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Abstract

This paper describes some actual results from an ongoing project aimed at reproduc-

ing human cervical intervertebral motion using parallel manipulators. Described in

the paper is the mathematical modelling of a vertebrae pair using multibody meth-

ods and impact analysis techniques with elementary contact geometry for the facet

joints. The results are compared with existing approaches and with experimental

data, showing a good agreement with the latter and an e�ciency boost compared

to existing approaches by a factor of 350. The investigations are focused on the

vertebrae pair C5-C6 but can be easily extended to other vertebrae.

1 Introduction

In the reduction of medical costs, the improvement of human disease therapies, the develop-

ment of new techniques for injury prevention measures, and many other �elds related to human

life, biomechanics is playing an increasingly important role. Hereby, the human spine is given

particular attention, due to its frequent involvement in accident-induced injuries [1] and almost

epidemic appearance in common diseases such as low back pain [26]. Areas of actual intense

research in this setting are, among others, the development and surgical placement of spinal

prosthetic devices such as spine implants, e�ective spinal immobilizers and spine braces [7], de-

sign of reliable anthropomorphic test devices (ATD) for physical crash-worthiness simulations

[31], and the in vivo and in vitro estimation of biological spine parameters [2, 16]. In this set-

ting, reconstruction of inter-vertebral motion, although basically understood, still poses many

open problems. This is so because pairs of vertebrae undergo in general six-dimensional motion

relative to one another, but display a high degree of coupling between gross translational and

rotational degrees-of-freedom due to restraints imposed by ligaments and muscles and the com-

pliant nature of the inter-vertebral discs [30]. These degrees of freedom are excited di�erently

depending on loading conditions and biological parameters, making it di�cult to establish rele-

vant kinematic parameters on a case-by-case basis, as required, e.g., to identify spinal diseases

or to mimic the e�ects of a surgical therapy for a concrete person. Hence, predictions often fail

to match experimental measurements, as is the case in particular in vehicle crash situations [9].

Models in biomechanics can be roughly divided in four categories: (a) physical models, (b) in

vitro models, (c) in vivo models, and (d) computer models (see Table 1). All of these models are

sometimes also called surrogate mechanisms, although mostly one understands as a surrogate

a physical model. In the setting of this article, we are interested mainly in a computer model,

although the �nal aim of the project is to develop a physical mechanism for vertebrae pair

motion simulation.



uses advantages disadvantages

physical model implant and component

testing

simple, less variable,

less expensive, evaluates

implant alone

non-anatomic, un-physiolo-

gic implant loading

In vitro model

animal implant testing cheaper, less variable di�erent anatomy and bio-

mechanics, and does not

represent human variability

human spinal function and dys-

function studies, and im-

plant testing

actual human anatomy,

physical properties, and

population variability

di�cult to obtain, expen-

sive, more variable than an-

imal

In vivo model

animal studying phenomena

that occur in vivo, e.g.,

fusion and adaptation

essential for studying fu-

sion, adaptation, and ef-

fects of drugs

di�erent anatomy, biome-

chanics, and biology, and

has greater variability than

in vitro animal model

human studying living phenom-

ena in humans, e.g., mus-

cle recruitment

actual human responses

to external stimulus, e.g.,

head kinematics and mus-

cle recruitment in whiplash

simulations

subjects cannot be loaded

to cause any injury

mathematical

model

simulating situations not

modeled by other biome-

chanical models

capable of simulating real

phenomena-e�ects of mus-

cles, bone healing, tissue

adaptation, determining in-

ternal loads, strains and

stresses

di�cult to validate, ten-

dency to use the model be-

yond its validation bound-

aries

Table 1: Categories of biomechanical models (from [22]).

Existing approaches for computer modelling of inter-vertebral motion use either kinematic or

full-scale �nite element (FEM) models to reproduce vertebrae interaction. Kinematic methods

regard mainly planar 
exion and extension motion in the sagittal plane, employing the notion of

instantaneous axes of rotation (IAR) to reproduce combined rotation and translation between

pairs of vertebrae [30]. These axes act as virtual hinges connecting pairs of vertebrae, where the

virtual pivot point is located somewhere between the centers of the two connected vertebrae and

the center of the inter-vertebral disc [12]. They embody the well-known �rst-order approxima-

tion of planar motion in kinematics [3]. The problem with this approach is that the location of

the IAR varies with respect to 
exural position as well as with respect to clinical and personal

data (age, sex) of the target person. Moreover, the IAR approach is not easily extendible to

full-degree-of-freedom joints, such as occurs in a combined 
exion-extension and lateral or axial

rotation of the spine. On the other hand, FEM modelling allows one to take into consideration

full e�ects of the mechanics of inter-vertebral motion, including contact mechanics, surface glid-

ing, and deformation. For such models, a number of now industry-standard programs have been

developed, such as MADYMO [15], ATB [20], and LS-DYNA3D [1]. However, these models have

the drawback that for actual computations, a great number of biological parameters are required

that are di�cult to impossible to obtain. Moreover, the computer models are computationally

very slow, prohibiting their use for real-time simulations, as required for educational or opti-

mization purposes. This also hampers their immediate use in medical applications, where fast,

online rendering of motion properties is necessary to assess the e�ects of therapeutic measures.



