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Abstract. In this paper we prove the following theorem: Let Ω ⊂ Rn be a
bounded open set, ψ ∈ C2

c (Rn), ψ > 0 on ∂Ω, be given boundary values and
u a nonnegative solution to the problem

u ∈ C0(Ω) ∩ C2({u > 0})

u = ψ on ∂Ω

div

(
Du√

1 + |Du|2

)
=

α

u
√

1 + |Du|2
in {u > 0}

where α > 0 is a given constant. Then u ∈ C0, 1
2 (Ω).

Furthermore we prove strict mean convexity of the free boundary ∂{u = 0}
provided ∂{u = 0} is assumed to be of class C2.

1. Introduction

Consider the problem of minimizing the energy

F(u) :=

∫
Ω

uα
√

1 + |Du|2

where Ω ⊂ Rn is a bounded open subset of Rn with Lipschitz boundary and α > 0.
When α ∈ N, F(u) coincides with, up to a constant factor, the area of the rotated
graph

Mrot := {(x, u(x)ω) : x ∈ Ω, ω ∈ Sα ⊂ Rα+1} ⊂ Rn+α+1.

F(u) may be defined for u ∈ BV 1+α
+ (Ω), where

BV 1+α
+ (Ω) :=

{
u ∈ Lα(Ω) : u ≥ 0, u1+α ∈ BV (Ω)

}
.

It was shown by U. Dierkes and J. Bemelmans [1], that, given ψ ∈ L1+α(∂Ω),
solutions to

F∗(u) = F(u) +
1

1 + α

∫
∂Ω

|u1+α − ψ1+α| dHn−1 → min in the class BV 1+α
+ (Ω)

exist and fulfill the weak maximum principle

||u||∞,Ω ≤ ||ψ||∞,∂Ω.

Explicit examples of such minimizers were constructed by U. Dierkes [2][3]. In
particular he showed the existence of Hölder continuous local minimizers u of F
with Hölder exponent 1

2 that fail to be in the class C0, 12 +ε for any ε > 0. These
1
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examples led to the formulation of the conjecture that all minimizers must be 1
2 -

Hölder continuous functions [5], which in turn inspired the present paper.

2. Statement of theorems

In this section Ω will be a bounded open subset of Rn and α > 0 a positive
constant. Our goal is to prove the following main result:

Theorem 1. Let ψ ∈ C2
c (Rn), ψ > 0 on ∂Ω, be given boundary values and u ∈

C0(Ω) ∩ C2({u > 0}), u ≥ 0, fulfill the relations

u ∈ C0(Ω) ∩ C2({u > 0})

u = ψ on ∂Ω

div

(
Du√

1 + |Du|2

)
=

α

u
√

1 + |Du|2
in {u > 0}.

Then u ∈ C0, 12 (Ω).

Remarks.

(i) Note that here we do not require any regularity of the boundary ∂Ω

(ii) Theorem 1 applies to local minimizers u of F that are continuous in Ω. The
minimizing property yields u ∈ Cω({u > 0}), while the equation

(1) div

(
Du√

1 + |Du|2

)
=

α

u
√

1 + |Du|2

is equivalent to the Euler equation for F wherever u > 0. See the author’s
paper [10] for a proof.

(iii) If n ≤ 6 local minimizers u are continuous in the interior of Ω [1]. It is still
unknown whether interior continuity holds in general.

(iv) Continuity at the boundary for minimizers may be achieved by requiring that
Ω has nonnegative inward mean curvature in the sense of Caccioppoli sets,
i.e. for every ξ ∈ ∂Ω there exists a neighborhood Uξ such that∫

Uξ

|DχΩ| ≤
∫
Uξ

|DχΩ∪E |

for every set E of finite perimeter and E∆Ω ⊂⊂ Uξ. This was shown by
Dierkes [4].

In view of these remarks we have the following

Theorem 2. Let n ≤ 6, Ω be a mean convex, bounded open set with Lipschitz
boundary, ψ ∈ C2

c (Rn), ψ > 0 on ∂Ω, be given boundary values and u ∈ BV 1+α
+ (Ω)

a minimizer of F∗ in the class BV 1+α
+ (Ω). Then u ∈ C0, 12 (Ω).

