It should be pointed out that the distribution of
quantum-dot energy levels is much broader than the split-
ting δEp of the p-orbitals. As a consequence, it is not pos-
sible to resolve δEp in the equilibrium density of states as
shown in fig. 3(b). Nevertheless, from the time-resolved
measurement, fig. 3(a), we can unambiguously conclude
that there is a splitting δEp, which is larger than the en-
ergy shift ΔE caused by the voltage pulse.

Our calculations show that it may be possible to quan-
titatively determine an energy splitting δE with our
method, even when it is masked by inhomogeneous broad-
ening: For voltage pulses large enough such that ΔE � δE
one could map out the crossover from kBT 
 δE for
which the splitting can be neglected (larger degeneracy)
to kBT � δE for which the split levels are filled separately
(smaller degeneracy). In the crossover regime, kBT ∼ δE,
charge and (for Zeeman splitting) spin dynamics are cou-
pled to each other [28,29].

In conclusion, we propose time-resolved transconduc-
tance spectroscopy of quantum dots coupled to a 2DEG
as a useful tool to determine the degeneracies of the
quantum-dot levels with a much better resolution than
the inhomogeneous width of the QD ensemble. As a
consequence of Coulomb interaction, the ratios of the
charge relaxation times for charging and discharging is,
in general, different from 1 and depends both on the
level degeneracies and temperature. Our measurements
can be qualitatively explained within a master-equation
approach and they unambiguously show the existence of
a p-orbital splitting.
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