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Abstract

We propose an algorithmic scheme for the numerical calculation of fiber orientations in arterial
walls. The basic assumption behind the procedure is that the fiber orientations are mainly gov-
erned by the principal tensile stress directions resulting in an improved load transfer within the
artery as a consequence of the redistribution of stresses. This reflects the biological motivation
that soft tissues continuously adapt to their mechanical environment in order to optimize the
load-bearing capacities. The algorithmic scheme proposed here enhances efficiency of the gen-
eral procedure given in Hariton et al. [2007a], which consists of repeatedly identifying a favored
fiber orientation based on the principal tensile stresses under a certain loading scenario, and
then re-calculating the stresses for that loading scenario with the modified favored fiber orien-
tation. Since the method still depends on a highly accurate stress approximation of the finite
element formulation, which is not straightforward to obtain in particular for incompressible and
highly anisotropic materials, furthermore, a modified model is introduced. This model defines
the favored fiber orientation not only in terms of the local principal stresses, but in terms of the
volume averages of the principal stresses computed over individual finite elements. Thereby, the
influence of imperfect stress approximations can be weakened leading to a stabilized conver-
gence of the reorientation procedure and a more reasonable fiber orientation with less numerical
noise. The performance of the proposed fiber reorientation scheme is investigated with respect
to different finite element formulations and different favored fiber orientation models, Hariton
et al. [2007a] and Cyron and Humphrey [2014]. In addition to that, it is applied to calculate
the fiber orientation in a patient-specific arterial geometry.

Keywords: Fiber Reorientation, Collagen Fibers, Arterial Walls, Finite Element Method

1. Introduction

The collagen fibers in arterial tissues and their orientation are of major importance for the
overall mechanical behavior of arterial walls, i.e. the description of the passive response
and transmural stress distribution of the arterial tissue. In computational biomechan-
ics soft biological tissues are usually described by quasi-incompressible highly nonlinear
anisotropic material models, e.g. Holzapfel et al. [2000] and Balzani et al. [2006]. Mul-
tilayered fiber-reinforced materials which are characterized by two main fiber families



Simon Fausten, Daniel Balzani, Jorg Schroder 3

embedded in a soft matrix material turned out to be a suitable choice for the material de-
scription. The fibers are arranged crosswise helically around the artery in axial direction.
However, the in-vivo identification of patient-specific fiber orientations in real arteries,
whose geometry significantly differs from an idealized thick-walled tube, in particular for
atherosclerotic arteries, is difficult. There, strong curvatures and irregular non-rotationally
symmetric cross-sections may be observed. Therefore, numerical methods enabling an au-
tomated calculation of fiber orientations based on biologically motivated assumptions
regarding favored orientations present a suitable framework. This strategy is in line with
the living nature of biological tissues, which continuously change and adapt according
to their mechano-biological environment in order to improve the load-bearing capacities.
The consideration of such biomechanically motivated fiber reorientation approaches may
yield a more realistic description of arterial tissues with distributed orientations through
the thickness of the vessel wall (O’Connell et al. [2008] and Schriefl et al. [2012]), which
goes beyond the assumption of a constant fiber orientation in each layer of the tissue.

In the literature the reorientation of collagen fibers is usually motivated by either stress
or stretch. In Driessen et al. [2004] the well-known material model from Holzapfel et al.
[2000] is combined with a mathematical model, aligning the fiber orientations with the
principal stretch directions. This approach is extended in Driessen et al. [2008] towards
specific stimulus functions for the fiber remodeling, considering strain- as well as stress-
based arguments for the remodeling of collagen fibers in arterial walls and aortic heart
valves. A stress-driven model is proposed in Hariton et al. [2007a], where the orientation of
the collagen fibers is determined by the direction and magnitude of the principal stresses.
This model is applied to the special case of a human carotid bifurcation in Hariton et al.
[2007b]. A completely different approach, which is also stress-driven, is given in Kuhl
and Holzapfel [2007] and is based on the remodeling of orthotropic unit cells, motivated
by phenomenologically based micro-structural considerations on the collagen fiber level.
Another approach based on a micro-mechanically motivated formulation, taking into ac-
count a unit sphere with the unit vectors as internal variables is proposed in Menzel
and Waffenschmidt [2009]. In Himpel et al. [2008] the time-dependent fiber reorientation
of transversely isotropic continua and its algorithmic implementation based on principal
stretches is discussed. In order to consider realistic collagen fiber orientations in patient-
specific arteries, taking into account a strain-based remodeling algorithm, a remodeling
metric is introduced in Creane et al. [2012], which is an extension of Creane et al. [2011].
Besides the stress- and stretch-driven models several other approaches towards fiber reori-
entation can be found. Grillo et al. [2015] for example present a mathematical model for
the structural reorganization of fibers based on the principle of virtual power and dissipa-
tion, applicable to fiber-reinforced composites as well as soft biological tissues. Another
interesting theoretical approach is found in Cyron and Humphrey [2014], where findings
from the netting analysis are applied to membrane theory. In Waffenschmidt and Menzel
[2014] energy arguments are taken into account to determine the fiber orientations. A
recent publication by Qi et al. [2015] compares different fiber reorientation approaches
and their applicability to the special case of the human iliac arteries. However, in order to
obtain a robust numerical scheme enabling the computation of the fiber orientation only
requiring a minimum of patient-specific parameters, a simple method is necessary and
thus, the general procedure in Hariton et al. [2007a] appears to be advantageous. Hence,
we extend this approach such that two main advantages are obtained: a higher efficiency
in terms of less reorientation iterations and a stabilized model based on the principal
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stresses of the volumetric average of the Cauchy stresses tensor computed over each finite
element. By detailed numerical analysis comparing different finite element formulations
and favored fiber orientation models we show that this stabilized model enables an im-
proved convergence of the reorientation algorithm as well as a more reasonable distribution
of fiber orientation with less numerical noise.