In [10] the author proved the mean convexity of the zero set {u = 0} of local
minimizers of F . We will here show a connection between the strict mean convexity
of {u = 0} and Hölder continuity of u.
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Theorem 3. Let Ω be a bounded open set with Lipschitz boundary, u ∈ C0(Ω) ∩
BV 1+α

+ (Ω) be a minimizer of F∗ with boundary values ψ ∈ C2
c (Rn), ψ > 0 on ∂Ω.

Additionally assume that ∂{u = 0} ∈ C2. Then there exists a constant c > 0 so
that

inf
∂{u=0}

H ≥ c

where H denotes the inward mean curvature of ∂{u = 0}

Remark. In particular, Theorem 3 says that the zero set of minimizers of F∗ is
strictly mean convex in the classical sense, provided the classical mean curvature
exists.

3. Proof of Theorem 1

Theorem 1 is a consequence of the following proposition.

Proposition 1. Let ψ ∈ C2
c (Rn), ψ > 0 on ∂Ω, be given boundary values and

u ∈ C0(Ω) ∩ C2({u > 0}), u ≥ 0, solve

u ∈ C0(Ω) ∩ C2({u > 0})

u = ψ on ∂Ω

div

(
Du√

1 + |Du|2

)
=

α

u
√

1 + |Du|2
in {u > 0}.

Then u2 ∈ C0,1({u ≤ δ}) for all 0 < δ < inf∂Ω ψ and in addition u ∈ C0, 12 (Ω).

The proof employs a method originally due to N. Korevaar and L. Simon [8].

Proof. We work on the of graph of u ¬ {u > 0} using the coordinates x = proj(x, u(x)).
∇ and ∆ denote the tangential gradient and Laplace operators also on graphu re-
spectively. Note that in {u > 0}, u ∈ C∞ by Schauder theory. For any function
f ∈ C2({u > 0}) we have

(2) ∇f = (Df, 0)−Difν
iν =

(
Df − Df ·Du

1 + |Du|2
Du,

Df ·Du
1 + |Du|2

)
and therefore

(3) |∇f |2 = |Df |2 − (Difν
i)2

as well as

(4) ∆f = gijDiDjf +HνiDif

where we used the symbol ν = (−Du,1)√
1+|Du|2

to denote the upward unit normal of

graph(u), gij = δij − νiνj stands for the inverse of the first fundamental form and
H(x) = −∇iνi = α

u
√

1+|Du|2
denotes the mean curvature of the graph of u. Because

of (4) we have

(5) ∆u = Hνn+1.
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Additionally we have the Jacobi equation (cmp. [6] chapter 3.4, proposition 2):

(6) ∆νn+1 = −νn+1|A|2 − en+1 · ∇H,

where |A| =
√∑n+1

i=1 |∇νi|2 indicates the norm of the second fundamental form of
graph(u). Obviously,

∇u =

(
Du

1 + |Du|2
,
|Du|2

1 + |Du|2

)
,

so that also

(7) |∇u|2 =
|Du|2

1 + |Du|2
= en+1 · ∇u.

Let now δ > 0 be such that {u < δ} ⊂⊂ Ω. Since u ∈ C0(Ω) such a δ exists
and will in general depend on the solution u. δ will be fixed throughout the proof.
Further let φ ∈ C2

c (Rn) be such that φ = 0 in {u < δ}, φ = ψ in a neighborhood
of ∂Ω and ||φ||C2(Rn) ≤ γ = γ(δ, ψ) < ∞. Now we define the auxiliary function
η : R+ → R+,

η(t) := (eKt − 1)e−2γK

with a constant K > 0 to be chosen later. If we denote with (u−φ)+ the maximum
of u−φ and 0, then we get 0 ≤ η((u−φ)+) ≤ 1, as by the weak maximum principle
u ≤ γ. Let ε > 0 and M be the maximum of

f(x) :=
η((u− φ)+)

νn+1 + ε

on {u > 0}. Clearly, f is continuous on {u > 0}, nonnegative, f = 0 on ∂{u > 0}
and positive in {0 < u < δ}, so that f must achieve its maximum M in a point
x0 ∈ {u > 0}. Define the function

Ψ(x) := η((u− φ)+)−M(νn+1 + ε) ≤ 0,

which, at x0, fulfills the relations

(8) Ψ(x0) = 0, ∇Ψ(x0) = 0, and ∆Ψ(x0) ≤ 0.

