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We demonstrate the possibility to influence the shape of the wave functions in semiconductor quantum

dots by the application of an external magnetic field Bz. The states of the so-called p shell, which show

distinct orientations along the crystal axes for Bz ¼ 0, can be modified to become more and more

circularly symmetric with an increasing field. Their changing probability density can be monitored using

magnetotunneling wave function mapping. Calculations of the magnetotunneling signals are in good

agreement with the experimental data and explain the different tunneling maps of the pþ and p� states as

a consequence of the different sign of their respective phase factors.
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Symmetries are among the most fundamental concepts
in physics. Systems which have different—sometimes con-
flicting—symmetries are of particular interest, since they
may exhibit intriguing properties, such as the fractal en-
ergy structure of the Hofstadter butterfly [1]. A simple
system, which features multiple symmetries, is a charged
particle, confined in a two-dimensional harmonic oscillator
potential—a textbook problem in quantum mechanics,
which is separable in either Cartesian or cylindrical coor-
dinates. The corresponding rectangular or circular symme-
tries can be lifted selectively by the application of a
magnetic field or by an elongation of the confining poten-
tial, respectively. A competition arises when both pertur-
bations are present, and, depending on their relative
strength, the character of the eigenstates will tend towards
circular or rectangular symmetry. The application of a
magnetic field will also impose a sense of rotation upon
the system, which can be expressed as the sign of the phase

� in the azimuthal part of the wave function e�ij�j.
It is the purpose of this Letter to demonstrate how the

concept of competing symmetries can be investigated in
fully quantized few electron systems, using wave function
mapping, and how the wave functions can be altered from
rectangular symmetry towards circular symmetry by the
application of a magnetic field. Furthermore, we will show
that under suitable conditions the tunneling maps are not
only sensitive to the shape—or more precisely the ampli-
tude—of the wave functions but also to their relative phase.

The system under investigation is an ensemble of self-
assembled InAs quantum dots (QD), grown on GaAs using
the now well-established Stranski-Krastanov growth
mode [2]. These dots can be charged by single electrons
and holes and exhibit a variety of phenomena known from
atomic physics, such as a shell structure [3–5], direct
and exchange Coulomb interaction [6], spin multiplet

formation, and incomplete shell filling [7]. They are thus
often referred to as ‘‘artificial atoms.’’ Previous studies
have shown that the properties of electrons, confined in
self-assembled quantum dots, can be well described using
a two-dimensional parabolic harmonic oscillator potential
[6].
For the present study, the dots are embedded in a field-

effect transistor structure, shown schematically in Fig. 1,
top. The active part of the structure starts with a 300 nm
GaAs buffer, followed by a 20 nm thick Si-doped
back contact and a 42.5 nm GaAs tunneling barrier.
The dot layer was grown by depositing about 1.5 mono-
layers of InAs at 570�, leading to a dot density of
about 1� 1010 cm�2, and covered by 30 nm GaAs. The
216 nm thick blocking layer consists of a AlAs ð3 nmÞ=
GaAs ð1 nmÞ superlattice, the capping layer comprises
10 nm GaAs. Ohmic contacts are provided by alloying
AuGe pads, and the gate electrode was prepared by evap-
orating NiCr and using standard optical lithography. All
measurements were performed at 4.2 K in a liquid-He
cryostat equipped with a superconducting solenoid and a
two-axes rotational sample holder. Capacitance-voltage
traces were recorded at 6033 Hz using standard lock-in
technique with Vmod � 5 mV.
When a voltage Vg is applied to the gate electrode, the

potential energy of the dots is shifted with respect to the
back contact. Thus, with increasing voltage, more and
more electrons will be transferred from the back contact
into the dots by tunneling through the barrier separating
back contact and dots. Up to six electrons can be loaded
into the dots, and the gate voltage for each tunneling event
can be determined by simultaneously monitoring the ca-
pacitance of the sample (see Fig. 1,bottom). More details
on the capacitance spectroscopy and the structure of the
investigated samples can be found in Refs. [3,4,8,9].
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To map out the wave function, we use a magnetotunnel-
ing technique, developed by Patanè and co-workers [5,10]
and adapted to capacitance spectroscopy by Wibbelhoff
et al. [8]: For sufficiently high ac frequencies, the capaci-
tance signal is determined by the tunneling probability,
which in turn is given by the overlap of the wave functions
in the back contact and the dot [11]. Furthermore, as a
consequence of the Lorentz force, an electron that tunnels
a distance �z will experience a shift in momentum ky,

when a magnetic field Bx is applied,

�ky ¼ eBx

@
�z: (1)

