Tobias Tennstädt

HÖLDER CONTINUITY FOR CONTINUOUS SOLUTIONS OF THE SINGULAR MINIMAL SURFACE EQUATION WITH ARBITRARY ZERO SET

TOBIAS TENNSTÄDT

$$
\begin{aligned}
& \text { Abstract. In this paper we prove the following theorem: Let } \Omega \subset \mathbb{R}^{n} \text { be a } \\
& \text { bounded open set, } \psi \in C_{c}^{2}\left(\mathbb{R}^{n}\right), \psi>0 \text { on } \partial \Omega \text {, be given boundary values and } \\
& u \text { a nonnegative solution to the problem } \\
& \qquad u \in C^{0}(\bar{\Omega}) \cap C^{2}(\{u>0\}) \\
& \qquad u=\psi \text { on } \partial \Omega \\
& \qquad \operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=\frac{\alpha}{u \sqrt{1+|D u|^{2}}} \text { in }\{u>0\} \\
& \text { where } \alpha>0 \text { is a given constant. Then } u \in C^{0, \frac{1}{2}}(\bar{\Omega}) . \\
& \text { Furthermore we prove strict mean convexity of the free boundary } \partial\{u=0\} \\
& \text { provided } \partial\{u=0\} \text { is assumed to be of class } C^{2} .
\end{aligned}
$$

1. Introduction

Consider the problem of minimizing the energy

$$
\mathcal{F}(u):=\int_{\Omega} u^{\alpha} \sqrt{1+|D u|^{2}}
$$

where $\Omega \subset \mathbb{R}^{n}$ is a bounded open subset of \mathbb{R}^{n} with Lipschitz boundary and $\alpha>0$. When $\alpha \in \mathbb{N}, \mathcal{F}(u)$ coincides with, up to a constant factor, the area of the rotated graph

$$
\mathcal{M}_{\text {rot }}:=\left\{(x, u(x) \omega): x \in \Omega, \omega \in S^{\alpha} \subset \mathbb{R}^{\alpha+1}\right\} \subset \mathbb{R}^{n+\alpha+1}
$$

$\mathcal{F}(u)$ may be defined for $u \in B V_{+}^{1+\alpha}(\Omega)$, where

$$
B V_{+}^{1+\alpha}(\Omega):=\left\{u \in L^{\alpha}(\Omega): u \geq 0, u^{1+\alpha} \in B V(\Omega)\right\}
$$

It was shown by U. Dierkes and J. Bemelmans [1], that, given $\psi \in L^{1+\alpha}(\partial \Omega)$, solutions to

$$
\mathcal{F}^{*}(u)=\mathcal{F}(u)+\frac{1}{1+\alpha} \int_{\partial \Omega}\left|u^{1+\alpha}-\psi^{1+\alpha}\right| d \mathcal{H}^{n-1} \rightarrow \min \text { in the class } B V_{+}^{1+\alpha}(\Omega)
$$

exist and fulfill the weak maximum principle

$$
\|u\|_{\infty, \Omega} \leq\|\psi\|_{\infty, \partial \Omega}
$$

Explicit examples of such minimizers were constructed by U. Dierkes [2][3]. In particular he showed the existence of Hölder continuous local minimizers u of \mathcal{F} with Hölder exponent $\frac{1}{2}$ that fail to be in the class $C^{0, \frac{1}{2}+\epsilon}$ for any $\epsilon>0$. These
examples led to the formulation of the conjecture that all minimizers must be $\frac{1}{2}$ Hölder continuous functions [5], which in turn inspired the present paper.

2. Statement of theorems

In this section Ω will be a bounded open subset of \mathbb{R}^{n} and $\alpha>0$ a positive constant. Our goal is to prove the following main result:

Theorem 1. Let $\psi \in C_{c}^{2}\left(\mathbb{R}^{n}\right), \psi>0$ on $\partial \Omega$, be given boundary values and $u \in$ $C^{0}(\bar{\Omega}) \cap C^{2}(\{u>0\}), u \geq 0$, fulfill the relations

$$
\begin{aligned}
u \in C^{0}(\bar{\Omega}) & \cap C^{2}(\{u>0\}) \\
u & =\psi \text { on } \partial \Omega \\
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right) & =\frac{\alpha}{u \sqrt{1+|D u|^{2}}} \text { in }\{u>0\} .
\end{aligned}
$$