The remaining paper is organized as follows: the continuum mechanical material model
for the vessel wall is briefly recapitulated in Section 2. In the following Section 3 the stress-
driven reorientation approach is described as well as the implementation of the approach
with respect to the underlying algorithm. Various numerical results for the simulation of
fiber reorientation in arterial walls, considering several finite element formulations and
different boundary value problems, are presented in Section 5. Finally the paper closes
with a conclusion in Section 6.

2. Continuum Mechanical Description of Arterial Tissues

Let ¢ denote the non-linear deformation, which maps points X of the reference configu-
ration By onto points @ of the actual configuration B;. The deformation gradient, defined
by F = Grad ¢ and the right Cauchy-Green tensor C = FTF, are introduced as defor-
mation measures. The anisotropic material behavior of arterial tissues results mainly from
the reinforcing collagen fibers. They are considered to be mainly arranged in two fiber di-
rections cross-wise helically around the arterial wall. In order to describe the orientations
of the collagen fiber bundles we use the concept of structural tensors, see e.g. Boehler
[1987]. Hence, an additively decoupled strain energy ¢ consisting of an isotropic part '
for the elastin-rich ground substance and the superposition of two transversely isotropic
parts IDE;) for each of the individual fiber families a = 1,2 is postulated. The fiber ori-
entations are characterized by the unit vectors A, describing the preferred directions
in the reference configuration. Furthermore, it is assumed that only a weak interaction
between the two fiber families exists. In order to fulfill the objectivity condition a pri-
ori, the isotropic energy is considered to depend on the right Cauchy-Green tensor, i.e.,
Y :=1p(C). For the transversely isotropic part the structural tensor M, = A ® Ay
for a = 1,2, acts as an additional argument tensor such that the strain energy reads
@Z)E;) = @Z)E;)(C’ ,M,). A convenient representation of the strain energy function can be
obtained considering the principal and mixed invariants

I = trC, I = tr[CofC], Is = detC, Ki" = tr[CofC(1 — Ma)], (1)

where CofC = det[C]C~T denotes the cofactor of C. It should be noted that the in-
variants in (1) are polyconvex in the sense of Ball [1977], see Schroder and Neff [2003]
and Schroder [2010]. Finally, the strain energy function for two fiber families reads

2
O(C, My, M3)) = ¢™"(I1, I5) + Zd’&)(fh K$). (2)
a=1

Here, polyconvex energy functions are considered, since this condition with an additional
coercivity condition is essential to ensure the existence of minimizers and material stabil-
ity. For a detailed analysis of material stability in the framework of anisotropic hyperelas-
ticity see Schroder et al. [2005]. In detail a Neo-Hooke-type function is considered for the
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isotropic part and for the transversely isotropic part the function for arterial tissues pro-
posed in Balzani et al. [2006] is used. The latter has been successfully applied in massive
parallel calculations of patient-specific atherosclerotic arteries, see Balzani et al. [2012].
The complete strain energy function is given by

wiSOt _ ([§2 + [3—52 _ 2) T <[1 151/3 _ 3) and wfé) = oy <K§a) _ 2> 2 , (3)

where the restrictions ¢; > 0,¢; > 0,65 > 1,07 > 0 and as > 2 ensure polyconvexity and
smooth tangent moduli; and the Macaulay brackets are defined as ((e)) = 1/2(|(e)|+ ()).
It is important to note that a volumetric-isochoric split is only considered for the isotropic
part of the function, while it is not considered for the transversely isotropic part, in this
context we refer to the discussion in Sansour [2008]. The second Piola-Kirchhoff stresses
and the Cauchy Stresses are computed by S = 20c¢(C) and o = (det[F])"'FSFT,
respectively. Various polyconvex isotropic volumetric functions are given in Hartmann

and Neff [2003].

3. Numerical Approach for Fiber Reorientation

Following the approach in Hariton et al. [2007a], the algorithm conceptionally consists of
two parts, which are repeatedly considered in each reorientation step until a converged
fiber orientation is obtained. These two parts are (i) calculation of a favored fiber orienta-
tion based on the principle stresses, which are computed for a specific load-scenario, and
(ii) accommodation of equilibrium for the same load-scenario with the modified favored
fiber orientation. In the original algorithm, the equilibrium conditions are computed by
fixating the modified fiber orientation and step-wise increasing the load by applying a
specified number of load steps nmpam), where in each incremental load step the boundary
value problem is solved using a Newton iteration. In our algorithm the way differs how
equilibrium is accommodated for each reorientation step. We do not fixate the fiber orien-
tation, but consider a number nrpg) of incremental updates of fiber orientation until the
favored fiber orientation is achieved. In each of these incremental reorientation steps, we
also solve the associated boundary value problem using a Newton iteration. Since in each
of the incremental steps, either incremental load or incremental reorientation step, a com-
parable number of Newton iterations is required to solve the boundary value problem, the
main improvement in efficiency is realized if nrgs)y < nmpgn). For most problems this be-
havior is expected. In particular for difficult numerical problems, e.g. if the fluid-structure
interaction of the vessel wall with the blood flow is taken into account, the required num-
ber of incremental load steps easily reaches nmpam) > 1000 (cf. Balzani et al. [2015]) and
will be rather constant over all reorientation steps, no matter how strong the favored fiber
orientation changes in each reorientation step. In our approach the number of incremental
reorientation steps is rather independent on the complexity of the numerical problem. Fur-
thermore, it typically reduces during the reorientation scheme since the required change
in favored fiber orientation also reduces resulting in less incremental steps. In addition
to that, for the fiber orientation scheme a reasonable experience-based initial fiber orien-
tation may be available, even reducing the required number of incremental reorientation
steps further. This experience-based initial configuration, reducing the required number
of load steps, typically lacks availability. In order to measure the gain in efficiency of our
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approach, an efficiency factor fyomp may be defined as

