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Abstract

In this contribution we propose an engineering based approach to incorporate eigenstress dis-
tributions in arteries. Eigenstresses are known for a variety of biological tissues. In the case
of arterial walls the so called opening angle experiment is frequently used to characterize the
residual strains/stresses. Assuming that the transmural stress distribution of suitable stress
measures should be smooth, a residual stress tensor is directly estimated from the Cauchy
stresses. These stress measures are constructed in such a way that the basic biophysiological
characteristics, like the fiber orientations which are taken into account by suitable structural
tensors, are adequately respected. In order to achieve reasonable eigenstress distributions in the
arteries the local stress measures should approach spatial-sector averaged values. These ideas
are imbedded in an algorithm to update the residual stress tensor incrementally. An ideal tube
and degenerated patient-specific arteries from medical imaging are used to demonstrate the
performance of the proposed procedure and to estimate the opening angle.

Keywords: Biomechanics, Residual Stress, Vascular Wall

1 Introduction

Medical imaging allows one to reconstruct patient-specific geometries of arteries. In the
future numerical simulations could help to better understand mechanically influenced pro-
cesses in blood vessels, to improve medical treatment and to asses the risk potential of
degenerated sections. Credible assessments require advanced models, considering multi-
ple biological phenomena. One of these are the residual stresses arising in a number of
biological soft tissues, in particular in arterial walls. A reliable and precise description
of the transmural stresses might be beneficial to decide on the most appropriate medical
treatment of vascular diseases in the future and the wall stress might be established as
a diagnostic indicator. For example plaque rupture is supposed to be initiated by stress
concentrations and the application of suitable stress criteria to gauge the risk could be
desirable, see Cheng et al. [1993] or Li et al. [2006]. Possible effects of residual stresses on
plaque rupture were studied numerically in Ohayon et al. [2007]. The authors concluded
that the stresses in the fibrous cap are overestimated when residual stresses are neglected.
Auricchio et al. [2013] investigated, disregarding eigenstresses, the influence of constitutive
material laws on vessel straightening and lumen gain induced by carotid artery stenting.
They formulate the challenging and forward-looking task to combine medical imaging and
finite element analysis to become a “procedure planning tool supporting the clinical prac-
tice”. Furthermore, the understanding of residual stresses might contribute to a better
understanding in possibly stress driven growth and remodeling processes, cf. Greenwald
et al. [1997].



Jörg Schröder & Markus von Hoegen 3

An arterial segment which is free from any external load and is radially sliced will deform
into a horseshoe-shaped configuration and the so called opening angle can be measured
in order to classify the stress release. In light of the fact, that the opening angle is larger
for the inner rings of the same cross-section, Greenwald et al. [1997] concluded that a
single cut is not sufficient to release the complete residual strains. Moreover they stated
that the higher elastin content in the inner layers is responsible for that. The fact that
the opening angle becomes larger with age, gives cause to suspect that incompatible
growth is a dominant factor for the emergence of eigenstresses. The incompatibility of the
strains induced by biological growth enforces residual stresses. The formation of growth
induced stresses was studied theoretically in Rodriguez et al. [1994], Skalak et al. [1996]
and Araujo and McElwain [2005]. To tackle the origin of eigenstresses is not in the scope
of this paper. Additional studies regarding that topic are provided in Zeller and Skalak
[1998], Lanir [2009] or Cardamone et al. [2009]. The latter publication is part of a series of
papers dealing with the influence of the individual tissue constituents on the mechanical
behavior, imbedded in the framework of mixture theory. This model is strongly motivated
by the biological evolution of arteries and it is able to relate the single constituents to
individual stress free configurations.

One major difficulty when estimating the residual stresses from the opening angle con-
cerning the transferability to in-vivo conditions is that excised in-vitro configurations
are self-equilibrating. That means the exact in-vivo state can not be estimated since the
residual stresses which are released are altered compared to the in-vivo configuration. To
reduce the appearance of residual strains to a plane strain problem which is only described
by one parameter, the opening angle, is not sufficient. In Holzapfel and Ogden [2010] it
was reported that the axial pre-stretch is an important factor which has a strong effect
and should not be neglected in numerical calculations. In Holzapfel et al. [2005] a mean
in-vivo pre-stretch of 1.044 of a human coronary artery is reported. The stretch is defined
as the quotient of the in-vivo segment length and the excised segment length.

Sense of proportion should also be taken with regard to the comparability of laboratory
results: Position along the vascular tree, species, age, sex and diseases of the samples as
well as the testing conditions considerably affect the results.

Huang and Yen [1998] found that the opening angle tends to increase with an increas-
ing general size of the artery. Further, the artery was found to continue to open up to
20 minutes after the excised segment is radially cut which is in accordance with several
studies, see for example Han and Fung [1991]. Hence, residual stresses could also have a
viscoelastic characteristic. Azeloglu et al. [2008] investigated experimentally and numer-
ically how inhomogeneous proteoglycan distributions over the vessel wall may influence
the opening angle. It was shown that the opening angle increases with increasing osmotic
swelling pressure, caused by lower salt concentrations of the bathing environment.

The opening angle is subject to large fluctuations along the vascular tree, see Fung and
Liu [1989]. The widely-held assumption that the residual stresses are compressive on
the inner layers and tensile on the outer layers is supported by the observation, that the
elastic lamina tends to buckle in the unloaded state, cf. Fung and Liu [1992]. Further, Han
and Fung [1991] used markers to determine local strains in porcine and canine trachea.
They found that the residual strains vary significantly with respect to the circumferential
position in curved, but not in straight arteries.

