

Offen im Denken

Theorie-Kolloquium SS 2021 Fr 16.07.2021, 12:00-13:30 Online (URL in E-Mail)

Quantum Transport in Molecular Junctions

Prof. Dr. Michael Thoss

Universität Freiburg

Quantum transport in nanostructures is of fundamental interest for studying nonequilibrium quantum physics at the nanoscale and holds potential for future applications in nanoelectronic devices. A versatile architecture to investigate quantum transport processes at the nanoscale is provided by molecular junctions. Consisting of a single molecule bound to electrodes, molecular junctions are among the smallest electrical circuits. Recent experimental and theoretical studies of molecular junctions have revealed a wealth of interesting transport phenomena.

In this talk, mechanisms that determine quantum transport at the molecular scale are discussed. This includes co-tunneling and resonant transport processes, quantum interference and decoherence as well as current fluctuations. Furthermore, the important role of electronic-vibrational interaction is analyzed, an aspect that distinguishes nanoscale molecular conductors from mesoscopic devices and is crucial for their mechanical stability. The theoretical studies employ a combination of first-principles based models and transport methods such as the hierarchical quantum master equation approach, which allows a numerically exact treatment of the many-body quantum transport problem.