total

(FBS)
fcomp = otal - (4)
(HDpGH)

Herein, nE%tglGH) and ng%tgg) denote the total number over all reorientation steps of in-

cremental load steps (approach of Hariton et al. [2007a]) and incremental orientation
steps (our approach) until a converging fiber orientation is obtained. Thus, a number of
feomp = 0.5 means that our approach requires half of the calculations of equilibrium and
thus approximately half as much computing time until a converging fiber orientation is
obtained. For identical definitions of favored fiber orientations the number of reorientation
steps will be the same for both approaches, it is the number of incremental steps in each
reorientation step which differs.

Note that in the proposed approach the direct incorporation of history-dependency, either
in terms of dissipative materials or inertia during the diastolic-systolic blood pressure cy-
cle, will lead to different results compared with the approach in Hariton et al. [2007a].
This is due to the fact that here we do not re-compute the full load-path for the modified
favored fiber orientation in each reorientation step. Therefore, an extended termination
criterion may be required based on such full load-path calculations to ensure that also
for the history-dependent behavior a converged state is obtained. For most arterial wall
simulations, however, the material behavior is assumed to be hyperelastic and then the
presented approach can be applied without any restriction.

3.1. Stress-Driven Reorientation Model based on Local Stresses o'

For any kind of fiber orientation calculation a model is required for the determination of
the favored fiber orientation. Similar to the approach described by Hariton et al. [20074a]
the approach considered here is based on the assumption that the fiber orientation is
mainly driven by the principal tensile stress directions, in order to improve the load-
bearing capacities of the tissue. Since mainly two fiber families exist, their favored orien-
tation may be determined by the directions of the first two principal stresses. Therefore, in
each material point the numerical solution of the eigenvalue problems (o —01)-é = 0 with
the characteristic polynomial det(o- — o1) is considered and yields the principal stresses
or > orr > oy and principal directions €, é;; and éry; of the Cauchy stress tensor o.
The stress tensor with respect to its principal axes is then given by

o= Z 0,€; ® é;. (5)

i=II1,IT1

It is assumed that the biological fiber directions are located in the plane spanned by
the eigenvectors associated to the two largest tensile principal stresses, while maintaining
symmetry to each other with respect to the eigenvector associated to the largest tensile
principal stress €;. Hence, the favored fiber orientation in the actual configuration can
beexpressed as
aqy = (or)er+ (og)e
(1) (or)ér + (orr)én 6)

ap) = <01>é1—<011>é11-

The Macaulay brackets ensure that only tensile principal stresses are taken into account for
the reorientation. In addition to that, this formulation also covers the special case that only
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A

>
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Figure 1: Schematic illustration of the optimal fiber orientation with respect to the principal
stresses and their associated directions.

one and not two tensile principal stresses occur in a material point. In this case both fiber
families reorient in the direction of the remaining tensile principal stress. The geometric
interpretation of (6) is illustrated in Figure 1. Since, the material model is formulated in
the reference configuration it is necessary to pull-back the orientation vectorsby

F*Ia(l) F’la(g)

Apy= ——>, Ap=———">. 7
(1) |F—1a(1)| (2) |F—1a(2)| ( )

3.2. Stress-Driven Reorientation Model based on Element Averages &

The stress-driven reorientation procedure apparently depends strongly on the quality
of the stress approximation in the numerical scheme used for the spatial discretization.
Therefore, depending on the particular finite element formulation, numerically scattered
stresses may lead to a non-converging reorientation scheme. In order to reduce the sen-
sitivity with respect to such local scattering and to improve the stability of the method,
in this section an extended model is presented. Here, the stress distribution is smoothed
by calculating volume averaged stress quantities over the associated finite element B°.
Therefore, the averaged stress & is introduced based on the Cauchy Stresses as

1
o= —/Udv, with v = /dv. (8)
er
Be

e
t Bt

Herein, dv denotes an infinitesimal volume element in the actual configuration. Based
on this quantity the local principal stresses 7, o7 and ;7 as well as the associated
principal directions are calculated. The biological orientation of the fibers in the actual
configuration is then assumed as

Qi

aqy = (o7)ér+ (or)érr

ap =

(9)

Qi

1)ér — (orr)érr.