Based on �nite-element and multibody methods, and their combination, an enormous improve-

ment of motion-simulation capabilities for the human spine has been achieved in the last three

decades. A three-dimensional mathematical model of the human spine structure using rigid

bodies, springs, and dashpots is presented in Panjabi (1973) [21]. The model comprises up to 21

sti�ness and damping coe�cients per vertebrae pair, but no contact and lift-o� e�ects. Huston

and Advani (1979) describe a comprehensive three dimensional model of the human head and

neck [11]. This model predicts the displacements, velocities, and accelerations of the center of

mass of the head and neck resulting from contact and/or inertial impact forces. The model,

incorporating key anatomical components and joint limits, was validated by comparison with

direct frontal and occipital impact experiments on human cadavers, and sled tests conducted on

human volunteers. Goldsmith et al. (1984) [10] performed computations for side blows and com-

pared them with corresponding data obtained from either a physical model replicating a human

head-neck system or from volunteer response to side acceleration. Deng [6] developed a compre-

hensive mechanically equivalent human head-neck-upper-torso system comprising kinematics,

muscle stresses and strains, disc pressures, intracranial pressures and skull strains. Moreover,

a three-dimensional numerical model for predicting the human body response under dynamic

loading is given and compared with the physical results from other investigations.

Mathematical head-neck models for acceleration impacts are described further by de Jager [5].

First, he introduces a relatively simple model with few anatomic details, the so called global head-

neck model, comprising a rigid head and rigid vertebrae, connected through three-dimensional

nonlinear viscoelastic elements for the intervertebral joints. These joints describe the lumped

mechanical behavior of the intervertebral disc, ligaments and facet joints. The model was cal-

ibrated to match the response of human volunteers to frontal impacts. Furthermore, detailed

segment models of the upper and lower cervical spine were developed as an intermediate step.

These models comprise rigid bodies for the vertebrae, three-dimensional linear viscoelastic el-

ements for the intervertebral disc, nonlinear viscoelastic line elements for the ligaments, and

frictionless contact interactions between the the facet joints. Finally, a detailed head-neck model

was formed by joining the detailed segment models and adding muscle elements. This model

comprises a rigid head and rigid vertebrae, linear viscoelastic discs, frictionless facet joints,

nonlinear viscoelastic ligaments and contractile Hill-type muscles.

Intensive studies of the geometry of the vertebrae are reported in Nissan et al. [19] using X-rays

of the cervical and lumbar region in normal, healthy men. Panjabi et al. [23] determined the

three-dimensional quantitative anatomy of the middle and lower cervical vertebrae by measuring

the three-dimensional coordinates of various marked points on the surface of the vertebra with a

specially designed morphometer instrument. From theses coordinates, linear dimensions, angu-

lations, and areas of surfaces and cross-sections of most vertebral components were calculated.

The in
uence of geometrical factors on the behavior of lumbar spine segments was reported by

Robin [27]. He found that the geometrical factors do exert a noticeable in
uence on the behavior

of the spine, especially those which interfere with the dimensions of the intervertebral disc.

The key issue in deriving bio�delic computer models lies in the determination of the biological

parameters. An extensive study of the mechanical properties of the human spine cord can be

found in [2]. Chazal et al. [4] report the results of a biomechanical study of 43 human spinal

ligaments from fresh cadavers and living subjects. Myklebust et al. [18] perform experimental

tests with spinal ligaments from 41 fresh human male cadavers in situ by sectioning all elements

except the one under study and derive force-de
ection curves with a sigmoidal shape and the

force of failure. Pintar et al. [25] investigate tensile properties of the human intervertebral

disc in tension. The in
uence of muscle morphometry and moment arms on the moment-

generating capacity of human neck muscles was analyzed by Vasavada et al. [29] and the



morphometry of human neck muscles themselves by Kamibayashi et al. [13]. They found that

the neck musculature was architecturally complex and that many muscles cross two or more

joints and have multiple attachments to di�erent bones. Moreover, the cross-sectional areas of

neck muscles do not scale proportionally with body height and weight, nor do individual muscles

with widely varying cross-sectional areas scale from one subject to another. For validation

of computer models, Panjabi et al. [24] report static load-displacement curves as well as the

neutral zones for six types of pure force loading of cervical spine specimens from fresh human

cadavers. The load-displacement response and strength of the mid and lower cervical regions

were determined for combinations of sagittal loads, in vitro, by Shea et al. [28] to provide basic

informations for the in vitro investigation of passive cervical spine protection.