Then $u \in C^{0, \frac{1}{2}}(\bar{\Omega})$.
Remarks.
(i) Note that here we do not require any regularity of the boundary $\partial \Omega$
(ii) Theorem 1 applies to local minimizers u of \mathcal{F} that are continuous in $\bar{\Omega}$. The minimizing property yields $u \in C^{\omega}(\{u>0\})$, while the equation

$$
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=\frac{\alpha}{u \sqrt{1+|D u|^{2}}}
$$

is equivalent to the Euler equation for \mathcal{F} wherever $u>0$. See the author's paper [10] for a proof.
(iii) If $n \leq 6$ local minimizers u are continuous in the interior of Ω [1]. It is still unknown whether interior continuity holds in general.
(iv) Continuity at the boundary for minimizers may be achieved by requiring that Ω has nonnegative inward mean curvature in the sense of Caccioppoli sets, i.e. for every $\xi \in \partial \Omega$ there exists a neighborhood U_{ξ} such that

$$
\int_{U_{\xi}}\left|D \chi_{\Omega}\right| \leq \int_{U_{\xi}}\left|D \chi_{\Omega \cup E}\right|
$$

for every set E of finite perimeter and $E \Delta \Omega \subset \subset U_{\xi}$. This was shown by Dierkes [4].

In view of these remarks we have the following
Theorem 2. Let $n \leq 6, \Omega$ be a mean convex, bounded open set with Lipschitz boundary, $\psi \in C_{c}^{2}\left(\mathbb{R}^{n}\right)$, $\psi>0$ on $\partial \Omega$, be given boundary values and $u \in B V_{+}^{1+\alpha}(\Omega)$ a minimizer of \mathcal{F}^{*} in the class $B V_{+}^{1+\alpha}(\Omega)$. Then $u \in C^{0, \frac{1}{2}}(\bar{\Omega})$.

In [10] the author proved the mean convexity of the zero set $\{u=0\}$ of local minimizers of \mathcal{F}. We will here show a connection between the strict mean convexity of $\{u=0\}$ and Hölder continuity of u.

Theorem 3. Let Ω be a bounded open set with Lipschitz boundary, $u \in C^{0}(\bar{\Omega}) \cap$ $B V_{+}^{1+\alpha}(\Omega)$ be a minimizer of \mathcal{F}^{*} with boundary values $\psi \in C_{c}^{2}\left(\mathbb{R}^{n}\right), \psi>0$ on $\partial \Omega$. Additionally assume that $\partial\{u=0\} \in C^{2}$. Then there exists a constant $c>0$ so that

$$
\inf _{\partial\{u=0\}} H \geq c
$$

where H denotes the inward mean curvature of $\partial\{u=0\}$
Remark. In particular, Theorem 3 says that the zero set of minimizers of \mathcal{F}^{*} is strictly mean convex in the classical sense, provided the classical mean curvature exists.

3. Proof of Theorem 1

Theorem 1 is a consequence of the following proposition.
Proposition 1. Let $\psi \in C_{c}^{2}\left(\mathbb{R}^{n}\right), \psi>0$ on $\partial \Omega$, be given boundary values and $u \in C^{0}(\bar{\Omega}) \cap C^{2}(\{u>0\}), u \geq 0$, solve

$$
\begin{gathered}
u \in C^{0}(\bar{\Omega}) \cap C^{2}(\{u>0\}) \\
u=\psi \text { on } \partial \Omega \\
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=\frac{\alpha}{u \sqrt{1+|D u|^{2}}} \text { in }\{u>0\} .
\end{gathered}
$$

Then $u^{2} \in C^{0,1}(\{u \leq \delta\})$ for all $0<\delta<\inf _{\partial \Omega} \psi$ and in addition $u \in C^{0, \frac{1}{2}}(\bar{\Omega})$.
The proof employs a method originally due to N. Korevaar and L. Simon [8].
Proof. We work on the of graph of $u\llcorner\{u>0\}$ using the coordinates $x=\operatorname{proj}(x, u(x))$. ∇ and Δ denote the tangential gradient and Laplace operators also on graph u respectively. Note that in $\{u>0\}, u \in C^{\infty}$ by Schauder theory. For any function $f \in C^{2}(\{u>0\})$ we have