The pull-back of the fiber orientation into the reference configuration is done analogously
to equation (7) with the deformation gradient F'.
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3.3. Algorithm for the Incremental Fiber Update

For the implementation of the above described reorientation models an iterative algorithm,
based on incremental fiber orientation updates, is proposed. Instead of recomputing the
complete BVP with an updated fiber orientation, cf. Hariton et al. [2007a], here the fiber
orientation is changed directly in the deformed configuration. A change of the fiber orien-
tation will require a repeated computation of the solution; obviously large changes of the
fiber orientation could lead to convergence problems in the Newton-Iteration. Therefore,
only incremental updates of the fiber orientation are taken into account. First of all the
target difference vector

k Ak k—1
AAG) =A@ — A (10)
is defined as the difference between the actual fiber orientation Aﬁ;)l and the favored target

orientation vectors AF . The initial value A(()a) denotes the orientation at the beginning
of the fiber update scheme and k denotes the actual reorientation step. Furthermore
the enclosedangle

£(Af,), Ayt = 6" (11)
is computed. Instead of applying the complete difference vector only increments of the
target difference vector ¢’ AAI(CC’L; with ¢’ € [0, 1] are added in separated steps, such that
the incremental update of the fiber orientation yields

kvjfl j kv.]

ni o Aw  TEAAL
(a’) T k?]_l ] k?]
A T PAA]

with AAP) = Af,) — AP (12)

with j denoting the incremental reorientation step and ¢’ denoting a scalar-valued factor
which is chosen such that

B8 = L (A, AT < Bunax (13)

is fulfilled with the user-defined maximum reorientation angle (... Here, AI(CC’L()] is ini-

tialized by Al(isl and serves as starting point for the incremental updates in respective
reorientation steps. A schematic illustration of the incremental fiber orientation update is
given in Figure 2. The incremental update algorithm is repeated until the target fiber ori-
entation in each GauBpoint (GP) of the considered BVP is obtained. After each complete
incremental reorientation loop, i.e. when the target fiber orientation A¥ . is reached, a new
stress state results from accommodating equilibrium for a modified fiber orientation field.
Therefore, a new favored target fiber orientation is computed at each GP in the next reori-
entation step. This iterative process is continued until the change of the fiber orientation
between two reorientation steps is within a specified tolerance, i.e. when the norm of the
total difference vector falls below a certain tolerance AA’(‘“a) < tol in all GauBpoints of the
considered BVP. A detailed description of the complete reorientation process, including
the nested incremental reorientation loop is presented in the algorithmic box inTable 1.

4 Comparison with the Model of Cyron and Humphrey [2014]

Another interesting model for a biologically favored fiber reorientation based on theoret-
ical considerations is found in Cyron and Humphrey [2014]. There, the arterial wall is
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& AA?(;; with ¢/ such that

L(AG AU < Bnax

Figure 2: Schematic illustration of the fiber update: Initial value A’(“a_)l, including the

incremental updates A?{g based on the incremental differences AAI(ZJ)' and the favored target

fiber orientation Aé“a) in the reorientation step k.

Table 1: Algorithmic box for the computation of final favored fiber orientations.

(1) Prescribe suitable initial fiber orientation A(()a)
(2) Solve the BVP — {u,C, o}

(3) Reorientation loop for adapting favored fiber orientation (over k):

(3.1) Calculate principal stresses oy, o7, 071

(3.2) Compute target orientation vectors A?a)

(3.3) Target total difference vector AAf,) = Af,) — Afa’)l
(3.4) If [AAf,| < tol in all GPs

— final fiber orientation obtained, exit loop
(3.5) Incremental reorientation loop over j:
(3.5.1) Incremental update of fiber orientation
v, A YA
@7 AR + 9 AAY
with AAI(“L;; = A?a) - A](“é;_l, see also Eq.(13)

(3.5.2) Solve the actual BVP with updated orientations

(3.5.3) |A](§(;§ — A’(fa)| = 0 in all GPs — exit loop for next adaption

of fiber orientation (updated stress scenario)

described by a perfect tube composed of multiple stacked membranes and the fiber ori-
entation in each membrane is influenced by the pulse pressure, the wall thickness and the
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resulting Cauchy membrane stresses T1; and Ty in circumferential and axial direction.
Two symmetric fiber families aligned in the directions +6 are considered, where § mea-
sures the angle relative to the circumferential direction. According to the model of Cyron
and Humphrey [2014] the fiber orientations are considered to be

0 = arctany/Ty /T1;. (14)

In order to compare this model with the models considered in this paper we replace the
membrane stresses by the first and second principal Cauchy stress

0 = arctany/ Ty /T, ~ arctany/o;;/o; (15)

and define 6 to be the angle with respect to the direction of the first principal stress.
Indeed, for a perfect tube as it is used in Cyron and Humphrey [2014] the circumferential
and axial membrane stresses align with the principal membrane stresses. Thus, the fiber
directions are obtained based on the angle by

an) = cosf e; + sinf e;; and ap) = cosl e; — sinf e;;. (16)

Now both models are compared in a series of biaxial tension tests, where the new algo-
rithmic scheme from Section 3.3 is applied. We align the ;- and z5-coordinate axis in the
biaxial tensile axis and set

o1 =09 and 09 = Aog with o9 =10kPa, A € [0,1). (17)

The results are depicted in Figure 3, where the resulting fiber angle 6, the according
total energy 1), its isotropic part v, and its transversely isotropic part v; are compared.
Here, it is observed that the total energy is higher on the whole interval of A for the
approach of Cyron and Humphrey [2014] compared to the model of Hariton et al. [2007a].
Interestingly, the transversely isotropic part of the energy is lower in the interval A =
[0.4,0.8]. Nevertheless, the isotropic part as well as the total energy are still higher for
the model of Cyron and Humphrey [2014]. Hypothesizing that a biologically motivated
approach would favor an energy-minimizing model we focus on the models explained in
Sections 3.1 and 3.2 in subsequent investigations.