This paper deals with the mechanical modelling of the motion only between one pair of vertebrae

of the human cervical spine, namely C5-C6. However, the underlying theory is developed in such

a general way that other vertebrae pairs can be rapidly modeled correspondingly, when needed.

2 Basic Model Parameters

The motion of the cervical spine comprises 
exion and extension (Fig. 1), lateral bending (Fig. 2)

and axial rotation. Hence, in order to obtain full spine mobility, the model for the vertebrae

pair must allow for relative six-degree-of-freedom motion, even in the presence of kinematical

constraints, as speci�ed below.

Figure 1: Flexion and extension. Figure 2: Lateral bending.

As only relative motion interests in this setting, the lower vertebra C6 is �xed to the inertia

system, to which the upper vertebra C5 is connected via a six-degree-of-freedom joint with three

translations along the coordinate axes and three (consecutive) rotations about the same axes.

In addition to the six-degree-of-freedom joint, motion constraints are introduced by (unilateral)

contact elements reproducing the surfaces of the facet joints (Fig. 5). Moreover, the junction

between the vertebrae is enforced by force-displacement elements comprising the intervertebral

disc (Fig. 4) and the ligaments (Fig. 7), as explained below.

2.1 Structure and Inertia Properties

The de�nition of the reference coordinate systems is depicted in Fig. 3. The x-axis points to the

front and the z-axis upwards. Table 2 summarizes the initial translations, sx, sz, of the origin of

the upper body in x- and z-direction, respectively, and the relative rotation 'y about the y-axis

with respect to the lower body. The table also displays the inertia properties of the vertebrae.



name

mass tensor of inertia origin center of gravity orientation

m Ixx Iyy Izz sx sz gx gz 'y

kg kg � cm2 mm mm deg

C5 0.23 2.3 2.3 4.5 -2.8 17.4 -8.1 0.0 -5.2

C6 0.24 2.4 2.4 4.7 -2.0 18.4 -8.3 0.0 -5.6

Table 2: Inertia properties [5].

2.2 Intervertebral Disc

The intervertebral disc (Fig. 4) can be modeled by an anisotropic set of parallelly connected

linear spring-damper elements. These elements incorporate also the e�ects of the uncovertebral

joints. The elastic properties of the disc are computed according to Eq. (1), with Fi being

the deformation and deformation-rate dependend force vector and Mi the twist and twist-rate

dependend torque vector, respectively:

Fi = kti � ti + bti � vi (1)

Mi = k'i � 'i + b'i � !i, i = x; y; z :

cg

cg vertebra body C5

vertebra body C6

x6

z6

sz

sx

O

O

x5

z5

'y

Figure 3: De�nition of the reference systems [5].

Nucleus Pulposus

Anulus �brosus

Figure 4: Intervertebral disc [8].

The numerical values for the sti�ness coe�cients kti and k'i are taken from [17] and are sum-

marized in Table 3. The load directions correspond to the six degrees of freedom of the relative

motion of the vertebrae pair, namely anterior shear (AS) and posterior shear (PS) for x transla-

tion, lateral shear (LS) for y translation, tension (TNS) and compression (CMP) for z translation,

lateral bending (LB) for x rotation, 
exion (FLX) and extension (EXT) for y rotation, and axial

rotation (AR) for z rotation. The damping coe�cients for translation and rotation were taken

as bti = 1000 Ns/m and b'i = 1:5 Nms/rad according to [5].

2.3 Facet Joints

In addition to the intervertebral disc, the vertebrae pair is partially guided by the facet joints,

as shown in Fig. 5. These joints support only pressure contact forces and hence act as unilat-

eral constraints comprising contact and free-
ight phases. During contact, the roughly planar

surfaces of the contact pair glide on each other with almost no friction. When the contact force



direction AS PS LS TNS CMP LB FLX EXT AR

of load N/mm Nm/deg

sti�ness 62 50 73 68a 492 0.33 0.21 0.32 0.42

ataken from [25]

Table 3: Sti�ness properties of intervertebral disc [17].

vanishes, the surfaces detach from each other, eliminating the geometric constraints induced by

the facet joint temporarily. During this motion, the facet joints are pulled together by the sur-

Facies articulares inferior

Facies articulares superior

Figure 5: Facet joints.

rounding ligaments, which act as force elements. The surface of the facet joints can be modeled

either as a perfectly planar cross section of a cylinder, or by hyper-ellipsoids

�
jxj

a

�n

+

�
jyj

b

�n

+

�
jzj

c

�n

= 1; n � 2 ; (2)

where a, b, c are the semi-axes of the ellipsoid along the x, y and z- axes of the body �xed

coordinate frame, respectively. For the position and orientation of the right facet one has to

change the sign of the y-coordinate and the angle 'x. Table 4 reproduces the geometric properties

of an hyper-ellipsoid model employed in this work, where the order of the hyper-ellipsoid is taken

as n = 4.

position of

facet

on left side

coordinates of lengths of relative

center point semi-axes orientation

x y z a b c 'y 'x

mm mm deg

C5 inferior -13.7 20.3 -6.5 5.6 5.9 1.0 -45.6 13.8

C6 superior -14.4 20.0 8.5 5.5 6.2 1.0 -50.8 -13.8

Table 4: Geometry data of facet joints [5].