Therefore, by recording the capacitance amplitude as a
function of the in-plane magnetic field IðBx; ByÞ, a map of

the probability density inmomentum space j�ðkx; kyÞj2 can
be obtained [5,8,10,12]. Figure 2(a) shows such maps,
obtained for the so-called ‘‘p shell’’ of the quantum dots.
This shell comprises two orbital states: one, labeled p�,
with a node along the x axis (given by the ½1�10� direction of
the GaAs crystal), and the other (pþ) with a node along the
y axis ([110] crystal direction) [8,13]. Because of aniso-
tropic epitaxial growth and strain [14], the p� state is

somewhat lower in energy than the pþ state, which gives
the wave functions the distinct x-y symmetry seen in
Fig. 2(a). This can be accounted for by a slight elongation
of the parabolic model potential [4,6] Vðx; yÞ ¼
1
2m!2

0½ð1þ �Þx2 þ ð1��Þy2�, where m is the effective

mass,!0 the characteristic frequency of the parabolic con-
finement, and � a parameter that determines its ellipticity.
Figures 2(b) and 2(c) demonstrate the influence of an

additional magnetic field component Bz (perpendicular to
the plane of the dots) on the capacitive current IðBx; ByÞ. It
can clearly be observed that the magnetotunneling maps
exhibit more and more circularly symmetric character as
the perpendicular magnetic field is increased. In the sim-
plest approach, this can be attributed to a mixing of the
x- and y-oriented states, caused by the Lorentz force. In
particular, the map of the pþ state develops towards the
ringlike shape expected for orbitals with nonvanishing
angular momentum in high magnetic fields. This shows
how the competition between the anisotropic confinement
potential and the magnetic forces determines the character
of the wave function and how the external magnetic field
can be used as an in situ tuning parameter to shape the
wave function from pure rectangular symmetry [Fig. 2(a)]
towards a more circular structure [Fig. 2(c)].
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FIG. 1 (color). Top: Schematic sample structure. Bottom:
Capacitance-voltage traces, showing the subsequent filling of
the InAs islands with 1–6 electrons. The first two electrons
form the so-called ‘‘s shell,’’ the 3rd to 6th electron the ‘‘p shell.’’
With increasing magnetic field Bz, the p shell exhibits Zeeman
splitting with two states decreasing in energy (p�) and two
increasing (pþ).
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FIG. 2 (color). Experimental maps of the tunneling current
(capacitance amplitude) as a function of the in-plane magnetic
field (Bx; By) for different constant perpendicular fields Bz. With

increasing Bz, the maps develop from a x-y symmetry towards
circular symmetry.
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As seen in the right-hand column of Fig. 2, the p� maps
also exhibit a pronounced magnetic field dependence;
however, they do not develop a ringlike shape. This is
surprising at first, because in high magnetic fields the
wave functions of both p states should exhibit a clear
minimum in the center (see below). It should be kept in
mind, though, that a direct relationship between the tun-
neling map IðBx; ByÞ and the probability density in mo-

mentum space, j�ðkx; kyÞj2, is only given for vanishing

perpendicular field, Bz ¼ 0, as in Fig. 2(a). Therefore, a
more in-depth treatment of the magnetotunneling with
arbitrary field orientation is necessary in order to properly
interpret the tunneling maps.

Our model is an extension of the approach of Patanè
et al. [10] and takes into account the influence of Bz on
the states in both emitter and dot. For simplicity, we
assume the emitter to be two dimensional. This has the
advantage that the influence of ðBx; ByÞ on the states in

the back contact does not need to be taken into account,
which simplifies the calculation and makes the results
easier to interpret. Experimentally, samples with two-
dimensional and three-dimensional back contacts show
qualitatively similar results.

For the emitter wave functions, we start from the text-
book result for electrons in a magnetic field, using the
symmetric gauge and cylindrical coordinates ðr; �Þ [15]:

�E
nlðr; �Þ ¼ eil� exp

�
� r2

4l2B

�
rjljLjlj

n�1

�
r2

2l2B

�
: (2)

Here, n and l are the radial and azimuthal quantum

numbers, respectively, lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=jeBzj

p
is the magnetic

length, and L is the associated Laguerre polynomial.
Because of the smooth, almost linearly increasing po-

tential profile of the tunneling barrier [3], emitter states
with higher kinetic energy tend to be farther from the
quantum dots [16]. Therefore, we assume that tunneling
is dominated by states in the lowest Landau level with
n ¼ 1 and l � 0, which is highly degenerate with respect
to (negative) l [15]. The probability density of the states
with l ¼ 0;�1;�2 are plotted for magnetic fields Bz ¼ 1,
3, and 9 T in the top of each panel in Fig. 3.

To obtain the wave functions of an elliptical quantum dot
in a magnetic field, we utilize a finite element method,
based on a triangular grid and a linear basis function set.
The eigensolver employs the conjugated gradient minimi-
zation of the Rayleigh quotient and a Ritz projection to
obtain few eigenvalues and vectors simultaneously. The
characteristic frequency, the effective mass, and the anisot-
ropy parameter are chosen to be @!0 ¼ 60 meV, � ¼ 0:1,
and m ¼ 0:07m0, respectively. The leftmost column in
Fig. 3 shows the calculated dot wave functions for mag-
netic fields Bz ¼ 1, 3, and 9 T. As mentioned above, both p
states develop from rectangular towards circular symmetry
with a distinctive minimum in the center.