5. Numerical Examples

In this section several numerical examples, illustrating the different approaches for the
fiber reorientation, are presented. In all examples the arterial tissue is modeled with
the strain energy function known from Balzani et al. [2006]. We use the set of material
parameters from Brands et al. [2008], which has been fitted to experimental data of human
arterial tissue from Holzapfel [2006]. The material parameters are listed in Table 2. All
presented simulations were done with the multi-purpose finite element analysis program
FEAPS.2, see Taylor [2014].

5.1. Uniaxial Displacement

The first numerical example is a uniaxial unconstrained tension test. Here, a stretch of 3%
of the original length is applied in z;-direction and the fiber directions are recomputed in
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Figure 3: Biaxial-tension test for the models of Cyron and Humphrey [2014] and Hariton
et al. [2007a]: (a) fiber angle 6, (b) strain energy 1, (c) isotropic strain energy s, and (d)
transversely isotropic strain energy ;.

Ccy €1 €9 aq (%)
Layer
kPa kPa - kPa -
media 17.5 499.8 2.4 300019 5.1

Table 2: Parameters for human media (Brands et al. [2008]).

the deformed configuration. In this academic example the solution is known a priori and
therefore it is used to illustrate the proposed stress-driven update scheme and show its
feasibility. The BVP, illustrated in Figure 4, is discretized by tetrahedral elements. Note
that since a homogeneous BVP is considered, the FE formulation as well as the number of
elements does not matter, and thus, the FE method is only used to adjust the zero stress
conditions related with the uniaxial tension conditions. A fiber orientation exclusively
located in the z; — x2 plane and a fiber angle of 3; = 30° with respect to the x;-direction
is considered as initial configuration. As expected the fibers reorient in the direction of
the largest principal stress, i.e. in z;-direction.
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Figure 4: (a) BVP for uniaxial unconstrained tension with two preferred fiber directions
(b) fiber orientations obtained after the reorientation process.

5.2. Idealized Arterial Geometry

The second numerical example considers a simple idealized arterial geometry, i.e. a thick-
walled tube with an inner radius of 4.0 mm and thickness of 2.5 mm, composed of only
the media layer. Furthermore, symmetry boundary conditions are applied such that only
a quarter of the tube with an height of 1.0 mm is taken into account. An internal blood
pressure of 10 kPa is applied onto the inner surface and while the displacement at the
top and bottom plane is constrained in axial direction, the geometry is allowed to extend
freely in radial direction, cf. Figure 5(a).

1X

Figure 5: (a) Idealized arterial geometry including Dirichlet boundary conditions, shaded
areas are constrained in circumferential direction. (b) Mesh using 1000 P2-Brick-Elements
with 28.413 degrees of freedom and (c) Mesh using 8385 Py-Tetrahedral-Elements with
40.731 degrees of freedom.

The initial fiber orientation is given by a fiber angle of 30° with respect to the circum-
ferential direction and the fibers are winding cross-wise helically around the arterial wall.
With the help of this simple but reasonable BVP different finite element formulations and
different reorientation approaches are compared. The finite element meshes are depicted
in Figure 5(b) and (c). In total five different settings analyzing the approach based on
local stresses o' as well as averaged stresses & are compared:
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Approach ¢! with P, brick elements, 20 noded

Approach ¢! with Py tetrahedral elements, 10 noded

Approach ¢! with tetrahedral F-elements, 10 noded

Approach ¢ with P, tetrahedral elements, 10 noded

e Approach & with tetrahedral F-elements, 10 noded

The F-elements take into account a mixed formulation with discontinuous element-wise
constant approximation of the volume dilatation and quadratic interpolation of the dis-
placements, cf. Simo et al. [1985]. We investigate different finite element formulations
because apparently, the reorientation procedure strongly depends on the quality of the
stress approximations. The resulting convergence behavior and the resulting fiber angle
distribution, evaluated for the individual Gauss-points, are depicted in Figure 6. For all
computations a maximal reorientation angle of [,.. = 5° and a stopping criterion of
tol = 0.0175 is considered.