$$
\begin{equation*}
\nabla f=(D f, 0)-D_{i} f \nu^{i} \nu=\left(D f-\frac{D f \cdot D u}{1+|D u|^{2}} D u, \frac{D f \cdot D u}{1+|D u|^{2}}\right) \tag{2}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
|\nabla f|^{2}=|D f|^{2}-\left(D_{i} f \nu^{i}\right)^{2} \tag{3}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\Delta f=g^{i j} D_{i} D_{j} f+H \nu^{i} D_{i} f \tag{4}
\end{equation*}
$$

where we used the symbol $\nu=\frac{(-D u, 1)}{\sqrt{1+|D u|^{2}}}$ to denote the upward unit normal of $\operatorname{graph}(u), g^{i j}=\delta^{i j}-\nu^{i} \nu^{j}$ stands for the inverse of the first fundamental form and $H(x)=-\nabla_{i} \nu^{i}=\frac{\alpha}{u \sqrt{1+|D u|^{2}}}$ denotes the mean curvature of the graph of u. Because of (4) we have

$$
\begin{equation*}
\Delta u=H \nu^{n+1} \tag{5}
\end{equation*}
$$

Additionally we have the Jacobi equation (cmp. [6] chapter 3.4, proposition 2):

$$
\begin{equation*}
\Delta \nu^{n+1}=-\nu^{n+1}|A|^{2}-e_{n+1} \cdot \nabla H \tag{6}
\end{equation*}
$$

where $|A|=\sqrt{\sum_{i=1}^{n+1}\left|\nabla \nu^{i}\right|^{2}}$ indicates the norm of the second fundamental form of graph (u). Obviously,

$$
\nabla u=\left(\frac{D u}{1+|D u|^{2}}, \frac{|D u|^{2}}{1+|D u|^{2}}\right)
$$

so that also

$$
\begin{equation*}
|\nabla u|^{2}=\frac{|D u|^{2}}{1+|D u|^{2}}=e_{n+1} \cdot \nabla u \tag{7}
\end{equation*}
$$

Let now $\delta>0$ be such that $\{u<\delta\} \subset \subset \Omega$. Since $u \in C^{0}(\bar{\Omega})$ such a δ exists and will in general depend on the solution u. δ will be fixed throughout the proof. Further let $\phi \in C_{c}^{2}\left(\mathbb{R}^{n}\right)$ be such that $\phi=0$ in $\{u<\delta\}, \phi=\psi$ in a neighborhood of $\partial \Omega$ and $\|\phi\|_{C^{2}\left(\mathbb{R}^{n}\right)} \leq \gamma=\gamma(\delta, \psi)<\infty$. Now we define the auxiliary function $\eta: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$,

$$
\eta(t):=\left(e^{K t}-1\right) e^{-2 \gamma K}
$$

with a constant $K>0$ to be chosen later. If we denote with $(u-\phi)^{+}$the maximum of $u-\phi$ and 0 , then we get $0 \leq \eta\left((u-\phi)^{+}\right) \leq 1$, as by the weak maximum principle $u \leq \gamma$. Let $\epsilon>0$ and M be the maximum of

$$
f(x):=\frac{\eta\left((u-\phi)^{+}\right)}{\nu^{n+1}+\epsilon}
$$

on $\overline{\{u>0\}}$. Clearly, f is continuous on $\overline{\{u>0\}}$, nonnegative, $f=0$ on $\partial\{u>0\}$ and positive in $\{0<u<\delta\}$, so that f must achieve its maximum M in a point $x_{0} \in\{u>0\}$. Define the function

$$
\Psi(x):=\eta\left((u-\phi)^{+}\right)-M\left(\nu^{n+1}+\epsilon\right) \leq 0
$$

which, at x_{0}, fulfills the relations

$$
\begin{equation*}
\Psi\left(x_{0}\right)=0, \nabla \Psi\left(x_{0}\right)=0, \text { and } \Delta \Psi\left(x_{0}\right) \leq 0 \tag{8}
\end{equation*}
$$