Badel et al. [2012] investigated small cube shaped arterial samples excised from segments
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which were fixed with needles. After removing the needles the residual strain field was
determined based on optical full-field measurement. The obtained data was then used to
deduce the residual stress field. The major advantage of that novel methodology compared
to the classical opening angle measurement is that only a local part is tested and therefore
the inhomogeneity of the residual stresses, also over the cross-section, may be accounted
for.

The parameter fitting to tension and compression tests of excised arterial stripes neglects
the described effects, since the residual stresses/strains are already released. Blood vessels
under physiological blood pressure exhibit eigenstresses in a range that contributes to a
smooth stress distribution with moderate stress gradients across the vessel wall. It should
be noted that also the active response and osmotic swelling are believed to contribute
to that effect. Besides, it is possible to obtain material parameters from in-vitro inflation
tests which reflect the real in-vivo motion according to the blood pressure. In this case only
the axial pre-stretch is released which can be considered in the experimental setup during
the inflation, cf. for example Blondel et al. [2001] and Kim and Baek [2011]. Moreover,
Genovese [2009] developed full-field measurements for inflation tests. From the full-field
experimental data Avril et al. [2010] derived material parameters by making use of an
inverse-method which is called virtual fields method.

A series of publications deals with the incorporation of initial, possibly incompatible,
strain fields, deduced from the opening angle, in numerical simulations. In Holzapfel et al.
[2000], Holzapfel and Gasser [2007], Peña et al. [2006], Alastrué et al. [2007] and Busta-
mante and Holzapfel [2010] models with varying complexity are implemented requiring the
(layer-specific) opening angle and axial pre-stretch as input parameters in order to con-
struct an initial deformation gradient. In contrast, in Balzani et al. [2007] a displacement
driven scheme was applied to close the gap between a stress-free opened configuration and
the closed, unloaded configuration. Shams et al. [2011] proposed a general setup to formu-
late strain energy functions which depend on invariants that couple finite deformations
and an initial stress tensor. Wang et al. [2014] adapted that scheme to simulate residual
stresses in the left ventricle and deduced residual stress tensors from the opening angle
and residual strain full-field measurements. The uniformity hypothesis for the in-vivo cir-
cumferential strain or stress across the radius, originally formulated in Takamizawa and
Hayashi [1987], was assessed in Chen and Eberth [2012] by formulating an optimization
problem for the constitutive function. Based on the same hypothesis Polzer et al. [2013]
formulated a growth model where the growth parameter is estimated from the current
stress state. The growth criterion is designed such that the stress distribution becomes
more homogenous.

A novel scheme for the computation of eigenstresses in arteries was proposed by Schröder
and Brinkhues [2014] and implemented for two-dimensional boundary value problems.
Based on the above mentioned hypothesis in Takamizawa and Hayashi [1987] they de-
fined local averaged stress invariants with respect to subdomains of the cross-section of
the artery which are used for the modification of the actual stress state. The approach is
clearly of a descriptive or phenomenological nature. Usually the stresses are assumed to
be the dominant trigger in the evolution of arterial growth and in Taber and Humphrey
[2001] it has been stated that it is rather preferable to use stress driven growth models
instead of strain driven models in order to obtain reasonable opening angles in simula-
tions. In this study we will also focus particularly on the stresses and make use of the
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geometrical constraints concerning the stresses in order to estimate suitable residual stress
distributions. Throughout this study the active response of the smooth muscle cells which
contributes to the decrease of the in-vivo stress/strain gradient is neglected. The addi-
tional decrease of the gradient because of the smooth muscle cell activation has recently
been modeled in Zheng and Ren [2016].

In this contribution the method proposed in Schröder and Brinkhues [2014] is extended.
The underlying strain measures, which are used to estimate the residual stresses directly
from the current stress state, are improved in view of the biological characteristics and
the numerical robustness. Furthermore, the approach is extended to three-dimensional
simulations. The method is applied to three-dimensional patient-specific arteries, which
were reconstructed from medical imaging.

2 Constitutive modeling of soft biological tissues

A body B ⊂ R3 in the undeformed reference state is parametrized in X, while the same
body S in the deformed state is parametrized in x. Both configurations are connected by
the motion φ which maps points X ∈ B onto x ∈ S, i.e. x = φ(X). The deformation
gradient is defined by F = ∇φ(X) with detF = J > 0 and the right Cauchy-Green tensor
byC = F TF . An often used assumption is that arterial walls exhibit quasi-incompressible
material behavior. Hence, a mixed finite element formulation is required in order to avoid
volume locking effects. We consider the two-field functional

Π(φ, θ) =

∫
B

ψ
(
C
)
dV +Πext(φ) with Πext(φ) = −

∫
B

x · b dV −
∫

∂Bσ

x · t dA , (1)

where the modified right Cauchy-Green tensor is given by C =
(
θ
J

)2/3
C. Here, θ = ve/Ve

denotes the element wise constant ratio of the element volume Ve in the reference and the
element volume ve =

∫
Be
J dVe in the actual configuration and is called volume dilation,

cf. Nagtegaal et al. [1974]. The free energy ψ is a function of C and will be mathematically
defined later. The second part Πext(φ) covers the external forces, where b denotes the body
forces and t the surface tractions, acting on ∂Bσ. The boundary ∂B is decomposed into the
“Dirichlet” and “Neumann” part ∂Bu and ∂Bσ, respectively, satisfying ∂B = ∂Bu