In order to be able to reproduce the synovial behavior of the facet joints, the latter were modeled

as frictionless compliant contact elements allowing for normal compression and producing contact

forces linearly dependent on normal penetration and its time derivative. The normal contact



force Fc hence is determined by

Fc = bf � _u+

�
2 � 109 � u2 for 0 � u � 3 � 10�4

180 + 1:2 � 106 � (u� 3 � 10�4) for u > 3 � 10�4
; (3)

where u represents the penetration, in meters, and _u is the penetration rate, as measured in

m/s. The damping coe�cient bf is set to bf = 300 Ns/m according to [5].

2.4 Nonlinear Viscoelastic Ligaments

Six ligaments of the lower cervical spine are incorporated in the model, namely, the anterior

longitudinal ligament (ALL), the posterior longitudinal ligament (PLL), the 
aval ligament

(FL), the interspinous ligament (ISL) and the left and right capsular ligament (CL), see Fig. 7.

A

B
C

�=�max

F

Fmax

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 6: Dimensionless force-

strain curve.

posterior longitudinal
ligament

anterior longitudinale
ligament


aval ligament

interspinus ligament

capsular ligament

Figure 7: Ligaments [8].

The ligaments are modeled as robes transmitting only tension forces. These tension forces are

functions of ligament elongation � and its time derivative, namely

Fl =

�
Fel(�) + bl � d�=dt for � � 0

0 for � < 0
; (4)

where the load-displacement curves Fel(�) are taken as piecewise linear functions comprising

three segments, as shown in Fig. 6. The corresponding numerical values of the support points

A, B, C taken in this report are reproduced in Table 5, while the damping coe�cient bl was set to

300 Ns/m, corresponding to given patterns in the literature. The lengths of the ligaments in the

unde
ected case, l0, can be found in Table 6 together with the corresponding assumed insertion

points of the ligaments in body-�xed coordinates of the coordinate frame of the corresponding

vertebra body.

3 MADYMO Model

MADYMO is the world-wide standard for occupant safety analysis. It is used extensively in

industrial engineering, design o�ces, research laboratories and technical universities. It has

proven itself in numerous applications, often supported by veri�cation studies using experimental



ligament
A B C

�=�max F=Fmax �=�max F=Fmax �max Fmax/N

ALL 0.24 0.11 0.80 0.88 0.58 111

PLL 0.22 0.12 0.78 0.90 0.45 83

FL 0.33 0.21 0.77 0.89 0.21 115

ISL 0.33 0.19 0.78 0.87 0.40 34

CL (average) 0.28 0.16 0.78 0.88 0.42 108

Table 5: Elastic characteristic of the ligaments [5] (see also Fig. 6).

ligament
origin C5 origin C6 rest length

x y z x y z l0

ALL 7.7 0.0 0.0 8.0 0.0 0.0 18

PLL -8.1 0.0 0.0 -8.3 0.0 0.0 17

FL -25.4 0.0 -1.7 -26.3 0.0 -1.9 15

ISL -39.9 0.0 -3.2 -47.3 0.0 -4.1 16

CL -15.1 �20.3 -5.1 -12.9 �20.0 7.2 6

Table 6: Parameter of modeled ligaments in mm for spinal level C5{C6 [5].

test data1. For this reason, this package was chosen as the software platform for creating

a reference computer model of the kinematic, static and dynamic intervertebral interactions.

However, as it turns out, the algorithms employed in MADYMO render rather slow computer

simulations, which prohibit the use of MADYMO models in real-time simulation, as needed for

the realization of a control loop in the targeted surrogate mechanism. Hence, in parallel to the

MADYMO model, customized models for intervertebral motion had to be developed, which shall

be described in the next subsection.

One of the key properties of MADYMO is its input-output processing mode. To simulate a

mechanical system, one hence has to write a data �le according to certain rather strict syntax

rules. Elements and parameters are speci�ed by keywords and numerical data. The complete

data �le is then compiled and linked to the main MADYMO program, where the speci�ed time

interval is simulated. Results are written to several output �les, depending on the user's speci-

�cation. Interactions of the user during the simulation are not possible. After computation, the

simulation can be visualized as a movie using the MADYMO post-processor.