We calculate

$$
\begin{equation*}
\nabla \Psi=\eta^{\prime} \nabla(u-\phi)-M \nabla \nu^{n+1}=0 \tag{9}
\end{equation*}
$$

in x_{0} (Obviously, in $x_{0}, u>\phi$). Since u solves the differential equation

$$
\begin{equation*}
H=\frac{\alpha \nu^{n+1}}{u} \tag{10}
\end{equation*}
$$

in $\{u>0\}$, there we also have $\nu^{n+1}=\frac{u H}{\alpha}$ and thus

$$
\nabla \nu^{n+1}=\frac{1}{\alpha}(\nabla u H+u \nabla H)
$$

Inserting this into (9) we get

$$
\eta^{\prime} \nabla(u-\phi)-\frac{M}{\alpha}(\nabla u H+u \nabla H)=0
$$

or after rearrangement

$$
\begin{equation*}
\nabla H=\frac{1}{M u}\left(\alpha \eta^{\prime} \nabla(u-\phi)-M H \nabla u\right) \tag{11}
\end{equation*}
$$

Now we calculate

$$
\Delta \Psi=\eta^{\prime \prime}|\nabla(u-\phi)|^{2}+\eta^{\prime} \Delta(u-\phi)-M \Delta \nu^{n+1}
$$

using (5) and (6):

$$
=\eta^{\prime \prime}|\nabla(u-\phi)|^{2}+\eta^{\prime} H \nu^{n+1}-\eta^{\prime} \Delta \phi+M\left(\nu^{n+1}|A|^{2}+e_{n+1} \cdot \nabla H\right)
$$

using (10) and (11):

$$
\begin{aligned}
= & \eta^{\prime \prime}|\nabla(u-\phi)|^{2}+\alpha \eta^{\prime} \frac{\left(\nu^{n+1}\right)^{2}}{u}-\eta^{\prime} \Delta \phi+\frac{e_{n+1}}{u} \cdot\left(\alpha \eta^{\prime} \nabla(u-\phi)-M H \nabla u\right) \\
& +M \nu^{n+1}|A|^{2}
\end{aligned}
$$

We make use of (7) and (10):

$$
\begin{aligned}
= & \eta^{\prime \prime}|\nabla(u-\phi)|^{2}+\alpha \eta^{\prime} \frac{\left(\nu^{n+1}\right)^{2}}{u}-\eta^{\prime} \Delta \phi+\alpha \eta^{\prime} \frac{|\nabla u|^{2}}{u}-\alpha \eta^{\prime} \frac{e_{n+1} \cdot \nabla \phi}{u} \\
& -\alpha \frac{M|\nabla u|^{2}}{u^{2}} \nu^{n+1}+M \nabla^{n+1}|A|^{2}
\end{aligned}
$$

Recall that $\left(\nu^{n+1}\right)^{2}+|\nabla u|^{2}=1$.

$$
\begin{aligned}
= & \eta^{\prime \prime}|\nabla(u-\phi)|^{2}+\alpha \frac{\eta^{\prime}}{u}-\eta^{\prime} \Delta \phi-\alpha \eta^{\prime} \frac{e_{n+1} \cdot \nabla \phi}{u}-\alpha \frac{M \nu^{n+1}}{u^{2}}|\nabla u|^{2} \\
& +M \nu^{n+1}|A|^{2}
\end{aligned}
$$

$$
\leq 0
$$

We have $\Psi\left(x_{0}\right)=0$, so that in x_{0}

$$
\nu^{n+1}=\frac{\eta-M \epsilon}{M} \leq \frac{1}{M}-\epsilon \leq \frac{1}{M}
$$

or equivalently $\sqrt{1+|D u|^{2}} \geq M$. In addition we get using (3)

$$
\begin{aligned}
& |\nabla(u-\phi)|^{2} \\
= & |D(u-\phi)|^{2}-\frac{|D u \cdot D(u-\phi)|^{2}}{1+|D u|^{2}} \\
= & |D u|^{2}-2 D u \cdot D \phi+|D \phi|^{2}-\frac{|D u|^{4}-2|D u|^{2} D u \cdot D \phi+(D u \cdot D \phi)^{2}}{1+|D u|^{2}} \\
= & \frac{|D u|^{2}-2 D u \cdot D \phi+\left|D \phi^{2}\right|+|D u|^{2}|D \phi|^{2}-(D u \cdot D \phi)^{2}}{1+|D u|^{2}} \\
\geq & \frac{|D u|^{2}-2 \gamma|D u|}{1+|D u|^{2}} \\
\rightarrow & 1, \text { as }|D u| \rightarrow \infty .
\end{aligned}
$$