∪
∂Bσ

and ∂Bu

∩
∂Bσ = ∅. In order to solve the constrained minimization problem we apply

an augmented solution scheme to enforce the quasi-incompressibility condition. Thus, we
consider the functional

L(φ, θ, λ) = Π(φ, θ) +

∫
B

λ(θ − 1) dV . (2)

In the context of constraint optimization and the augmented Lagrangian solution strategy
to prevent ill-conditioning of the stiffness matrix we refer to Hestenes [1969], Powell [1969],
Glowinski and Le Tallec [1984], Glowinski and Le Tallec [1988] and Glowinski and Le Tal-
lec [1989]. The Lagrange multiplier λ will enforce θ to be close to the incompressibility
constraint J = 1 with a permitted discrepancy of ±1%. For the update of the Lagrange
multiplier a simultaneous Uzawa algorithm according to Simo and Taylor [1991] with

λn+1 = λn + κ (θn − 1) (3)
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is chosen. Here, κ is a penalty like parameter. In a simultaneous Uzawa algorithm the
multiplier is updated after every Newton-iteration step. For that reason the algorithm
does not provide quadratic convergence, but therefore dramatically decreases the com-
putational cost in the present application field compared to a nested Uzawa algorithm,
where the multiplier is updated after convergence and the iteration is repeated until the
discrepancy is satisfied in each element. The performance of the augmented Lagrange ap-
proach in the context of arterial walls was studied in Brinkhues et al. [2013]. Throughout
this work we use polyconvex energy functions which guarantee in combination with the
coercivity condition the existence of minimizers, see Ball [1977]. Furthermore, polyconvex
functions satisfy the Legendre-Hadamard condition and therefore ensure real wave speeds.
The free energy

ψ = ψ(I1, I2, I3, J
(a)
4 , J

(a)
5 ) (4)

is formulated in terms of invariants, where I1 = trC, I2 = tr[cofC] = tr
[
det(C)C

−1
]

and I3 = detC. Collagen fibers have a major impact on arterial wall mechanics. These
crosswise orientated fibers, see also Fig. 1, provide a lot more stiffness in the high strain
regime than the surrounding matrix material. Therefore, we consider the structural tensors

M(a) = A(a) ⊗A(a) with trM(a) = 1 and ∥A(a)∥ = 1 , (5)

whereA(a) for a = 1, 2 are unit vectors in the reference configuration. The mixed invariants
of C and M are

J
(a)
4 = tr

[
CM(a)

]
and J

(a)
5 = tr

[
C

2
M(a)

]
. (6)

The free energy is split into an isotropic part ψiso representing the matrix material and
two transversely isotropic parts ψti

(a) for the fibers,

ψ(I1, I2, I3, J
(a)
4 , J

(a)
5 ) = ψiso(I1, I2, I3) +

2∑
a=1

ψti
(a)(I1, I2, I3, J

(a)
4 , J

(a)
5 ) . (7)

Obviously we consider the superposition of two transversely isotropic models in order to
model the anisotropy of the artery. For the isotropic part the polyconvex and compressible
Mooney-Rivlin model

ψiso = c1I1 + c2I2 + c3I3 − δ ln
√
I3 (8)

is chosen. When δ is set to δ = 2c1 + 4c2 + 2c3, depending on the three parameters c1,
c2 and c3, a stress-free reference configuration is ensured. A widely used function for the
transversely isotropic part of the free energy in Eq. (7) which is suitable to describe the
strong stiffening effect in fiber direction is given in Holzapfel et al. [2000]:

ψti
(a) =

k1
2k2

{
exp

[
k2⟨J (a)

4 − 1⟩2
]
− 1

}
for a = 1, 2 . (9)

The invariant J
(a)
4 is the square of the stretch in the corresponding fiber direction. The

Macaulay bracket ⟨b⟩ := 1
2
(b+ |b|) in the latter equation ensures that the fibers will only

carry loads if they are elongated, i.e. J
(a)
4 > 1. While k1 is a stress like parameter, k2 is

dimensionless. For the proof and the benefits accompanied by polyconvexity of the func-
tions in Eq. (8) and Eq. (9) the reader is referred to Schröder and Neff [2003], Schröder
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et al. [2005], Balzani et al. [2006] and Schröder [2010]. For the adventitia and the media
the parameters were fitted to uniaxial tension tests of human abdominal aortic samples.
In these tests the angle 2βf between the two considered fiber directions A(1) and A(2) is
unknown and was also part of the parameter fitting. To account for the anisotropy, the
tension tests of the stripes were carried out in axial and circumferential direction of the
artery, see also Balzani et al. [2012b] for details. The parameter adjustment of a variety
of polyconvex energy functions can be found in Brands et al. [2008]. Here, the parameters
chosen for the adventitia and media are taken from Schröder and Brinkhues [2014], see
Table 1. In the numerical examples we will also investigate patient-specific degenerated
arteries. The occurring plaque deposits will be assumed to be purely isotropic and ho-
mogenous. The investigation of the mechanical properties and hyperelastic modeling is
still a research topic of utmost interest. Experimental data on the plaque behavior, see
for instance Loree et al. [1994a;b] and Salunke et al. [2001], suffers from the large vari-
ance of the results and testing conditions. A review on uniaxial material testing of plaque
samples is provided in Walsh et al. [2014], where the authors intended to motivate a more
standardized testing protocol. Furthermore, the documented data is not universally valid
due to the distinct inhomogeneity of the samples. A review concerning computational
aspects of atherosclerotic plaques has recently been published by Holzapfel et al. [2014].
The evolution of atherosclerotic plaque has a strong impact on the mechanical behavior
of the whole arterial wall. This was studied in the framework of a sensitivity analysis in
Brinkhues et al. [2010] and suitable plaque parameters were assumed, see Table 1.