Approach o' with Py brick elements: For reorientation approach ¢! the resulting fiber ori-
entation as well as the reorientation behavior are depicted in Figure 6(a). A final fiber
orientation is achieved within ng%t]g‘g) = 15 incremental reorientation steps, i.e. 5 reorien-
tation steps and 44 Newton iterations, where each reorientation step is identified as one
peak in the graph shown in Figure 6(a). The result is a smooth fiber distribution over
the radius ranging between 1° and 25°, which is qualitatively in good agreement with
the results presented in Hariton et al. [2007a]. Such distributed fiber orientations have
also been experimentally observed. In O’Connell et al. [2008] measurements, using 3D
confocal and electron microscopy imaging on healthy rat abdominal aorta of collagen and
SMC (Smooth Muscle Cell) nuclei, are presented. There, sequential 2D images show the
collagen arrangement at different depths, indicating a variation of the fiber orientation
throughout mural thickness. The fiber orientation shows an increasing deviation from the
circumferential direction with increasing depth of the measurements in radial direction,
which aligns with the numerical results obtained in the presented numerical examples.
A morphological analysis of non-atherosclerotic tissue samples from human abdominal
aortas is presented in Schriefl et al. [2012] and also displays a change of the collagen
orientation throughout mural thickness, including data for the media as well as the ad-
ventitia layer of the artery. The measurements also show an increasing fiber angle from
the circumferential to the axial direction over the thickness of the tissue sample. Never-
theless, O’Connell et al. [2008] and Schriefl et al. [2012] indicate that the media is rather
composed of a stack of thin layers with one preferred fiber directions in each of the lay-
ers with alternating orientations. These alternating single fiber family layers which are
dominant in the media are only phenomenologically governed by the material model used
in this contribution, which considers the superposition of two transversely isotropic mod-
els. Furthermore, the fiber reorientation leads to a significant drop in the axial Cauchy
stresses while the circumferential Cauchy stresses remain almost the same, cf. Figure 7. To
compare the computational effort with the original algorithm in Hariton et al. [2007a] we
compute the number of required incremental steps. In this example, a number of 10 load
steps is required to obtain a converging solution for the full load and thus, multiplying

this with the number of 5 reorientation steps yields n{ifiy) = 50. Inserting this in (4)
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Figure 6: Comparison of the maximum change in the fiber angle within the whole domain
in between reorientation steps and the final distribution of the fiber angle over the radius for:
(a) Approach o! with Py brick elements, (b) Approach ¢! with Py tetrahedral elements, (c)
Approach ¢! with tetrahedral F-elements, (d) Approach & with P5 tetrahedral elements and
(e) Approach & with tetrahedral F-elements. Best performance with view to few noise in the
resulting fiber orientation as well as velocity of convergence of the reorientation algorithm
is obtained for F-elements using Approach &.
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Figure 7: Approach o' using brick elements. Before reorientation: (a) circumferential
Cauchy stresses, (b) axial Cauchy Stresses and (c) fiber angle. After reorientation: (d) cir-
cumferential Cauchy stresses, (e) axial Cauchy Stresses and (f) fiber angle.

yields feomp = 0.3, i.e. the computational effort of the proposed approach is only 30 % of
the effort needed using the approach in Hariton et al. [2007a)].

Approach o' with P, tetrahedral elements: In the second example 10 noded tetrahedral
elements with quadratic shape functions are used to discretize the geometry. Once again
approach ¢! is used for the fiber reorientation, but here the results strongly deviate from
the results obtained considering the brick elements. Figure 6(b) shows that no final fiber
orientation is obtained throughout the reorientation process, i.e. the maximum change
in the fiber angle is increasing towards the end of the computation. Even though the
distribution of the fiber angle over the thickness of the artery shows a similar bias as
before, the fiber angle is significantly scattered over a wide range especially in the third
fourth of the radius. Surprisingly, this observation is not recognizable by simply comparing
the contour plots in Figure 7 and Figure 8. The reason for the strong noise in the fiber
orientation is most probably the mesh anisotropy induced by the tetrahedral discretization
which does not enable element edges following the rotation symmetry. This already leads
to not fully rotation-symmetric stress distributions before the reorientation process.

Approach o' with tetrahedral F-elements: Since the standard quadratic tetrahedral ele-
ments do not yield the same quality of results as the brick elements, in this example the
element formulation is improved by considering a F-element formulation, cf. Simo et al.
[1985]. Once again the improvement is not recognizable by only considering the contour
plots of the stress and fiber angle distribution since they are very similar to the ones in
Figure 8. Nevertheless, the maximum change of fiber orientation between the reorienta-
tion steps shows a significantly improved convergence behavior by reaching a final fiber
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Figure 8: Approach o' using tetrahedral elements. Before reorientation: (a) Circumferential
Cauchy stresses, (b) Axial Cauchy Stresses and (c) Fiber angle. After reorientation: (d)
Circumferential Cauchy stresses, (e) Axial Cauchy Stresses and (f) Fiber angle.

orientation in 20 incremental reorientation steps, i.e. 5 reorientation steps and 67 Newton
iterations. The distribution of the fiber angle, however, still shows large fluctuations over
the radius, especially in the range of smaller fiber angles, cf. Figure 6(c).

Approach ¢ with Py tetrahedral elements: In order to improve the results, besides improv-
ing the element formulation, we directly access the reorientation model. Therefore, here
the extended model &, based on volume-averaged principal stresses, is used. Thereby, the
influence of a Gauss-Point-wise scattering of the stresses onto the reorientation procedure
is relaxed and the final fiber orientation is obtained after 16 incremental reorientation
steps, i.e. 6 reorientation steps and 50 Newton iterations, see Figure 6(d). Actually, the
biggest improvement is found in the fiber angle distribution throughout mural thickness,
since less noise and more regularity in the distribution of the fiber angle are obtained.