Whence there exists a constant M_{0}, depending only on γ, so that in case $M>M_{0}$ also $|\nabla(u-\phi)|^{2}>\frac{1}{2}$. Assume for a moment that $M>M_{0}$. Then we may estimate further

$$
\eta^{\prime \prime}+2 \alpha \frac{\eta^{\prime}}{u}-2 \eta^{\prime}\left(\Delta \phi+\alpha \frac{e_{n+1} \nabla \phi}{u}\right)-2 \alpha \frac{\eta}{u^{2}} \leq 0
$$

since in x_{0} :

$$
-M \nu^{n+1}=-\eta+M \epsilon \geq-\eta
$$

Let us further assume that also $x_{0} \in\{u<\delta\}$. There we have $\phi \equiv 0$, which means

$$
u^{2} \eta^{\prime \prime}+2 \alpha u \eta^{\prime}-2 \alpha \eta \leq 0
$$

or rather

$$
\left(u^{2} K^{2}+2 \alpha u K-2 \alpha\right) e^{K u}+2 \alpha \leq 0
$$

$s:=K u$ thus fulfills the inequality

$$
\left(2 \alpha-2 \alpha s-s^{2}\right) e^{s} \geq 2 \alpha
$$

However, this can only be the case if $s=0$. As s is strictly positive, we obtain a contradiction and therefore $x_{0} \in\{u \geq \delta\}$ or $M \leq M_{0}$ must be true. Let us now continue to assume that $M>M_{0}$ and therefore $x_{0} \in\{u \geq \delta\}$. Because of (4), (2), (10) and $u\left(x_{0}\right) \geq \delta$ we get

$$
\left|\Delta \phi+\alpha \frac{e_{n+1} \nabla \phi}{u}\right| \leq C=C(\gamma, \delta)
$$

This yields

$$
\eta^{\prime \prime}-2 C \eta^{\prime}-2 \alpha \frac{\eta}{u^{2}} \leq 0
$$

which implies

$$
\left(K^{2}-2 C K-\frac{2 \alpha}{\delta^{2}}\right) e^{K(u-\phi)^{+}} \leq \frac{-2 \alpha}{\gamma^{2}}
$$

By choosing K large so that $K^{2}-2 C K-2 \frac{\alpha}{\delta^{2}}>0$ we obtain

$$
0<-\frac{2 \alpha}{\gamma^{2}}
$$

an obvious contradiction. We conclude that $M \leq M_{0}$ must hold and hence

$$
\begin{equation*}
\frac{\eta\left((u-\phi)^{+}\right)}{\nu^{n+1}+\epsilon} \leq M_{0} \tag{12}
\end{equation*}
$$

By applying the above procedure to the function

$$
g(x):=\frac{\eta\left((\phi-u)^{+}\right)}{\nu^{n+1}+\epsilon}
$$

in place of f, we get the estimate (12) also for $(\phi-u)^{+}$. Note that here it is immediately clear that the maximum M of g must be attained in $\{u>\delta\}$, since g vanishes in $\{0<u<\delta\}$. Again we define

$$
\Phi(x):=\eta\left((\phi-u)^{+}\right)-M\left(\nu^{n+1}+\epsilon\right) \leq 0 .
$$

When calculating $\Delta \Phi$ one easily recognizes that $\Delta \Phi$ and $\Delta \Psi$ differ only on the sign of the term $\frac{\alpha}{u} \eta^{\prime}$, which in turn is bounded by $\frac{\alpha}{\delta} \eta^{\prime}$. The remaining calculations are identical to the above, so we refrain from repeating the argument. Concluding we obtain

$$
\frac{\eta(|u-\phi|)}{\nu^{n+1}+\epsilon} \leq M_{0}
$$

for all $\epsilon>0$. Letting $\epsilon \rightarrow 0$ it follows

$$
\eta(|u-\phi|) \sqrt{1+|D u|^{2}} \leq M_{0}
$$

Consequently

$$
|u-\phi||D(u-\phi)| \leq \frac{1}{K} e^{2 \gamma K} \eta(|u-\phi|)\left(\sqrt{1+|D u|^{2}}+|D \phi|\right) \leq \frac{1}{K} e^{2 \gamma K}\left(M_{0}+\gamma\right)
$$

The function $|u-\phi|$ may be extended continuously by 0 outside of $\{u>0\}$ and it follows that $(u-\phi)^{2} \in C^{0,1}(\bar{\Omega})$, which clearly implies $(u-\phi) \in C^{0, \frac{1}{2}}(\bar{\Omega})$. Since $\phi \in C^{2}$ we thus conclude that $u \in C^{0, \frac{1}{2}}(\bar{\Omega})$. Finally $u^{2} \in C^{0,1}(\{u \leq \delta\})$ follows since $\phi \equiv 0$ on this set.