Table 1: Material parameter sets for different layers.

ψiso ψ
(a)
aniso

c1 in kPa c2 in kPa c3 in kPa k1 in kPa k2, [k2] = 1 βf in rad
Adventitia 2.326 6.169 60.642 3.131 10−8 147.174 0.759
Media 14.638 0.149 60.810 6.851 754.014 0.913
Plaque 60.0 15.0 800.0 - - -

Based on the free energy function we compute the second Piola-Kirchhoff stress tensor
and the Cauchy stress

S = 2
∂ψ

∂C
and σ =

1

J
FSF T , (10)

respectively. The orientation of the fiber directions in an ideal tube is shown in Fig. 1.
Each fiber direction A(a) is inclined by the angle βf towards the circumferential direction.
The angle between the two fiber directions A(1) and A(2) amounts to 2βf . Note that the
angle βmed

f of the media and βadv
f of the adventitia are different, compare Table 1.
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Figure 1: Ideal tube consisting of two material layers with two fiber families each.

3 Algorithmic treatment of residual stresses

The proposed method described in the following is based on the assumption that residual
stresses reduce the gradient of the wall stress in radial direction. This hypothesis is mo-
tivated by a couple of experimental and numerical studies, see for instance Takamizawa
and Hayashi [1987], Chuong and Fung [1986] or Fung [1991]. In a more general context
Schröder and Brinkhues [2014] formulated the following hypothesis (here slightly adapted):

The superposition of eigenstresses in arterial walls should decrease the gradient of
suitable stress-measures of the final stress state in radial direction. This requirement has

to be placed to the individual parts of the arterial wall (e.g. media and adventitia),
independently.

Let us consider an ideal cylinder consisting of an inner (media) and an outer (adventitia)
layer under internal pressure pi. The radial stress component will vary continuously from
pi (inner boundary) to zero (outer boundary). The circumferential stresses exhibit in
general non-vanishing stress-values at the inner and outer boundaries and could exhibit
a jump at the interface between media and adventitia.

The superposition of trial states of eigenstresses will certainly affect the balance of mo-
mentum and a new equilibrium placement has to be iterated. Our basic concept is to use
local deviations of suitable stress invariants from spatial-sector volume averaged target
values for the estimation of the residual stresses.

3.1 Definition of stress measures

Since arterial walls exhibit a distinct material behavior in the fiber directions compared to
the directions perpendicular to the fiber, we introduce suitable stress invariants capturing
this effect. These invariants in turn will be assumed to be the driving force in the evolu-
tion of residual stresses. Such a stress driven criterion is also motivated by experimental
findings made by Liu and Fung [1989]. They showed that the opening angle of rat aorta
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and therefore the residual stresses significantly correlate with the blood pressure. For the
analysis the Cauchy stresses σ are additively decomposed into

σ = σ∗ + σreac , (11)

where σ∗ is called ground stress and σreac is a reaction stress associated to constraints.
The idea is to extract the reaction stress from the whole stress tensor. Afterwards, we use
the invariants of the reaction stress as additional arguments in our continuum-mechanical
framework. The reactions are caused by an assumed inextensibility of the fibers which
results in

σreac = T(1)m̃(1) + T(2)m̃(2) . (12)

In the following T(1) and T(2) are denoted as the fiber stresses. These invariants will be
used as scalar stress measures in order to determine the magnitude of the residual stresses.
The tensor

m̃(a) = ã(a) ⊗ ã(a), with a = 1, 2 (13)

denotes the spatial structural tensor and is computed with help of the spatial fiber unit
direction vector ã(a), using the relations

a(a) = FA(a) , and ã(a) =
a(a)

||a(a)||
. (14)

The additive split in Eq. (11) is complemented by the constraints σ : m̃(a) = σreac : m̃(a),
i.e. σ∗ has to satisfy

σ∗ : m̃(1) = 0 and σ∗ : m̃(2) = 0 . (15)

The proposed setup and the invariant definition according to convenient constraints is
motivated by the ideas of Mulhern et al. [1967] and Spencer [1972] concerning elastoplas-
ticity. First of all the projections of the Cauchy stress onto the current preferred directions
are given by

σ : m̃(1) = T(1) + T(2)m̃(1) : m̃(2) ,

σ : m̃(2) = T(1)m̃(2) : m̃(1) + T(2) . (16)

Solving the above system of equations for the fiber stress invariants T(1) and T(2) in an
arbitrary deformation state leads to the formulas

T(1) =
σ : m̃(1) − σ : m̃(2)ξ

1− ξ2
and

T(2) =
σ : m̃(2) − σ : m̃(1)ξ

1− ξ2
, (17)

with the abbreviation ξ = m̃(1) : m̃(2). In the former version of Schröder and Brinkhues
[2014] the reaction stresses σreac contained the additional term −p1. These hydrostatic
stresses obviously also include radial stress components. As already discussed above, for
an ideal cylinder the radial stresses at the inner and outer boundary are already predefined
through the equilibrium condition. Likewise at the media-adventitia interface Γ the radial
stresses have to coincide. Therefore, if we aim to estimate a residual stress tensor based on
σreac it is constructive to preclude p in its definition. Further it was found that the novel
setup increases the robustness of the algorithm, especially in case of 3D-applications. In so
far the definition of the reaction stresses in Eq. (12) was changed compared to Schröder
and Brinkhues [2014]. In this preliminary work it was assumed that trσres = 0 which
allowed to determine the hydrostatic pressure p.
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3.2 Engineering based procedure to estimate a residual stress tensor