Starting from Bardeen’s tunneling theory, it can be
shown that the measured tunneling current I is to a good

approximation given by the overlap of the wave functions
in the back contact and the dot [10,11]. For the present
case, which involves degenerate emitter states l ¼ 0;
�1;�2; . . . , we find

I / X
l�0

��������
Z

c QD�ðrÞ�E
1lðrÞdr

��������
2

: (3)

sum

9T
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FIG. 3 (color). Calculated momentum space representation of
the lowest quantum dot states (s, pþ, and p�, leftmost column)
and three degenerate emitter states of the lowest Landau level
(angular momentum l ¼ 0;�1;�2, top row). The center panels
show the overlap integrals of these states in matrix form. The
number in each panel indicates the maximum of the color scale.
The rightmost column depicts the sum of the overlap integrals,
which corresponds to the calculated magnetotunneling signal.
The plots scan a momentum range of �8� 108 m�1, which
corresponds, according to Eq. (1), to a field of �13 T.
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The shift in momentum caused by the in-plane field
[see Eq. (1)] is taken into account by Fourier transforma-

tion c QDðrÞ; �EðrÞ!FTc QDðkÞ; �EðkÞ and addition of a mo-
mentum contribution @ð�kx;�kyÞ ¼ ðBy; BxÞ�z, which

finally leads to the relation between the signal IðBx; ByÞ
and the considered wave functions:

IðBx; ByÞ /
X
l

��������
ZZ

c QD�ðkx; kyÞ�E
1lðkx ��kx; ky

��kyÞdkxdky
��������

2

: (4)

In Fig. 3 the different contributions to the sum are shown
in table form for the first three quantum dot states
(s; p�; pþ) and three Landau states (l ¼ 0;�1;�2). The
color scales are normalized between 0 and a maximum
value, which is given in the bottom left of each plot. From
these numbers, it can be seen that the contribution to
IðBx; ByÞ rapidly decreases with increasing jlj. This is

because with increasing angular momentum the radius of
the cyclotron orbit increases, which reduces the spatial
overlap with the dot states and justifies the restriction to
l ¼ 0;�1;�2. The rightmost column shows the sum of the
different contributions, which can be directly compared
with the calculated probability density (leftmost column)
and the experimental results. For the pþ state, we find that
indeed the magnetotunneling amplitude gives an accurate
representation of the original wave function. Furthermore,
we find good qualitative agreement between the calcula-
tion and the corresponding magnetotunneling maps shown
in Fig. 2, top. For the p� state, we also find that the
experimental data (Fig. 2, bottom) are well reproduced
by the calculated sum. In this case, however, the magneto-
tunneling maps do not match the shape of the wave func-
tion in the dot. In fact, not even the central node of this
wave function is preserved, and instead the map exhibits a
single maximum at the origin.

The leftmost column in Fig. 3 shows that—apart from a
rotation by �=2—the p� and pþ states are almost indis-
tinguishable. It therefore comes as a surprise that their
magnetotunneling maps develop so differently. The reason
for this striking fact is that not only the amplitude of
the wave functions is relevant for the tunneling maps but
also their phase. This is most easily seen when the slight
elongation of the dot is neglected for the moment. For a
circular dot in a magnetic field there are two p states with
opposite angular momentum lQD ¼ �1 and lQD ¼ þ1,
which have the same or the opposite sense of rotation
as the emitter states, respectively. If we only take the
angular part M� of the overlap integral in Eq. (3),
and consider the emitter state with angular momentum
l ¼ �1, we find

M� ¼
Z 2�

0
e�ilQD�e�i�d� ¼

�
2� for lQD ¼ �1
0 for lQD ¼ þ1:

(5)

This explains why, at a high magnetic field of 9 T, the
overlap of the pþ level with the l ¼ �1 emitter state is
almost an order of magnitude smaller than with the p� dot
state (see Fig. 3, bottom, middle column). Therefore, the
pþ state is mainly mapped out by the ‘‘sharp tip’’ of
the l ¼ 0 emitter state, so that the map gives an accurate
image of the wave function in momentum space. On the
other hand, the magnetotunneling map of the p� state is
dominated by the contribution of the l ¼ �1 ‘‘annular tip’’
at high magnetic fields, and this contribution is maximum
when the wave functions are concentric (unshifted),
i.e., for Bx ¼ By ¼ 0. This leads to the pronounced maxi-

mum in the center of the magnetotunneling map found in
both experiment and theory at Bz ¼ 9 T.
Our measurements thus clearly demonstrate that not

only the amplitude of the wave function determines the
tunneling characteristics but also the sign of the phase
factor. It should be pointed out, though, that our experiment
is only sensitive to the phase factor relative to that of the
back contact. In this respect, the experimental situation is
similar to optical holography, where the phase sensitivity is
also made possible by comparison with a reference system.
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