We calculate

(9) ∇Ψ = η′∇(u− φ)−M∇νn+1 = 0

in x0 (Obviously, in x0, u > φ). Since u solves the differential equation

(10) H =
ανn+1

u

in {u > 0}, there we also have νn+1 = uH
α and thus

∇νn+1 =
1

α
(∇uH + u∇H).

Inserting this into (9) we get

η′∇(u− φ)− M

α
(∇uH + u∇H) = 0,
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or after rearrangement

∇H =
1

Mu
(αη′∇(u− φ)−MH∇u) .(11)

Now we calculate

∆Ψ = η′′|∇(u− φ)|2 + η′∆(u− φ)−M∆νn+1

using (5) and (6):

= η′′|∇(u− φ)|2 + η′Hνn+1 − η′∆φ+M(νn+1|A|2 + en+1 · ∇H)

using (10) and (11):

= η′′|∇(u− φ)|2 + αη′
(νn+1)2

u
− η′∆φ+

en+1

u
· (αη′∇(u− φ)−MH∇u)

+Mνn+1|A|2

We make use of (7) and (10):

= η′′|∇(u− φ)|2 + αη′
(νn+1)2

u
− η′∆φ+ αη′

|∇u|2

u
− αη′ en+1 · ∇φ

u

− αM |∇u|
2

u2
νn+1 +M∇n+1|A|2

Recall that (νn+1)2 + |∇u|2 = 1.

= η′′|∇(u− φ)|2 + α
η′

u
− η′∆φ− αη′ en+1 · ∇φ

u
− αMνn+1

u2
|∇u|2

+Mνn+1|A|2

≤ 0.

We have Ψ(x0) = 0, so that in x0

νn+1 =
η −Mε

M
≤ 1

M
− ε ≤ 1

M

or equivalently
√

1 + |Du|2 ≥M . In addition we get using (3)

|∇(u− φ)|2

= |D(u− φ)|2 − |Du ·D(u− φ)|2

1 + |Du|2

= |Du|2 − 2Du ·Dφ+ |Dφ|2 − |Du|
4 − 2|Du|2Du ·Dφ+ (Du ·Dφ)2

1 + |Du|2

=
|Du|2 − 2Du ·Dφ+ |Dφ2|+ |Du|2|Dφ|2 − (Du ·Dφ)2

1 + |Du|2

≥ |Du|
2 − 2γ|Du|

1 + |Du|2

→ 1, as |Du| → ∞.

Whence there exists a constant M0, depending only on γ, so that in case M > M0

also |∇(u− φ)|2 > 1
2 . Assume for a moment that M > M0. Then we may estimate

further
η′′ + 2α

η′

u
− 2η′(∆φ+ α

en+1∇φ
u

)− 2α
η

u2
≤ 0,
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since in x0:
−Mνn+1 = −η +Mε ≥ −η.

Let us further assume that also x0 ∈ {u < δ}. There we have φ ≡ 0, which means

u2η′′ + 2αuη′ − 2αη ≤ 0

or rather
(u2K2 + 2αuK − 2α)eKu + 2α ≤ 0.

s := Ku thus fulfills the inequality

(2α− 2αs− s2)es ≥ 2α.

However, this can only be the case if s = 0. As s is strictly positive, we obtain a
contradiction and therefore x0 ∈ {u ≥ δ} or M ≤ M0 must be true. Let us now
continue to assume that M > M0 and therefore x0 ∈ {u ≥ δ}. Because of (4), (2),
(10) and u(x0) ≥ δ we get∣∣∣∣∆φ+ α

en+1∇φ
u

∣∣∣∣ ≤ C = C(γ, δ).

This yields
η′′ − 2Cη′ − 2α

η

u2
≤ 0,

which implies (
K2 − 2CK − 2α

δ2

)
eK(u−φ)+ ≤ −2α

γ2
.

By choosing K large so that K2 − 2CK − 2 α
δ2 > 0 we obtain

0 < −2α

γ2
,

an obvious contradiction. We conclude that M ≤M0 must hold and hence

(12)
η((u− φ)+)

νn+1 + ε
≤M0.

