Faculty of Physics - University Duisburg - Essen - Campus Duisburg

Lab report: Date:	B10 X-ray radiation
Participants:	group: names:
	Sign Date
Bragg-Reflection: interference of x-1	rays on a NaCl - single crystal
Bragg-condition:	$n \lambda = 2 d \sin \theta_n$
	$n = 1, 2,$; λ : x-ray wave length, d: lattice distance of crystal, θ_n : Glanzwinkel n. order
radiation source:	X-ray anode Cu. U_A ca. $30kV$ $\lambda_{K\alpha} = 154$ pm,
NaCl-crystal:	lattice distance $d = 282,5 \text{ pm}$ (Literature)
Durchführung:	 search for interference maxima by scanning in 4° steps by measuring x-ray intensity with Geiger Müller counter at maxima increasing resolution as suitable plotting diagram of maxima from table

final result: lattice distance of NaCl:

 $\begin{array}{lll} n=1: & \theta_1^{\ m}= \\ n=2: & \theta_2^{\ m}= \\ n=3: & \theta_3^{\ m}= \end{array}$

$$d = \frac{n \lambda}{2 \sin \theta_n}$$

error discussion:

mean value:

$$\overline{d} = \frac{1}{m} \sum_{i} d_{i}$$

m: number of single values

standard deviation of the single value:

$$\mathbf{s_d} = \sqrt{\frac{\sum (\mathbf{d_i})^2 - \frac{1}{m} (\sum \mathbf{d_i})^2}{m - 1}}$$

Lattice distance of NaCl: d = (\pm) pm

deviation from the literature value %:

principal accuracy of experiment:

what is the measurable thickness range of the setup?