An example how to specify a spring-damper element using the MADYMO keyword Kelvin

Element is given below:

FORCE MODELS

KELVIN ELEMENT ALL

SYSTEM 1

BODY 1

POINT 8.0e-3 0.0 0.0

SYSTEM 2

BODY 2

POINT 7.7e-3 0.0 0.0

L0 18.0e-3

1http://www.madymo.com



LOADING FUNCTION 1

UNLOADING FUNCTION 1

HYS MOD NONE

DAMPING COEFFICIENT 300.00

END KELVIN

FUNCTIONS

! spring characteristic epsilon(dl/l_0) vc. F

! ALL ------- LOADING FUNCTION: 1 --------------

5

-1.0 0.00

0.0 0.00

0.1392 12.21

0.464 97.68

0.58 111.00

END FUNCTIONS

END FORCE MODELS

With the data set given in Section 2, the motion of the vertebrae pair could be read-

ily implemented in MADYMO. The facet joints were implemented as Ellipsoid-Ellipsoid

Contact Interactions comprising hyper-ellipsoids of degree n = 4. For visualization pur-

poses, vertebrae bodies were mod-

eled as hyper-ellipsoids of degree

n = 2, with no contact interactions

arising from this model. Similarly,

the vertebra arches are visualized

as elongated hyper-ellipsoids of de-

gree n = 2, which only have graph-

ical meaning and do not provide

any physical interactions with the

environment. Moreover, in order

to reduce computational overhead,

only the hyper-ellipsoids embody-

ing the facet joints are graphically

C5 body

C6 body

ALL

PLL

CL

FL

ISL

superior articular facet

inferior articular facet

Figure 8: C5{C6 Madymo ellipsoid model

rendered, without reproduction of the interconnection to the vertebra bodies. This crude graph-

ical model su�ces to verify motion results, while at the same time yielding acceptable simulation

times for the computer runs (approx. 5.7 seconds per run).

To take care of the visco-elastic behavior of the intervertebral disc, the origins of the vertebra

body reference systems were constrained by Point-Restraints for the translational part and

by Cardan Restraints for the rotational part. The six included ligaments are speci�ed as the

above mentioned Kelvin Elements.

4 M a a

a a

BILE Model

M a a

a a

BILE is an object-oriented programming environment designed for the modelling of multi-

body systems [14]. One of its main features is the intuitive representation of mechanical enti-

ties as objects capable of transmitting motion and force across the system. Other features of

M a a

a a

BILE are the direct modelling of mechanical systems as executable programs or as mod-

ules for existing libraries. This yields an open building-block system design that allows the

programmer to extend the provided library in any direction, in contrast to input-oriented pro-



gramming packages, where the user has to resort to built-in functions without the possibility

of extending or adapting the employed algorithms. M a a

a a

BILE is implemented in the object-

oriented programming language C++, which assures portability and o�ers comfortable interfaces

to three-dimensional graphic libraries for animation, such as OpenInventor. This makes direct

user feedback and interaction possible, including click-and-drag features for online kinematics,

statics and dynamics.

The objects of M a a

a a

BILE are organized in three categories, namely, (a) basic mathematical

objects, which provide the algebraic resources for performing the typical multibody calculations,

(b) kinetostatic-state objects, which are used to store and retrieve kinematic or load-related

information at speci�c locations of the multibody system, and (c) kinetostatic transmission

elements, which transmit the information stored with the kinetostatic state objects from one

location of the system to the other. Each transmission element supplies, according to its real-

world counterpart, two basic operations: (I) transmission of motion and (II) transmission of

forces.

For unilateral constraints, M a a

a a

BILE supports the concept of state events, which �re when a

given condition supplied by the user, such as beginning of penetration or vanishing of normal

force, is ful�lled. With this feature, it is possible to compute quite accurately the e�ects of

impacts, as is needed in the present setting for the modelling of facet joints.

4.1 Serial Model

The basic sca�olding of the relative kinematics and the statics of the vertebrae pair was im-

plemented using standard M a a

a a

BILE classes and slight adaptations thereof. For the relative

kinematics between the two rigid bodies, a six-degree-of-freedom joint comprising the concate-

nation of three translational joints and three rotational joints was employed.

Figure 9: M a a

a a

BILE model with sim-

pli�ed graphics.
Figure 10: M a a

a a

BILE model with com-

plex graphics and sliders.

In this setting, two graphical models of di�erent complexity were regarded. One simpli�ed

model comprises only cones, cylinders and spheres, giving a rough idea of the vertebrae loca-

tions (Fig. 9), The other, more complex model, employs original 3D vertebra visual geome-

try from Viewpoint r
 DigitalTM and hence renders a more realistic view of vertebrae motion,

which can be used for example for understanding the e�ects of implants or for training pur-

poses (Fig. 10). Both models build upon the OpenInventor features of an SGI workstation

and are completely independent of the contact iterations. Hence, the user can switch easily



between them by making an appropriate selection in the operation interface. In contrast to

the MADYMO model, the M a a

a a

BILE software package allows online user interactions during the

animation. This is achieved through software slider controls, by which system parameters can

be changed interactively. For example, the mechanism response can be controlled visually while

sti�ness properties of the intervertebral disc are changed. Moreover, it is possible to write the

program in such a way that all parameters are read from data �les, hence allowing for easy

variation of data without having to re-compile the program. In addition to this, it is possible to

make parameter variations within the program itself. For the e�ects of the intervertebral disc,

the M a a

a a

BILE-supplied spring-damper element was adapted, allowing for di�erent sti�nesses

depending on the sign of the relative displacement in order to implement hysteresis behavior.