The estimation of the residual stresses is accomplished within an iterative process. Based
on the aforementioned relations and assumptions a calculation procedure to account for
residual stresses is explained. The complete geometry may be divided into a finite number
of nSC sectors. Each of these sectors has an assigned domain

B∡,mat = {B∡,media, B∡,adventitia} , (18)

see also Fig. 2. After incrementally loading the artery with the internal blood pressure and
solving the balance of momentum, the Cauchy stresses σ and the deformation gradient F
are given. The residual stresses are directly estimated from the current stress state. The
“loading” of the system with the residual stresses is performed in so called smoothing-
loops, which are to be repeated until an adequately flat stress distribution is reached.

In each assigned sector domain B∡,mat the mean fiber stresses T
∡,mat

(a) can be calculated.

These are averaged over the spatial sector volume v∡,mat:

T
∡,mat

(a) =
1

v∡,mat

∫
B∡,mat

T(a)(x) dv for B∡,mat = {B∡,media,B∡,adventitia} . (19)

The physical pertinence of the averaging procedure over the spatial segments is increased
by decreasing the segment angles α and when the variation of the preferred direction
within the considered segment is small. The subtraction of the mean values from the local
fiber stresses, see Eq. (17), yields the local deviations

∆T(a) = T(a) − T
∡,mat

(a) for B∡,mat = {B∡,media, B∡,adventitia} . (20)

The deviation of the residual stress tensor

∆σres =
2∑

a=1

∆T(a) m̃(a) (21)

is approximated by using Eq. (12) and the computed fiber stress deviations in Eq. (20). In
view of the algorithmic treatment the total residual stresses will be updated incrementally.
This is facilitated in a sub-incrementation within ninc steps until the total proportionate
factor γ ∈ [0, 1] is applied:

σres ⇐ σres +
γ

ninc

∆σres , where γ ∈ [0, 1] . (22)

In order to incorporate the updated residual stress tensor

Sres = JF−1σresF−T (23)

in the reference configuration is computed. Finally, the residual stresses Sres are super-
posed, i.e. they are subtracted from the stresses S∗, see Eq. (10)1:

S = S∗ (C,M(a)

)
− Sres with S∗ = 2

∂ψ
(
C,M(a)

)
∂C

. (24)

After that a new equilibrium state has to be iterated, where Sres is treated as constant.
The smoothing-loops can be repeated several times and a stopping criterion has to be
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defined. The easiest way would be to compare the maximum and minimum of T(a) in each
sector and to stop smoothing, when the difference is small. A more sophisticated way
could be to evaluate the norm of the spatial gradient of T(a) and stop when ||GradT(a)||
becomes smaller than a certain tolerance value, which still needs to be chosen. The factor
γ was introduced in order to apply only a fraction of the residual stresses within the
considered load increment. After each update of σres the residual stresses are stored as
history variables. When iterating a new equilibrium state the residual stresses remain
unaltered, while S∗ (C,M(a)

)
changes until the weak form of balance of linear momentum

is fulfilled.

Figure 3 illustrates qualitatively the idea of the proposed procedure. It shows a schematic
plot of the fiber stress invariant distribution over the radial direction r̃ ∈ [ri, ra] with the
inner radius ri and the outer radius ra. The jump of T(a) ( which can roughly be interpreted
as circumferential stress quantities) in radial direction across the material interface Γ is
characteristic because of the difference in stiffness provided by the media and adventitia.

α
α

ϕ

B∡,mat

B∡

Γ

Γ

1

nSG
1

nL

{
nm

at

a) b)

Figure 2: a) Decomposition of an arterial cross-section, consisting of two materials nMAT

(media (red) and adventitia (orange)) into 8 segments nSg and n2DSC = nSG ·nMAT = 16 sectors
and b) additional longitudinal decomposition in nL = 3 parts giving n3DSC = n2DSC · nL = 48
sectors.

The computation of the mean values T
∡,mat

(a) is carried out on sector domains B∡,mat. The

decomposition of the artery into a number of n3D
SC is to be demonstrated along with Fig. 2.

By specification of an angle α the exemplary cross-section with two material layers in
a) is decomposed into nSG = 8 segments. For the division into segments the centroid of
the lumen is utilized as indicated in Fig. 2b). Then for each finite element the center
coordinates are computed. A segment number is assigned if the magnitude of the polar
angle ϕ of the center coordinate is in between the polar angles of the segment borders.
That means all Gauss-Points of one element belong to the same segment, i.e. the segments
do not intersect elements. Each segment got an angle α = 360◦/nSG.

The subdivision of the segment domain B∡ into sector domains B∡,mat is performed with
respect to the material layer and the interface Γ, see Fig. 2a). The consideration of three-
dimensional numerical simulations requires an additional decomposition in longitudinal
direction, compare Fig. 2b). The total number of sectors of a three-dimensional geometry
is defined by

n3D
SC = nSG · nmat · nL (25)
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Media Adventitia

r̃

T(a)

T
∡,med

(a)

∆T(a)

Γ

T
∡,adv
(a)

ri ra

Figure 3: Exemplary fiber stress distribution over the wall thickness and corre-

sponding deviations ∆T(a) with respect to the segmental mean stresses T
∡,mat

(a) =

{T (a)
∡,media

, T (a)
∡,adventitia}.

with the number of segments nSG, the number of material layers nmat and the number of
longitudinal segments nL. Table 2 summarizes the described algorithmic treatment in a
compact form.