4. Proof of Theorem 3

Proposition 2. Let u be a minimizer of \mathcal{F}^{*} in $\Omega, \partial\{u>0\} \in C^{2}$ and $\{u=$ $0\} \subset \subset \Omega$. Then the inward mean curvature $H \in C^{0}(\partial\{u=0\})$ fulfills the following inequality:

$$
\inf _{\{u>0\}} \frac{\alpha}{u \sqrt{1+|D u|^{2}}} \leq \inf _{\partial\{u>0\}} H
$$

Proof. Let $\epsilon>0, \phi \in C_{c}^{1}(\Omega)$ be nonnegative and ν denote a continuously differentiable extension of the outward unit normal ν of $\partial\{u=0\}$. Then

$$
\Phi_{\epsilon}: \Omega \rightarrow \Omega, \quad \Phi_{\epsilon}: x \mapsto x+\epsilon \phi(x) \nu(x)
$$

is a variation of $\{u>0\}$ into its interior. From the known formula for the first variation of perimeter (see [7] Theorem 10.4) and the mean convexity of the zero set $\{u=0\}$ (see [10] Theorem 2) it follows that

$$
\begin{aligned}
& \int_{\partial\{u>0\}} H \phi d \mathcal{H}^{n-1} \\
= & \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left(\int\left|D \chi_{\Phi_{\epsilon}(\{u>0\})}\right|-\int\left|D \chi_{\{u>0\}}\right|\right) \\
\geq & \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int_{\{u>0\} \backslash \Phi_{\epsilon(\{u>0\})}} \frac{\alpha}{u \sqrt{1+|D u|^{2}}} d x
\end{aligned}
$$

Upon setting $f:=\frac{\alpha}{u \sqrt{1+|D u|^{2}}}$ this implies

$$
\begin{aligned}
& \int_{\partial\{u>0\}} H \phi d \mathcal{H}^{n-1} \\
\geq & \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int_{\{u>0\} \backslash \Phi_{\epsilon}(\{u>0\})}\|f\|_{-\infty,\{u>0\}} d x \\
= & \lim _{\epsilon \rightarrow 0} \frac{\|f\|_{-\infty,\{u>0\}}}{\epsilon}\left(|\{u>0\}|-\int_{\{u>0\}}\left|\operatorname{det} D \Phi_{\epsilon}\right| d x\right) \\
= & \lim _{\epsilon \rightarrow 0} \frac{\|f\|_{-\infty,\{u>0\}}}{\epsilon}\left(\int_{\{u>0\}} 1 d x-\int_{\{u>0\}} 1+\epsilon \operatorname{div}(\phi \nu) d x\right) \\
= & -\|f\|_{-\infty,\{u>0\}} \int_{\{u>0\}} \operatorname{div}(\phi \nu) d x \\
= & \|f\|_{-\infty,\{u>0\}} \int_{\partial\{u>0\}} \phi d \mathcal{H}^{n-1}
\end{aligned}
$$

so that also

$$
\frac{\int_{\partial\{u>0\}} H \phi d \mathcal{H}^{n-1}}{\int_{\partial\{u>0\}} \phi d \mathcal{H}^{n-1}} \geq\|f\|_{-\infty,\{u>0\}} .
$$

Now for every $x_{0} \in \partial\{u>0\}$ one can choose a sequence of radially symmetric $\phi_{j} \in C_{c}^{\infty}(\Omega)$ such that

$$
\lim _{j \rightarrow \infty} \frac{\int_{\partial\{u>0\}} H \phi_{j} d \mathcal{H}^{n-1}}{\int_{\partial\{u>0\}} \phi_{j} d \mathcal{H}^{n-1}}=H\left(x_{0}\right) .
$$

In particular

$$
\inf _{\partial\{u>0\}} H \geq\|f\|_{-\infty,\{u>0\}} .
$$

Proof of Theorem 3. Theorem 3 follows by combining propositions 1 and 2. Lipschitz continuity of u^{2} in a neighborhood of $\partial\{u=0\}$ implies the boundedness of $u|D u|$ from above, which in turn yields the bound from below for $\frac{\alpha}{u \sqrt{1+|D u|^{2}}}$.