Similarly, the force-displacement laws for the ligaments were implemented using a derivation

of the M a a

a a

BILE standard class MoTableSpringDamper which allows for the required nonlinear

viscoelastic behavior.

4.2 Impact Analysis

In order to obtain e�cient and accurate computer models, a set of impact geometry situations

was investigated. In this setting, the element MoRegImpCircleCircle, proved to be extremely

useful for the present problem. The basic idea is to regard the facet joints as the end faces of two

cylinders touching each other. This assumption seems justi�ed due to the almost 
at shape of

the articulated surfaces, and proved to be su�ciently accurate in the ensuing simulations. The

contact interaction at the facet joints can hence be regarded as a cylinder-cylinder pair, which

again renders three possible contact situations: (1) the edge of the upper cylinder touches the


at end of the lower cylinder (Fig. 11); (2) the edge of the upper cylinder touches the egde of

the lower cylinder (Fig. 12); (3) the edge of the lower cylinder touches the 
at end of the upper

cylinder (not shown); and (4) both 
at ends of the cylinders rest 
atly upon each other.

P
p

Figure 11: Edge-face contact.

P
p

Figure 12: Edge-edge contact.

For edge-edge contact, referring to Fig. 13, the following relationships hold.

Let r1 and r2 be the radii of the circles. Moreover, let a1 and a2 be the distances of the two

circle midpoints to the common line of intersection of the disc planes. One obtains

a1 =
(c2 � c1) � n2
ua1 � n2

=
c � n2
ua1 � n2

; (5)
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n2 u

r1

r2

t1
t2

A1

A2

C1

C2
P

a1

a2

b1

b2

�1

�2

l

Figure 13: Frictionless circle-circle contact.

and

a2 =
(c1 � c2) � n1
ua2 � n1

= �
c � n1
ua2 � n1

; (6)

where c = c2�c1 is the vector from C1 to C2, n1 and n2 are the plane normals of circle 1 and 2,

respectively, and ua1 and ua2 are unit vectors in direction of the perpendicular distance from the

circle midpoints C1 and C2 to the common line of intersection of the disc planes, respectively.

Using the quantities described above, the distances b1 and b2 from the feet of the circle midpoints

at the common line of intersection of the disc planes to the contact point P can be readily

computed as

b1;2 =
q
r1;2

2 � a1;2
2 : (7)

Note that b1 and b2 are real whenever the common line of intersection of the disc planes intersects

both circles. The distance d between the circles along the common line of intersection of the

disc planes can be computed as

d = jc � uj � (b1 + b2); d < 0 : penetration (8)

where u is the unit vector in direction of the common line of intersection of the disc planes.

With this quantity, the contact condition becomes

b1 + b2 = jc � uj : (9)

In the case of an almost 
at contact between the cylinder surfaces, the formulas derived above

become singular. In this case, one can establish the contact geometry by projecting the circles

on the plane normal to the (almost parallel) cylinder axes.

In the following, �rst the case of contact between the edge of circle 1 and the 
at end surface

of cylinder 2 is regarded (Fig. 14). The case of contact between circle 2 and the end surface of



r1r2

'1 �1

c

C2 C1

n1 ; �n

n2

P

Figure 14: Projection onto contact plane for 
at contact.

cylinder 1 is treated analogously. Let P be the contact point and assume that the projection

plane is taken as the plane normal to circle 2. The inclination of cylinder 1 with respect to

cylinder 2 is assumed to be so small that the distortion of circle 1 to an ellipse is negligible.

Contact is maintained whenever the angle '1 subtended between the interconnection line of the

two circle centers and the ray passing through C1 and the contact point is less than or equal the

angle �1 subtended between the circle interconnection line and the ray passing through C1 and

the intersection point of both circles.

For the angle �1, one readily obtains

r
2

2
= r

2

1
+ c

2 � 2 r1 c cos �1 ) cos�1 =
1

2 r1 c

�
r
2

1
� r

2

2
+ c

2
�
; (10)

where c represents the distance between the centers C1 and C2 of the circles. On the other hand,

the angle '1 can be calculated as

cos'1 =
�rc ��n

jrcj j�nj
; (11)

where rc stands for the vector from C1 to C2 and �n is the di�erence of the circle normals,

when both are taken as directed into the same half space. However, by taking into account that

at contact the surface normals of the two touching cylinders are faced opposite to each other,

the above mentioned di�erence actually becomes the sum of the cylinder normals n1 and n2:

�n = n1 + n2 : (12)