Approach & with tetrahedral F-elements: Now a combination of the F elements and the
average model & is used. The results show a good convergence behavior in the sense of the
maximum change in the fiber angle as well as for the distribution of the fiber angle over
the thickness of the artery, see Figure 6(e). In detail the final fiber orientation is obtained
after ng%tgls) = 15 incremental reorientation steps, i.e. 4 reorientation steps and 46 Newton
iterations. In comparison this approach combines a strong convergence behavior with a
reasonable fiber distribution, even though small fluctuations in the fiber angle distribu-
tion remain. However, it may be a suitable method for more complex-shaped arteries as
patient-specific ones, because the good geometric approximation performance of tetrahe-
dral elements can be combined with few numerical scattering of the fiber orientation and

good reorientation convergence behavior.
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5.3. Patient-Specific Artery

In this section the most successful approach, i.e. the F-element formulation in combination
with approach &, is applied to the inflation of a patient-specific geometric model of an
artery. Therefore, we focus on the Virtual Histology method which provides information
regarding a stack of axially distributed two-dimensional cross-section images from which
the morphology as well as the individual components of the arterial wall such as the me-
dia, adventitia and plaque can be segmented, for further information please be referred
to Balzani et al. [2012]. Here, a short segment from a human coronary artery is considered.
The actual components like adventitia, media and plaque are replaced by a single material
representing the media for this BVP. Similar to the idealized arterial geometry the top
and bottom cross sections are fixed in axial direction. Furthermore, at both cross-sections
three nodes are fixed such that the radial inflation is unconstrained, while the system is
kept statically determined, cf. Figure 9(a). Then the fiber reorientation is algorithm is
applied at an internal pressure of 10 kPa. The initial fiber orientation is set to a fiber
angle of 8y = 30°. The convergence behavior for the patient-specific artery is depicted
in Figure 9(a) and shows that a final fiber orientation is obtained after 55 incremental
reorientation steps, i.e. 19 reorientation steps and 185 Newton iterations. The first and
second principal Cauchy stresses are depicted in Figure 10. While the first principal stress
o is barely influenced, o7 shows a clear reduction throughout the reorientation process.
Figure 9(b) shows the “circumferential” fiber alignment (with almost no “radial” compo-
nent of fiber orientation) for the updated fiber configuration. The pitch of the fibers in
“axial” direction are depicted in Figure 10(c) and (f) with respect to the fiber angle ;.
The fiber angle is ranging between 0° and 45° and increasing over the thickness of the
artery and additionally seems to be influenced by the fluctuating thickness of the artery.
Here, the required number of load steps is again 10 and thus, the total number of incremen-
tal load steps for the approach in Hariton et al. [2007a] would be nE%tBIGH) =19x10 = 190.

Our approach requires a total number of incremental reorientation steps nE%tgé) = 55 and
thus, the efficiency factor is feomp = 0.29. Note, that although we consider an outer ge-
ometry of the artery which is patient-specific, the composition is rather simple since only
one material is taken into account. In a real artery, separate layers with strongly differing
material coefficients would occur and significantly increase the required number of incre-
mental load steps. Another example for a more complex numerical problem would e.g. be
to incorporate the fluid-structure interaction. The number of load steps may then increase
to e.g. 100, 1000 or even more. This will result in a dramatic further efficiency gain of
the proposed method, i.e. the efficiency factors would be feomp = 0.029, feomp = 0.0029
or even less. Thereby, a significant reduction in computational effort could be realized by
the proposed method.

5.4. Consideration of Residual Stresses

Here we evaluate the effects of residual stresses in combination with the fiber reorienta-
tion update scheme proposed in this paper. The modus operandi is based on the novel ap-
proach for the calculation of residual stresses proposed in Schroder and von Hoegen [2015],
see also Schroder and Brinkhues [2014]. In this approach the circumferential stresses are
smoothened over the thickness of the artery by incorporating residual stresses which are
defined as the difference of the stresses in circumferential direction and their volume av-
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Figure 9: Patient-specific artery: (a) maximum change in the fiber angle within the whole
domain between reorientation steps. (b) top view of the fiber orientation of A ;) after fiber
reorientation.

Figure 10: Patient-specific artery. Before reorientation: (a) oy, (b) orr. After reorientation:
(c) fiber angle of fiber family Ay, (d) o1, (e) orr and (f) fiber angle of fiber family A ().

erage computed over predefined segments. In order to obtain a smooth stress distribution
these residual stresses are applied and recalculated in several smoothing loops. The proce-
dure is as follows: First, an internal pressure, corresponding to a reasonable blood pressure
of 80 mmHg is applied. In a second step an additional axial pre-stress, corresponding to
an axial stretch of 5% acting on the already deformed geometry, is applied. This is in
line with the axial pre-stretch found in arteries. Then the reorientation algorithm is car-
ried out until a converged field of fiber direction vectors is obtained. At last, the residual
stresses are applied. For our analysis we again consider the idealized artery geometry from
Section 5.2. The adapted fiber orientation as well as the convergence behavior of the re-
orientation algorithm are strongly influenced by the axial boundary conditions. Figure 11
shows an increased fiber angle gradient over the thickness of the arterial wall in case of
the pre-stress. In detail, the fiber angle ranges between 13° and 54° with respect to the
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Figure 11: Application of reorientation as well as residual stress approach: (a) Maximum
change in the fiber angle within the whole domain in between reorientation steps. (b) Fiber
angle distribution over the radius.