• Divide domain B into n2D
SC or n3D

SC sectors, initialize σres = 0

• Apply internal pressure pi (incrementally) and solve the nonlinear

boundary value problem: Compute F ,S

• do number of smoothing loops (nSL)


sm
o
ot
h
in
g-
lo
op

a) σ = F S F T/J , m̃(a) and T(a)

b) local volume average of fiber-stresses T
∡,mat

(a) , Eq. (19)

c) deviations ∆T(a), Eq. (20)

d) residual stresses ∆σres, Eq. (21)

e) do number of sub-incrementation loops (ninc)


su
b
-i
n
cr
em

en
ta
ti
on

σres ⇐ σres + γ
ninc

∆σres, γ ∈ [0, 1]

Sres = JF−1σresF−T

S = S∗ (C,M(a)

)
− Sres, with S∗ from Eq. (10)1

Solve balance of linear momentum: Compute F ,S

end do

end do

Table 2: Algorithmic box for the computation of the residual stresses.
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4 Three-dimensional numerical simulations

4.1 Numerical simulation of a tube

As a first academical example we consider an ideal tube consisting of media and adventitia,
while the intima is neglected. The specific boundary value problem is shown in Figure 4.
The inner radius is ri = 1.0 mm and the outer radius ra = 2.0 mm. Both layers have a
thickness of 0.5 mm and the sample is 1 mm long. In order to enforce plane strain like
conditions the arterial wall is fixed at both ends in x3-direction and on two single nodes.
When estimating the opening angle the tube is allowed to deform in x3-direction in order
to release the axial residual stresses and the mesh is cut on one side of the artery in
order to release the circumferential residual stresses. The tube is initially loaded with an
internal pressure pi of 16 kPa which corresponds to 120 mmHg.

Adventita

Media

x1

x2

x3
x1

x2

x3
ri

ra

a) b) c)

surface boundary
in x3 direction

slice

Figure 4: a) Three-dimensional tube discretized with 69 621 quadratic, standard elements
and boundary conditions of b) the in vivo problem and c) the opening angle experiment.

In this special case the decomposition into only two sectors - one for the media and one
for the adventitia - is sufficient due to the rotational symmetry of the fiber orientation
and the considered body. In Fig. 5 and Fig. 6 the stresses in the Gauss-points in the x1-
x3 plane are evaluated and the stress distributions before and after smoothing are to be
compared. For the stress plots the Gauss-points in the plane were meshed with help of a
Delaunay triangulation. Then the corresponding stresses are plotted on the perpendicular
x2-axis. In this section σ11, σ22 and σ33 represent the radial (σr), circumferential (σφ) and
longitudinal stresses. After application of ten smoothing-loops (nSL = 10) with ninc = 1
and a proportionate factor γ of 100% the fiber stress invariant T(1) becomes nearly constant
in each material layer, see Fig. 5. The high stress gradient, especially in the area close
to the lumen interface vanishes. For the considered ideal tube and the underlying fiber
orientation the second invariant T(2) is identical to T(1). The difference of the radial stress
distribution before and after smoothing is comparatively small. The circumferential and
longitudinal stress distributions are depicted in Fig. 6. In general the main observations
made for the fiber stress invariant T(1) also hold for the circumferential stresses σφ and
longitudinal stresses σ33. Overall, the presented algorithm seems to be well suited to realize
the fundamental hypothesis made at the beginning.

The improvement of the modification in the definition of the anisotropic invariants T(1)
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and T(2) becomes apparent when comparing Fig. 5 and Fig. 7. The results of the old
approach, depicted in Fig. 7 reveal considerable stress oscillations for σr, although T(1)
becomes sufficiently even. As already described at the end of section 3.1 the incorporation
of relatively large radial stresses, which are not really physical due to the stress constraints,
is supposed to be responsible for that. This effect did not occur in 2D calculations. Note
that the fiber stress T(1) in Fig. 5a) and Fig. 7a) before smoothing are different due to the
modified ansatz.

-2 -1 0 1 2
10.5 0

-50
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-30

-20

-10

0
-2 -1 0 1 2

10.5 0

200

150

100

50

0

T(1) σr

a) b)

nSL = 0 nSL = 10 nSL = 0 nSL = 10

σ in kPa

x1
x3

Figure 5: Gauss-point plots of the distribution of a) the fiber stress T(1) and b) the radial
stress σr. Stress distributions without residual stresses (left part of each figure) and after
application of 10 smoothing loops (right part of each figure) are compared.

In order to analyze the opening characteristics of the artery due to the determined resid-
ual stresses the sliced configurations are loaded with Sres on the Gauss-point level in the
absence of any external forces. On that basis the simulation provides an additional, layer
specific tool to judge whether the approach is in good accordance with available experi-
mental observations. Different simulations of the opening angles are shown in Fig. 8. In
detail, it contains the opening angles of the complete artery, the single adventitia and the
single media, where the volume averaged global target values were computed on the sector
domains B∡,mat, compare also Fig. 2. Experimental data regarding the opening angles of
separated arterial layers is provided in Holzapfel et al. [2007]. Consequently, Holzapfel and
Gasser [2007] and Holzapfel and Ogden [2010] also considered different opening angles,
when deducing residual strains from opening angle experiments. The opening angle of
the media is largest for the media followed by the complete artery and the adventitia,
which is in accordance with experimental findings in Holzapfel et al. [2007]. However, the
remaining von Mises stresses σvM =