By inserting the above expressions in the contact condition

cos'1 � cos �1 (13)

one obtains

�rc ��n

jrcj j�nj
�

1

2 r1 c

�
r
2

1 � r
2

2 + c
2
�
; (14)

or, using c = jrcj,

�rc ��n �
1

2

j�nj

r1

�
r
2

1 � r
2

2 + c
2
�
: (15)



For a contact of the edge of circle 2 on the end surface of cylinder 1 it holds analogously

rc ��n �
1

2

j�nj

r2

�
r
2

2 � r
2

1 + c
2
�
: (16)

The type of contact is determined by regarding the expressions appearing in the determination

of the cosine of angle �1 and the corresponding angle �2 for the case of contact of the edge of

circle 2 on the end surface of cylinder 1. It holds

1

2 r1 c
(r2
1
� r

2

2
+ c

2) =

8<
:

> 1 : outside of circle 2

< �1 : contact inside of disc 2

else : contact on circle 2

(17)

1

2 r2 c
(r22 � r

2

1 + c
2) =

8<
:

> 1 : outside of circle 1

< �1 : contact inside of disc 1

else : contact on circle 1

(18)

The above derived formulas fail to be applicable when the circles are fully parallel because in

this case the vector�n vanishes. For this case, one can assume the contact to take place exactly

at the center pointM of the segment of the center interconnection line contained in the common

contact patch, where the distance between C1 and M is given by

L = c� r2 +
r1 + r2 � c

2
=

c+ r1 � r2

2
: (19)

For smooth transition between the fully parallel case and the almost parallel case, a novel

procedure is proposed, where a virtual contact point is obtained by interconnecting M and

P and employing a blending function to position the virtual contact point between these two

extremes as a function of the angle between the circle normals. The blending function chosen

in the present context is

r = r0 (1� e
�C sin�) ; (20)

with r0 being the distance between M and P , C a constant and � the subtended angle between

the circle normals.

C2 C1

r
r0

P

P
0

M

Figure 15: Blending ray within contact patch for 
at cylinder-cylinder contact.

The basic idea of the blending function is illustrated in Fig. 16 for the case of a contact of a

cylinder with a plane. The virtual contact point P 0 lies between the center of the cylinder and

its circumference along the line of intersection of the common plane of the surface normals np



and nc and the cylinder end surface through the center of the circle. A particular property of the

blending function used is that it renders a stabilizing moment in direction perpendicular to both

surface normals that makes fully stable 
at contact possible. Hence, no further computations

and state transition tracking procedures are necessary for transition from steep to 
at contact

as well as for transition from one edge to the other. A result of a simulation of the contact

between a disc and a plane is displayed in Fig. 17, where the relative indentation r=r0 (with r0

being the original disc radius and r the actual distance to the circle center) and the sine of the

inclination angle � are plotted over time. Clearly, the motion asymptotically approaches fully


at contact with the virtual contact point at the circle center.

�

virtual contact circle

real circle

ncnp

P
0

O
r

Figure 16: Disc-plane contact.
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Figure 17: Example of smooth steep-to-
at transition.

Forces As frictionless contact is assumed, the contact force must be aligned with the common

line of intersection of the disc planes. In order to take account also of penetration situations,

a positive penetration distance d is assumed. The vector r1 from C1 to the contact point P is



then assumed as

r1 = a1 � ua1 + (b1 +
d

2
) � u ; (21)

where the term d=2 makes P lie in the middle between the two intersection points of the circles

with the corresponding end face planes. Note that for this to hold true the vector u must be

chosen such that c � u > 0. This can always be assured by choosing an appropriate sign in the

formula for calculation for u, i.e., in

u = �
n1 � n2

kn1 � n2 k
: (22)

The position of P with respect to C2 is obtained accordingly by the vector

r2 = (c1 + r1)� c2 = c1 � c2 + r1 = r1 � c : (23)

5 Model Validation

Both vertebrae pair models developed with the MADYMO package and the M a a

a a

BILE library

were compared and validated with the experimental results reported by Moroney [17] and the

computer simulation performed by de Jager [5]. The simulations compute the translational and

rotational de
ections from the reference position of vertebra C5 to the new state of equilibrium

for nine loading conditions corresponding to application of a single force (20 N) or moment (1.8

Nm) in direction of each elementary motion of C5. In this setting, the numerical values shown in

Table 7 and Fig. 18 were obtained. As it can be seen, a good agreement between the experimental

data and the computer models could be achieved. In particular, the simpli�ed M a a

a a

BILE model

renders results that are not more inaccurate than the complex MADYMO model. At the same

time the M a a

a a

BILE model turns out to be faster then the MADYMO model by a factor of 350.

The reason for this performance enhancement is that, besides using simpler and more e�cient

mathematical models of the contact mechanics, the calculation of the static equilibrium could be

achieved in M a a

a a

BILE in a few iterations using the built-in object MoStaticEquilibriumFinder,

which works with a Newton-Raphson algorithm. In contrast to this, the MADYMO model

required the computation of dynamics for the movable vertebra C5 to approach equilibrium.

