

09.07.2019 / 10 Uhr c.t., Raum MG 272 Campus Duisburg

Lightwave electronics: Crystal electrons controlled by the electric field of light

Dr. Fabian Langer

Lund University

The key idea of lightwave electronics is to utilize the oscillating electric field of ultrashort light pulses as a transient voltage bias. With this approach, atomically strong peak electric fields can be applied to a solid and electrons are accelerated faster than any scattering mechanism can destroy their coherence. The coherently driven electron ensemble radiates electromagnetically, revealing the underlying dynamics. In this talk, I will focus on results obtained during my PhD thesis. The process of high-harmonic generation in crystals is investigated in both the spectral and the temporal domain. By accelerating previously photo-generated electron-hole pairs, we could realize coherent collisions among these many-body excitations. In a last set of experiments, I will demonstrate how this approach can be utilized to control the so-called valley pseudospin in atomically thin transition metal dichalcogenides.

Für diese Zeit steht eine Kinderbetreuung nach vorheriger Anmeldung zur Verfügung.

Contact: Prof. Dr. Björn Sothmann, Faculty of Physics Phone: +49 (203) 37-91578 / Mail: bjoerns@thp.uni-due.de

SFB 1242 • Faculty of Physics • University Duisburg-Essen • Lotharstr. 1 • 47048 Duisburg Chairman: Prof. Dr. U. Bovensiepen • Phone: 0203 37-94566 • Fax: 0203 37-94555 • Mail: uwe.bovensiepen@uni-due.de Management: Dr. N. Dörmann • Phone: 0203 37-91545 • Fax: 0203 37-91546 • Mail: nora.doermann@uni-due.de