circumferential plane, with a steep incline of the fiber angle distribution at the inner side
of the arterial wall and an almost constant fiber angle at the outer half of the rotationally
symmetric geometry. In Figure 12 results for the idealized arterial segments are shown.
Here, different stress quantities, i.e. stresses in circumferential direction, axial direction
and residual stresses in circumferential direction, as well as the fiber angle distribution,
are compared. Furthermore, four different stages of the computation are examined: (a)
application of the stress boundary conditions (blood pressure and axial pre-stress), (b)
changes due to the fiber reorientation algorithm, (c) the residual stresses in circumferen-
tial direction and (d) the combination of the fiber reorientation algorithm and the residual
stresses in circumferential direction. It turns out that the fiber reorientation algorithm
appears to decrease the gradient of the axial stresses, while the residual stress approach
decreases the gradient of the circumferential stresses, as expected. The superposition of
both approaches leads to a decrease of both stress gradients, even though this causes an
increase of the circumferential residual stresses and a slight increase of the axial stress
gradient. Note that both phenomena, fiber reorientation and residual stresses will take
place simultaneously in arterial walls. Hence, a nested algorithm iterating between both
approaches might be more suitable to consider the effects of fiber reorientation and resid-
ual stresses at the same time. First steps towards a nested algorithm have been considered
but, admittedly, did not yield promising results yet.

Remarks on a Nested Approach for Residual Stresses and Fiber Reorientation: Here, a
nested algorithm iterating between the residual stress approach and the fiber orientation
approach is presented. Even though, this algorithm does not yield promising results yet, its
results are presented and discussed critically in this context. First of all a reasonable initial
configuration for the fiber angle is determined, following the boundary value problem from
Section 5.2, cf. Figure 12 row (a). In a next step the residual stresses are applied, taking
into account several smoothing loops until an almost homogenous circumferential stress
distribution is obtained. From here, the fiber angle is adjusted incrementally in 10° steps,
where each step is followed by several residual stress smoothing loops. This procedure
is then repeated ten times. The convergence behavior of the fiber angle as well as the
fiber angle distribution in the last iteration step are depicted in Figure 13. While a good



Algorithmic Scheme for Automated Calculation of Fiber Orientations in Arteries 20

(d1)

Clrcum resPhi
TP R P2 e s s M . L P O I O ﬁlﬁﬁ
5 63 4 28 -65 12 13

Figure 12: Comparison residual stresses/fiber reorientation including axial pre-stress;
Columns: (1) circumferential stresses, (2) axial stresses, (3) residual stresses in circumferen-
tial direction and (4) fiber angle distribution over the radius. Rows: (a) application of stress
boundary conditions (blood pressure and axial pre-stress), (b) fiber reorientation algorithm,
(c) residual stresses, (d) combined approach.

convergence behavior for the initial configuration is obtained, cf. Figure 13(a) reorientation
steps 1-20, the nested iteration which is repeated ten times, does not show any convergence
but is rather switching back and forth between 28° and 18° for the remaining change of the
fiber angle, cf. Figure 13(a) reorientation steps 20-30. The resulting fiber angle distribution
shows a steep gradient at the inside of the geometry, followed by solely circumferentially
oriented fibers in the middle and a slight incline towards the outside of the geometry
which may be considered as unphysiological.

6. Conclusion

An algorithmic scheme for the calculation of fiber orientations in arterial walls based on
the direction and magnitude of principal stresses is proposed. The approach extends the
procedure proposed in Hariton et al. [2007a] to enable a higher computational efficiency.
In addition to that, a modified model for the favored fiber orientation was proposed in
terms of volume-averages of stresses computed over individual finite elements, which sta-
bilizes the convergence behavior of the reorientation procedure. Several numerical studies
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Figure 13: Nested application of reorientation and residual stress approach: (a) Maximum
change in the fiber angle within the whole domain in between reorientation steps. (b) Un-
physiological fiber angle distribution over the radius.

were performed to analyze the performance of the proposed approaches. The stress-driven
model for the favored fiber orientation from Hariton et al. [2007a] was compared with the
one from Cyron and Humphrey [2014] in a simple biaxial tension test. It was found that
the total strain energy in the test specimen could be decreased by the fiber reorientation
scheme. However, a more pronounced reduction was observed for the approach proposed
in Hariton et al. [2007a], which is also considered here. Inhomogeneous boundary value
problems were also taken into account, where an inflated idealized arterial wall was con-
sidered. Different finite element formulations and two different models for the favored fiber
orientation were compared in order to analyze the influence of the stress approximation
accuracy on the reorientation algorithm. It was found that in particular for tetrahedral
elements a significant improvement could be obtained by using a mixed F-element for-
mulation and the extended model based on the volume averages of principal stresses.
There, a stabilized convergence of the reorientation scheme and less noise in the resulting
fiber orientation was observed. This improved approach has been applied to a patient
specific geometric model of an atherosclerotic artery, where a converged fiber orientation
could be obtained. For these two numerical examples the advantage of the proposed al-
gorithmic scheme was evaluated and a speed-up of more than 300 % could be realized.
It turned out that for more complex boundary value problems this speed-up can easily
increase up to 3000 % or higher. Finally, the algorithm for the fiber reorientation was
combined with an approach for circumferential residual stresses and the effects of both
phenomena were examined. The superposition of both approaches results in a smoothing
of the circumferential and a reduction in axial stress distributions. On the other hand a
nested approach did not directly yield physiological results and will be part of further
examinations. Furthermore, the influence of fluid-structure-interaction on the orientation
of collagen fibers and vice versa will be examined in the future, taking into account the
fluid-structure-interaction framework presented in Balzani et al. [2015].
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