Acknowledgments

The support of the present work by the European Community as a Marie Curie Research Training

Grant ERBFMBICT983385 is gratefully acknowledged.



�x (mm)

0.2

0

-0.2

-0.4

-0.6

�

�

� �
�

�

�

� � �

�'x (deg)

0.4

0.2

0

-0.2

� � � � �� � � � �

�x (mm)
2.4

1.2

0

-1.2

-2.4

�
�

�
��

�
�

�

�'x (deg)

6

3

0

-3

�

� �
�

�

� �
�

�y (mm)
0.4

0.2

0

-0.2

� �

�

� �� �

�

� �

�'y (deg)

0.2

0

-0.2

-0.4

-0.6

�

�

�

�

�
�

�

�

�

�

�y (mm)
1.2

0.6

0

-0.6

�
� � �� � � �

�'y (deg)

6

3

0

-3

-6

�
�

�

��

�

�

�

�z (mm)

0.2

0

-0.2

� � �

�

�
�
� �

�

�

�'z (deg)

0.2

0

-0.2

-0.4

� � � � �� � � � �

�z (mm)
0.6

0

-0.6

-1.2

� �

�
�� �

�

�

�'z (deg)
3

0

-3

�

� �

�

�

� �

�

AS
PS

LS
TNS
CMP AS

PS
LS
TNS
CMP LB

FLX
EXT

AR
LB
FLX

EXT
AR

Figure 18: Model comparison of main and coupled displacements: M a a

a a

BILE: �, MADYMO: �,
de Jager [5]: � with experimental results of Moroney [17]: + (average� SD).



load model
�x �y �z �'x �'y �'z

(mm) (mm) (mm) (deg) (deg) (deg)

AS

M a a

a a

BILE 0.22 0.0 0.01 0.0 0.18 0.0

MADYMO 0.25 0.0 0.03 0.0 0.10 0.0

de Jager 0.16 0.0 0.08 0.0 0.07 0.0

Moroney 0.15 0.0 -0.01 0.13 0.04 -0.08

PS

M a a

a a

BILE -0.3 0.0 0.0 0.0 -0.26 0.0

MADYMO -0.3 0.0 -0.01 0.0 -0.27 0.0

de Jager -0.29 0.0 -0.02 0.0 -0.19 0.0

Moroney -0.38 0.11 -0.01 -0.03 -0.09 -0.03

LS

M a a

a a

BILE 0.0 0.27 0.0 -0.01 -0.01 -0.01

MADYMO 0.0 0.27 0.0 -0.01 -0.01 -0.01

de Jager -0.017 0.27 0.01 -0.06 0.0 -0.04

Moroney -0.025 0.14 -0.01 0.11 -0.04 -0.18

TNS

M a a

a a

BILE 0.05 0.0 0.21 0.0 -0.27 0.0

MADYMO 0.03 0.0 0.21 0.0 -0.27 0.0

de Jager 0.0 0.0 0.21 0.0 -0.28 0.0

Moroney { { { { { {

CMP

M a a

a a

BILE -0.03 0.0 -0.04 0.0 0.0 0.0

MADYMO 0.0 0.0 -0.04 0.0 0.0 0.0

de Jager -0.01 0 -0.04 0.0 0.03 0

Moroney -0.05 0.03 -0.08 0.06 -0.19 -0.04

LB

M a a

a a

BILE -0.29 -0.16 0.03 3.22 0.19 -1.8

MADYMO -0.23 -0.14 0.03 2.97 0.3 -1.63

de Jager -0.26 -0.59 0.03 3.43 0.0 -1.64

Moroney 0.25 -0.49 0.16 4.72 0.18 -1.64

FLX

M a a

a a

BILE 0.21 0.0 -0.1 0.0 2.5 0.0

MADYMO 0.22 0.0 -0.1 0.0 2.9 0.0

de Jager 0.43 0.0 -0.08 0.0 2.53 0.0

Moroney 1.5 -0.1 -0.41 0.25 5.68 0.29

EXT

M a a

a a

BILE -0.75 0.0 0.35 0.0 -3.0 0.0

MADYMO -0.61 0.0 0.41 0.0 -3.2 0.0

de Jager -1.18 0.0 0.2 0.0 -4.42 0.0

Moroney -1.18 0.0 -0.08 0.0 -3.66 0.0

AR

M a a

a a

BILE -0.18 -0.07 0.06 -1.1 0.02 2.87

MADYMO -0.06 -0.04 0.04 -1.43 -0.1 3.1

de Jager -0.22 0.1 0.08 -1.49 0.0 2.72

Moroney -0.22 0.4 -0.07 -1.0 0.3 1.9

Table 7: Numerical values for Fig. 18.
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