√
3/2 Devσ : Devσ in the opened complete artery

(Fig. 8, left column) are considerably higher compared to the opened adventitia (Fig. 8,
middle column) and opened media (Fig. 8, right column). Essential to determine the mag-
nitude of the residual stresses are the fiber stress deviations from the mean values, see
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Figure 6: Gauss-point plots of the distribution of a) the circumferential stress σφ and b)
the longitudinal stress σ33. Stress distributions without residual stresses (left part of each
figure) and after application of 10 smoothing loops (right part of each figure) are compared.
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Figure 7: Gauss-point plots of the distribution of a) the fiber stress T(1) and b) the radial
stress σr for the preliminary fiber invariant construction in Schröder and Brinkhues [2014].
Stress distributions without residual stresses (left part of each figure) and after application
of 10 smoothing loops (right part of each figure) are compared old Approach.
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Eq. (20). Fig. 9a) shows the stress distribution in a cross-section through the vessel wall
after zero smoothing-loops (nSL = 0), i.e. when only the internal pressure pi is acting.
Moreover, it includes the plots after application of one, two and five smoothing loops with
a proportionate factor γ of 100%. The corresponding mean values are plotted in Fig. 9b).

After five loops the distributions of T(1) and T
∡,mat

(1) are approximately equal. Generally
the deviations ∆T(a) on both layers lead to a bending dominated problem. Obviously the
deviations on the adventitia are a lot smaller compared to the media. Consequently the
opening angle of the adventitia is smaller.
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Figure 8: Simulations of the opening angle for the complete artery, the single adventitia
and the single media after five smoothing-loop with γ = 100%. The contour plots depict the
von Mises stresses σvM.
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Figure 9: a) Fiber stress distribution over the radius after zero, one, two, and five smoothing
loops and b) corresponding mean values.

4.2 Numerical simulation of patient-specific arteries

4.2.1 The influence of residual stresses on the final stress distribution. In
this section the proposed approach is applied to three-dimensional simulations of coronary
patient-specific arterial walls. The arterial geometries are reconstructed based on two se-
quenced two-dimensional virtual histology (VH) intravascular ultrasound (IVUS) images.
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This method is catheter based and provides a series of grey-scale images which allows to
identify the lumen and the media-adventitia interface.

Since IVUS images are unable to determine the boundary of the adventitia and the sur-
rounding connective tissue the thickness of the adventitia is chosen appropriately. This
is facilitated by computing the centroid of the media-adventitia interface and scaling the
radius of each interface point by a factor of 1.15. The resulting line is defined to be the
interface between the adventitia and the surrounding connective tissue. Due to the low
stiffness provided by the adventitia in case of physiological loading conditions, the asso-
ciated thickness is assumed to be of minor importance. Accompanied by the assumption
that the residual stress state is dominated by the media, cf. Badel et al. [2012], we will
perform the averaging of the stress measures on the sector domains B∡,mat in the following
examples. VH IVUS also provides color-coded images which allow to determine the differ-
ent plaque constituents of atherosclerotic arteries and its shape. For a detailed description
of the three-dimensional reconstruction the reader is referred to Balzani et al. [2012a].

The plaque is modeled as a homogenous, isotropic body and no residual stresses are
computed for this part of the artery. In the first example we consider the geometry depicted
in Fig. 10, where the plaque is shown on the left. The model is discretized with 29 063
mixed elements with quadratic shape functions for the displacements and constant volume
dilation. In order to study the influence of the sector size we distinguish a decomposition
into n3D

SC = 1 · 2 · 1 = 2 and n3D
SC = 20 · 2 · 3 = 120 sectors. Since we consider the adventitia

and the media for the computation of the residual stresses we have nMAT = 2. In the first
case the whole adventitia and the whole media define a sector, each. As already mentioned
a segmentation in longitudinal direction is also possible. In the second case the arterial
segment is further divided into nL = 3 parts in this direction. The marked sections A-A
and B-B will be used to evaluate and illustrate the stress distributions.

Plaque

A-A A-A

B-B B-B

x1
x2

x3

Figure 10: Reconstructed degenerated patient-specific arterial wall, discretized with 29 063
elements and definition of the sections A-A and B-B.

Again the simulation begins with the loading of the stress free arterial wall with an internal
pressure of pi = 16 kPa. Thereafter, a number of smoothing-loops is applied, each with
an amount of γ = 50%. A comparison of the first fiber stress invariant T(1) is depicted in
Fig. 11 for the case that no residual stresses are considered and after the application of
one and five smoothing-loops. It is visible that the residual stresses influence the stress
distribution in the physiological loading range such that the chosen stress measure is
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smoothed. The difference between the computations with 2 and 120 sectors is relatively
small. Nevertheless, the finer partition seems to reduce the stress gradient slightly more
effective. More important in that context is to mention that the coarse partition needed
additional sub-incrementation loops (compare Table 2) to guarantee convergence. In case
of the fine division with 120 sectors only one sub-incrementation loop (ninc = 1) was
required in each smoothing loop.

105
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45

25

5

nSL = 0 nSL = 1 nSL = 5

nSL = 0 nSL = 1 nSL = 5

T(1) in kPa

T(1) in kPa

n3D
Sc = 2

n3D
Sc = 120

Figure 11: Contour plot of the first fiber stress invariant T(1) after 0, 1 and 5 performed
smoothing-loops with γ = 50% for n3D

Sc = 2 and n3D
Sc = 120, respectively.