By applying the above procedure to the function

g(x) :=
η((φ− u)+)

νn+1 + ε

in place of f , we get the estimate (12) also for (φ − u)+. Note that here it is
immediately clear that the maximum M of g must be attained in {u > δ}, since g
vanishes in {0 < u < δ}. Again we define

Φ(x) := η((φ− u)+)−M(νn+1 + ε) ≤ 0.

When calculating ∆Φ one easily recognizes that ∆Φ and ∆Ψ differ only on the sign
of the term α

uη
′, which in turn is bounded by α

δ η
′. The remaining calculations are

identical to the above, so we refrain from repeating the argument. Concluding we
obtain

η(|u− φ|)
νn+1 + ε

≤M0
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for all ε > 0. Letting ε→ 0 it follows

η(|u− φ|)
√

1 + |Du|2 ≤M0.

Consequently

|u− φ||D(u− φ)| ≤ 1

K
e2γKη(|u− φ|)(

√
1 + |Du|2 + |Dφ|) ≤ 1

K
e2γK(M0 + γ).

The function |u − φ| may be extended continuously by 0 outside of {u > 0} and
it follows that (u − φ)2 ∈ C0,1(Ω), which clearly implies (u − φ) ∈ C0, 12 (Ω). Since
φ ∈ C2 we thus conclude that u ∈ C0, 12 (Ω). Finally u2 ∈ C0,1({u ≤ δ}) follows
since φ ≡ 0 on this set. �

4. Proof of Theorem 3

Proposition 2. Let u be a minimizer of F∗ in Ω, ∂{u > 0} ∈ C2 and {u =

0} ⊂⊂ Ω. Then the inward mean curvature H ∈ C0(∂{u = 0}) fulfills the following
inequality:

inf
{u>0}

α

u
√

1 + |Du|2
≤ inf
∂{u>0}

H

Proof. Let ε > 0, φ ∈ C1
c (Ω) be nonnegative and ν denote a continuously differen-

tiable extension of the outward unit normal ν of ∂{u = 0}. Then

Φε : Ω→ Ω, Φε : x 7→ x+ εφ(x)ν(x)

is a variation of {u > 0} into its interior. From the known formula for the first
variation of perimeter (see [7] Theorem 10.4) and the mean convexity of the zero
set {u = 0} (see [10] Theorem 2) it follows that∫

∂{u>0}
HφdHn−1

= lim
ε→0

1

ε

(∫
|DχΦε({u>0})| −

∫
|Dχ{u>0}|

)
≥ lim
ε→0

1

ε

∫
{u>0}\Φε({u>0})

α

u
√

1 + |Du|2
dx
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Upon setting f := α

u
√

1+|Du|2
this implies∫

∂{u>0}
HφdHn−1

≥ lim
ε→0

1

ε

∫
{u>0}\Φε({u>0})

||f ||−∞,{u>0} dx

= lim
ε→0

||f ||−∞,{u>0}

ε

(
|{u > 0}| −

∫
{u>0}

|detDΦε| dx

)

= lim
ε→0

||f ||−∞,{u>0}

ε

(∫
{u>0}

1 dx−
∫
{u>0}

1 + εdiv(φν) dx

)

= −||f ||−∞,{u>0}

∫
{u>0}

div(φν) dx

= ||f ||−∞,{u>0}

∫
∂{u>0}

φdHn−1

so that also ∫
∂{u>0}HφdH

n−1∫
∂{u>0} φdHn−1

≥ ||f ||−∞,{u>0}.

Now for every x0 ∈ ∂{u > 0} one can choose a sequence of radially symmetric
φj ∈ C∞c (Ω) such that

lim
j→∞

∫
∂{u>0}Hφj dH

n−1∫
∂{u>0} φj dHn−1

= H(x0).

In particular
inf

∂{u>0}
H ≥ ||f ||−∞,{u>0}.

�

Proof of Theorem 3. Theorem 3 follows by combining propositions 1 and 2. Lips-
chitz continuity of u2 in a neighborhood of ∂{u = 0} implies the boundedness of
u|Du| from above, which in turn yields the bound from below for α

u
√

1+|Du|2
. �
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