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Extended Abstract

The analysis of collisions in multibody systems has been a topic of continuous research in
recent years. On the one hand, so-called impact hypotheses are being used which permit
to “leap over” the impact time interval, working with an ideal rigid-body model before and
after impact. Such approaches offer high numerical efficiency at the cost of often rendering
flawed results that might even be in contradiction with energy balance laws in the case of the
general oblique and rough impact. Moreover, the rigidity assumption causes problems when
multiple contacts with friction are regarded, as in this case the governing system of equations
might be over-constrained and no unique solutions exist. On the other hand, there exist so-
called regularised models in which the contact area is substituted by a massless spring-damper
element and the response of the system during the impact interval is computed by solving
the corresponding differential equations numerically. Such models render acceptable results
when the relative approach velocity before impact is small as compared to the wave travel
velocity within the colliding bodies, a pre-requisite that is fulfilled for most technical impacts.
Claimed disadvantages of the regularised model are its poor computational efficiency and the
dependency of impact response on the chosen integrator step length. However, the regularised
models have the advantage of providing a consistent model even during impact situations in
which the number of contacts is high and friction arises. The purpose of this paper is (1) to
analyse in more detail, for the standard benchmark example of a colliding oblique rough bar on
a plane, the properties of the governing equations of the regularised model assumption and their
solutions, (2) to compare the resulting predicted response with that resulting from classical rigid
impact hypotheses, and (3) to present some new algorithms for 3D contact problems involving
also rolling and partial overlapping.

Consider the impact of a homogeneous bar of length

2¢, mass m and radius of gyration p, with a rough hori- 2 @

zontal surface featuring coefficient of friction p (Fig. 1). m, p ‘
The angular speed of the bar is ¢ and the velocity of O ¥
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denote quantities at the start and end of impact, re-
spectively. During impact, all applied and gyroscopic F,

forces, as well as any change of configuration, are ne-

glected. Relevant external effects are the contact forces Figure 1: Planar bar on a rough surface




F(t) = [Fu(t), F,(t)]" and the impulses P(t) = [P,(t), P,(t)]" = [/ F(f)d. As initial condi-
tions, let the bar approach the contact plane with pure translational velocity v~ and angle ¢
with respect to the surface normal. Newton’s second law produces two equations of motion
which can be expressed in the acceleration of the contact point. Upon setting A\, = (¢/p) singp,
Ny = (U/p)cosp; Copp =1+ X2 Cyy = 1+ )\3; Cyzy = —Az)y, one obtains the equations of
motion and the resulting impact response v as:
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In the regularised model, tangential and normal com-
pliances of the impact zone are modeled by massless , T
springs [4]. Slip-stick effects can be taken into ac- Y P
count by introducing a massless ‘sledge’ which slides z
for contact forces outside the friction cone. In this =i/ )0 sledge
model, O represents the contact point, z and y are —yi

the deflections of the contact springs, zg is the lo- Ce/2 O Ca/2

cation of the center of the sledge (Fig. 2), and & = | %cy
xs + x. Denoting differentiation with respect to di- H
mensionless time 7 = /¢, /mt by prime, one obtains
the two types of governing equations:
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Figure 2: Regularised model
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Note that the governing equations now only depend on dimensionless parameters. In particular,
the stiffness ratio k may be bounded even for ¢,, ¢, — 00. Indeed, Routh’s assumption £ — oo
is quite unrealistic for technical applications, as e.g. for collision of two spheres featuring equal
Poisson’s ratios v = 0.3 it holds x = 0.824 [4]. Due to the linearity and time-independency of
the governing equations, the latter can be solved in terms of the initial conditions z, = z(0) =
(20, yo]T , 2’y = 2/(0) = [z}, yy|T in each case by modal analysis. From these solutions, it
is easy to show that, for simple impact cases, such as central or frictionless impact, for which
all impact hypotheses coincide, also the regularised model yields ad hoc closed form solutions
that match the hypotheses’ predictions. However, for the general oblique rough impact case,
significant discrepancies may appear. This is shown in Fig. 3 where the regularised model is
compared to the rigid-body impact predictions according to Newton’s, Stronge’s and Poisson’s
[1, 5, 2, 6] impact hypotheses, respectively, for the case of an inclined planar bar hitting a rough
surface. Here x is the ratio of tangential to normal stiffness, and P,, P, are the tangential
and normal impulses. The analysis shows that impact hypotheses agree with the regularised
model response only for infinite tangential stiffness, while for the more realistic assumptions of
k = O(1) significant differences may occur between regularised and rigid-body models response.
This confirms the problematic of applying impact hypotheses developed for central impacts to
general impact situations.
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The above discussed spring- p |
sledge model was extended to [NZ] - /
(1) impacts with coefficient of 4| /\‘ line of sticking (& = 0) ‘
restitution e < 1, (2) 3D fric- 7 k= 100— /\Stronge

tional impacts of points on a 2Pyc

plane, (3) 3D frictional im-
pacts of circles on a plane,
including flat collisions, and 04l
(4) 3D frictionless impacts be- PS¢}
tween two disks, with partial
overlapping, also including flat
collisions.  Elastoplastic im-
pacts can be accomplished with 0
the regularised model by in-
troducing massless dampers in
parallel to the springs, the damping coefficient being a function of penetration velocity [3]. 3D
frictional impacts of points on planes involve the generalisation of the one-dimensional sledge
motion of the planar bar example to two-dimensional sledge motion, yielding two nonholonomic
constraint equations for the coordinates of the sledge in the sliding case. The sliding sledge
model can be also applied to rolling contact situations, where it describes the departure of the
disk rolling velocities from the ideal case, the ”deflections” of the corresponding spring elements
resulting from the time integral of the velocity gap. Transition to surface contact in the flat
collision case is accomplished by a smooth transition function. A similar strategy is followed
for a disk-disk contact (without friction) with partial overlapping: here, transition between
line-line, point-surface, and surface-surface contacts for inclined and collinear axes are realized
by appropriate transition functions. An object-oriented multibody implementation allows us to
model and simulate a number of examples, of which some shall be shown in the presentation.
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Figure 3: Impact process diagram for planar-bar example

Currently, the team is working on predicting efficiently and accurately the time of impact
and of other state transitions (sticking, sliding, lift-off) using a fourth order Runge-Kutta
approximation of rigid-body motion and/or approach variable and determining the roots by
special polynomial root solvers. Our current experience is that, as opposed to generic root
solvers that are integrated in current integrator routines, such as LSODAR, the polynomial
root finding algorithms are much more reliable and efficient. Hence, larger step sizes can be
chosen without incurring the danger of “missing” contacts or state switches. It is intended to
report also on the results of this research at the time of the Colloquium.
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