Acknowledgement. Part of this work is contained in the author's doctoral dissertation [9]. He would like to thank his advisor, Professor Ulrich Dierkes.

References

[1] Bemelmans, Josef; Dierkes, Ulrich On a singular variational integral with linear growth. I. Existence and regularity of minimizers. Arch. Rational Mech. Anal. 100 (1987), no. 1, 83-103.
[2] Dierkes, Ulrich Minimal hypercones and $C^{0, \frac{1}{2}}$ minimizers for a singular variational problem. Indiana Univ. Math. J. 37 (1988), no. 4, 841-863.
[3] Dierkes, Ulrich A classification of minimal cones in $\mathbb{R}^{n} \times \mathbb{R}^{+}$and a counterexample to interior regularity of energy minimizing functions. Manuscripta Math. 63 (1989), no. 2, 173-192.
[4] Dierkes, Ulrich Boundary regularity for solutions of a singular variational problem with linear growth. Arch. Rational Mech. Anal. 105 (1989), no. 4, 285-298.
[5] Dierkes, Ulrich Singular minimal surfaces. Geometric analysis and nonlinear partial differential equations, 177-193, Springer, Berlin, 2003.
[6] Dierkes, Ulrich; Hildebrandt, Stefan; Tromba, Anthony J. Global analysis of minimal surfaces. Revised and enlarged second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 341. Springer, Heidelberg, 2010. xvi+537 pp. ISBN: 978-3-642-11705-3
[7] Giusti, Enrico Minimal surfaces and functions of bounded variation. Monographs in Mathematics, 80. Birkhäuser Verlag, Basel, 1984. xii +240 pp. ISBN: 0-8176-3153-4
[8] Korevaar, Nicholas J.; Simon, Leon Continuity estimates for solutions to the prescribedcurvature Dirichlet problem. Math. Z. 197 (1988), no. 4, 457-464.
[9] Tennstädt, Tobias Untersuchungen zur singulären Minimalflächengleichung. Dissertation, Universität Duisburg-Essen, 2016.
[10] Tennstädt, Tobias Mean convexity of the zero set of symmetric minimal surfaces. Preprint, Universität Duisburg-Essen, 2016.

Fakultät für Mathematik, Universität Duisburg-Essen, 45127 Essen, Germany
E-mail address: tobias.tennstaedt@uni-due.de

IN DER SCHRIFTENREIHE DER FAKULTÄT FÜR MATHEMATIK ZULETZT ERSCHIENENE BEITRÄGE:

Nr. 769	Mali, O., Muzalevskiy, A., Pauly, D.: Conforming and NonConforming Functional A Posteriori Error Estimates for Elliptic Boundary Value Problems in Exterior Domains: Theory and Numerical Tests, 2013
Nr. 770	Bauer, S., Neff, P., Pauly, D., Starke, G.: Dev-Div- and DevSym-DevCurl-Inequalities for Incompatible Square Tensor Fields with Mixed Boundary Conditions, 2013
Nr .771	Pauly, D.: On the Maxwell Inequalities for Bounded and Convex Domains, 2013
	Pauly, D.: On Maxwell's and Poincarés Constants, 2013
N	Fried, M. N., Jahnke, H. N.: Otto Toeplitz's "The prob university infinitesimal calculus courses and their dema from infinitesimal calculus in high schools" (1927), 2013
Nr. 774:	Yurko, V.: Spectral Analysis for Differential Operators Variable Orders on Star-type Graphs: General Case, 2014
Nr. 775	Freiling, G., Yurko, V.: Differential Operators on Hedgehog-typ Graphs with General Matching Conditions, 2014
Nr. 7	Anjam, I., Pauly, D.: Functional A Posteriori Error Equalities for Conforming Mixed Approximations of Elliptic Problems, 2014
Nr. 777	Pauly, D.: On the Maxwell Constants in 3D, 2014
N	Pozzi, P.: Computational Anisotropic Willmore Flow, 2014
Nr. 779:	Buterin, S.A., Freiling, G., Yurko, V.A.: Lectures on the Thec of entire Functions, 2014
Nr.	Blatt, S., Reiter. Ph.: Modeling repulsive forces on fibres via knot energies, 2014
Nr. 78	Neff, P., Ghiba, I.-D., Lankeit, J.: The exponentiated Henckylogarithmic strain energy. Part I: Constitutive issues and rankone convexity, 2014
Nr	Neff, P., Münch, I., Martin, R.: Rediscovering G.F. Becker's early axiomatic deduction of a multiaxial nonlinear stressstrain relation based on logarithmic strain, 2014
$\mathrm{Nr} .783:$	Neff, P., Ghiba, I.-D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum, 2014
Nr .	Müller, F.: On $C^{1,1 / 2}$-regularity of H-surfaces with a fr boundary, 2014
N	Müller, F.: Projectability of stable, partially free H-surface in the non-perpendicular case, 2015
N	Bauer S., Pauly, D.: On Korn's First Inequality for Tangen or Normal Boundary Conditions with Explicit Constants, 2015
Nr. 787:	Neff, P., Eidel, B., Martin, R.J.: Geometry of logarithmic strain measures in solid mechanics, 2015
Nr. 788:	Borisov, L., Neff, P., Sra, S., Thiel, Chr.: The sum of squared logarithms inequality in arbitrary dimensions, 2015
Nr. 789:	Bauer, S., Pauly, D., Schomburg, M.: The Maxwell Compactness Property in Bounded Weak Lipschitz Domains with Mixed Boundary Conditions, 2015
Nr. 790:	Claus, M., Krätschmer, V., Schultz, R.: WEAK CONTINUITY OF RISK FUNCTIONALS WITH APPLICATIONS TO STOCHASTIC PROGRAMMING, 2015
Nr. 791:	Bauer, S., Pauly, D.: On Korn's First Inequality for Mixed Tangential and Normal Boundary Conditions on Bounded LipschitzDomains in $\mathrm{R}^{\mathrm{N}}, 2016$
Nr. 792	Anjam, I., Pauly, D.: Functional A Posteriori Error Control for Conforming Mixed Approximations of Coercive Problems with Lower Order Terms, 2016
Nr. 793:	Herkenrath, U.: "ARS CONJECTANDI" UND DIE NATUR DES ZUFALLS, 2016
Nr. 794:	Martin, R. J., Ghiba, I.-D., Neff, P.: Rank-one convexity implies polyconvexity for isotropic, objective and isochoric elastic energies in the two-dimensional case, 2016

Nr. 795: Fischle, A., Neff, P.: The geometrically nonlinear Cosserat micropolar shear-stretch energy. Part I: A general parameter reduction formula and energy-minimizing microrotations in 2D, 2016
Nr. 796:
Münch, I., Neff, P., Madeo, A., Ghiba, I.-D.: The modified indeterminate couple stress model: Why Yang et al.'s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tenso may be chosen symmetric nevertheless, 2016
Nr. 797: Madeo, A., Ghiba, I.-D., Neff, P., Münch, I.: A new view on boundary conditions in the Grioli-Koiter-Mindlin-Toupin indeterminate couple stress model, 2016
Nr. 798: Claus, M.: ON STABILITY IN RISK AVERSE STOCHASTIC BILEVEL PROGRAMMING, 2016
Nr. 799: Burtscheidt, J., Claus, M.: A Note on Stability for Risk Averse Stochastic Complementarity Problems, 2016
Nr. 800: Pauly, D., Picard, R.: A Note on the Justification of the Eddy Current Model in Electrodynamics, 2016
Nr. 801: Pauly, D., Yousept, I.: A Posteriori Error Analysis for the Optimal Control of Magneto-Static Fields, 2016
Nr. 802: Zimmermann, A.: Martingale solutions for a pseudomonotone evolution equation with multiplicative noise, 2016
Nr. 803: Tennstädt, T.: MEAN CONVEXITY OF THE ZERO SET OF SYMMETRIC MINIMAL SURFACES, 2016
Nr. 804: Tennstädt, T.: HÖLDER CONTINUITY FOR CONTINUOUS SOLUTIONS OF THE SINGULAR MINIMAL SURFACE EQUATION WITH ARBITRARY ZERO SET, 2016