The same observation is made for the second fiber stress invariant T(2) in section A-A, see
Fig. 12. With an increasing number of smoothing-loops the stress distribution becomes
more uniform. Because of the assumption that the plaque is isotropic the plaque was
excluded from both fiber invariant plots. The main underlying hypothesis of the proposed
scheme was that residual stresses smooth the stress gradient of suitable stress measures.
In section B-B the stresses σ11 corresponding to the x1 axis in Fig. 14 approximates
the circumferential stresses, see Fig. 13. Again with an increasing number of smoothing-
loops the stresses are homogenized and the main assumption implied in the hypothesis
is fulfilled. Especially in this section the performance of the fine parition seems to be
superior regarding the hypothesis.
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Figure 12: Contour plot of the second fiber stress invariant T(2) in section A-A after 0, 1
and 5 performed smoothing-loops with γ = 50% for n3D

Sc = 2 and n3D
Sc = 120, respectively.
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Figure 13: Contour plot of the stresses σ11 in section B-B after performing 0, 1 and 5
smoothing-loops with γ = 50% for n3D

Sc = 2 and n3D
Sc = 120, respectively.
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4.2.2 Prediction of the opened configuration. As a second example we consider
the geometry depicted in Fig. 14. As outlined in the introduction, the opening angle is
a sensitive measure and depends on multiple factors. Therefore, one of the main goals is
to provide an engineering tool which is able to be adjusted, such that given experiments
can be reproduced. The parameters to be optimized in that case would be γ and nSL.
The body is discretized with 26 234 mixed elements with quadratic shape functions for
the displacements and constant volume dilation. The plaque deposit is more pronounced
in this case and we want to investigate the opened configuration of the media. Therefore
three different radial slices are analyzed.

cut#1

cut#2

cut#3

Plaque

cut#1 cut#2 cut#3

Figure 14: Reconstructed degenerated patient-specific arterial wall, discretized with 26 234
elements and definition of three different cuts on the media.

For cut#1 the opened configuration after different amounts of smoothing-loops are com-
pared in Fig. 15. Naturally, the opening expands, when γ or the number of loops nSL is
increased. The same holds for the remaining, unreleased stresses. Generally, the reduction
of γ may help to improve the convergence, since the change in σres is reduced, see Eq. (22).
A proportionate factor of 100%, as applied on the ideal artery in 4.1, was found to be
ineffective and numerically unstable. In the present example we see that the increase in
the deformation from nSL = 2, γ = 0.5 to nSL = 3, γ = 0.5 is almost invisible, i.e.
further smoothing loops would not lead to an increase in the deformation because the
stress gradient, and therefore ∆σres, already became small.

Ensuring comparability of the opened configurations, all different slices are evaluated
for nSL = 2 and γ = 50%. The comparison of the opened configuration of all three
cuts is shown in Fig. 16. Obviously, the displacements are significantly larger for cut#2
and cut#3. One reason is most probably that the plaque is free of residual stresses. On
the other hand in the region of large plaque deposits and a thickened vessel the wall
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Figure 15: Opened configurations of the media for cut#1 after different amounts of
smoothing-loops and proportionate factors.

stress of the media is considerably reduced, see also Fig. 11-13. However, for a patient-
specific artery the opened configuration and the stress release may be highly dependent
on the position of the slice. This seems reasonable since it is well known that during
lifetime arteries adapt to external influences by growth and remodeling processes. It also
coincides with the experimental observation made by Liu and Fung [1989] that residual
stresses change rapidly and remarkably due to change in blood pressure.

σvM in kPa

cut#1

cut#2
cut#3

Figure 16: Opened configurations of the media for three different cuts after two smoothing-
loops with γ = 50%.

The authors are well aware that the IVUS VH images are captured in-vivo. Therefore,
only the deformed actual geometries are known. This fact was neglected in the presented
examples. Nevertheless, the discussed scheme can easily be adapted to the inverse mod-
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eling finite element formulation developed by Govindjee and Mihalic [1996], where the
deformed configuration and current loads are known and the unknown reference config-
uration is computed. In their formulation the weak form of the balance of momentum
is parametrized in terms of the inverse motion φ−1 and its linearization is performed.
Here, the algorithm can easily be adjusted to estimate a residual stress tensor in the
described way. The inverse finite element concept was also extended to three-field func-
tionals for quasi incompressible problems, see Govindjee and Mihalic [1998] and Liu et al.
[2007]. Likewise, the method developed in Gee et al. [2010], which is based on a modified
updated Lagrangian formulation, could be adapted to account for residual stresses.

5 Summary

In this contribution we proposed an engineering approach to estimate residual stresses
in patient-specific arteries. The residual stresses are directly deduced from the current
stress state which is determined based on the equilibrium placement of the artery under
blood pressure. The experimentally motivated hypothesis was to smooth the gradients
of suitable stress measures. These in turn were derived and sector wise volume averaged
mean values were introduced in order to define target values. The smoothing procedure
itself can be performed individually for different material layers and is embedded in an
iterative numerical scheme. Due to the choice of fiber stress invariants, depending on
the well defined fiber directions the procedure is carried out in a coordinate-invariant
setting, i.e. we are not restricted by e.g. polar coordinates. The general performance was
demonstrated for an ideal tube. The high fiber stress gradients without residual stresses
vanish to nearly constant fiber stresses over the wall-thickness after consideration of the
residual stresses. In a second example it was shown that the method also works for patient-
specific arteries obtained from medical imaging and allows to compute an estimate of the
opened configuration. Finally we showed that the computed configurations are reasonable
and therefore the residual stress estimation seems to be plausible.
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