SCHRIFTENREIHE DER FAKULTÄT FÜR MATHEMATIK

HÖLDER CONTINUITY FOR CONTINUOUS SOLUTIONS OF THE SINGULAR MINIMAL SURFACE EQUATION WITH ARBITRARY ZERO SET

by Tobias Tennstädt

SM-UDE-804

2016

Eingegangen am 14.09.2016

HÖLDER CONTINUITY FOR CONTINUOUS SOLUTIONS OF THE SINGULAR MINIMAL SURFACE EQUATION WITH ARBITRARY ZERO SET

TOBIAS TENNSTÄDT

ABSTRACT. In this paper we prove the following theorem: Let $\Omega \subset \mathbb{R}^n$ be a bounded open set, $\psi \in C_c^2(\mathbb{R}^n)$, $\psi > 0$ on $\partial\Omega$, be given boundary values and u a nonnegative solution to the problem

$$\begin{split} u \in C^0(\overline{\Omega}) \cap C^2(\{u > 0\}) \\ u = \psi \text{ on } \partial\Omega \\ \operatorname{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}}\right) = \frac{\alpha}{u\sqrt{1 + |Du|^2}} \text{ in } \{u > 0\} \end{split}$$

where $\alpha > 0$ is a given constant. Then $u \in C^{0,\frac{1}{2}}(\overline{\Omega})$.

Furthermore we prove strict mean convexity of the free boundary $\partial \{u = 0\}$ provided $\partial \{u = 0\}$ is assumed to be of class C^2 .

1. INTRODUCTION

Consider the problem of minimizing the energy

$$\mathcal{F}(u) := \int_{\Omega} u^{\alpha} \sqrt{1 + |Du|^2}$$

where $\Omega \subset \mathbb{R}^n$ is a bounded open subset of \mathbb{R}^n with Lipschitz boundary and $\alpha > 0$. When $\alpha \in \mathbb{N}$, $\mathcal{F}(u)$ coincides with, up to a constant factor, the area of the rotated graph

$$\mathcal{M}_{rot} := \{ (x, u(x)\omega) : x \in \Omega, \ \omega \in S^{\alpha} \subset \mathbb{R}^{\alpha+1} \} \subset \mathbb{R}^{n+\alpha+1}.$$

 $\mathcal{F}(u)$ may be defined for $u \in BV^{1+\alpha}_+(\Omega)$, where

$$BV_{+}^{1+\alpha}(\Omega) := \left\{ u \in L^{\alpha}(\Omega) : u \ge 0, \ u^{1+\alpha} \in BV(\Omega) \right\}.$$

It was shown by U. Dierkes and J. Bemelmans [1], that, given $\psi \in L^{1+\alpha}(\partial \Omega)$, solutions to

$$\mathcal{F}^*(u) = \mathcal{F}(u) + \frac{1}{1+\alpha} \int_{\partial\Omega} |u^{1+\alpha} - \psi^{1+\alpha}| \, d\mathcal{H}^{n-1} \to \min \text{ in the class } BV^{1+\alpha}_+(\Omega)$$

exist and fulfill the weak maximum principle

$$||u||_{\infty,\Omega} \le ||\psi||_{\infty,\partial\Omega}.$$

Explicit examples of such minimizers were constructed by U. Dierkes [2][3]. In particular he showed the existence of Hölder continuous local minimizers u of \mathcal{F} with Hölder exponent $\frac{1}{2}$ that fail to be in the class $C^{0,\frac{1}{2}+\epsilon}$ for any $\epsilon > 0$. These

T. TENNSTÄDT

examples led to the formulation of the conjecture that all minimizers must be $\frac{1}{2}$ -Hölder continuous functions [5], which in turn inspired the present paper.

2. Statement of theorems

In this section Ω will be a bounded open subset of \mathbb{R}^n and $\alpha > 0$ a positive constant. Our goal is to prove the following main result:

Theorem 1. Let $\psi \in C_c^2(\mathbb{R}^n)$, $\psi > 0$ on $\partial\Omega$, be given boundary values and $u \in C^0(\overline{\Omega}) \cap C^2(\{u > 0\})$, $u \ge 0$, fulfill the relations

$$\begin{split} u \in C^0(\overline{\Omega}) \cap C^2(\{u > 0\}) \\ u = \psi \text{ on } \partial\Omega \\ \operatorname{div}\left(\frac{Du}{\sqrt{1+|Du|^2}}\right) &= \frac{\alpha}{u\sqrt{1+|Du|^2}} \text{ in } \{u > 0\} \end{split}$$

Then $u \in C^{0,\frac{1}{2}}(\overline{\Omega})$.

Remarks.

- (i) Note that here we do not require any regularity of the boundary $\partial \Omega$
- (ii) Theorem 1 applies to local minimizers u of \mathcal{F} that are continuous in $\overline{\Omega}$. The minimizing property yields $u \in C^{\omega}(\{u > 0\})$, while the equation

(1)
$$\operatorname{div}\left(\frac{Du}{\sqrt{1+|Du|^2}}\right) = \frac{\alpha}{u\sqrt{1+|Du|^2}}$$

is equivalent to the Euler equation for \mathcal{F} wherever u > 0. See the author's paper [10] for a proof.

- (iii) If $n \leq 6$ local minimizers u are continuous in the interior of Ω [1]. It is still unknown whether interior continuity holds in general.
- (iv) Continuity at the boundary for minimizers may be achieved by requiring that Ω has nonnegative inward mean curvature in the sense of Caccioppoli sets, i.e. for every $\xi \in \partial \Omega$ there exists a neighborhood U_{ξ} such that

$$\int_{U_{\xi}} |D\chi_{\Omega}| \le \int_{U_{\xi}} |D\chi_{\Omega \cup E}|$$

for every set E of finite perimeter and $E\Delta\Omega \subset U_{\xi}$. This was shown by Dierkes [4].

In view of these remarks we have the following

Theorem 2. Let $n \leq 6$, Ω be a mean convex, bounded open set with Lipschitz boundary, $\psi \in C_c^2(\mathbb{R}^n)$, $\psi > 0$ on $\partial\Omega$, be given boundary values and $u \in BV_+^{1+\alpha}(\Omega)$ a minimizer of \mathcal{F}^* in the class $BV_+^{1+\alpha}(\Omega)$. Then $u \in C^{0,\frac{1}{2}}(\overline{\Omega})$.

In [10] the author proved the mean convexity of the zero set $\{u = 0\}$ of local minimizers of \mathcal{F} . We will here show a connection between the *strict* mean convexity of $\{u = 0\}$ and Hölder continuity of u.

Theorem 3. Let Ω be a bounded open set with Lipschitz boundary, $u \in C^0(\overline{\Omega}) \cap BV^{1+\alpha}_+(\Omega)$ be a minimizer of \mathcal{F}^* with boundary values $\psi \in C^2_c(\mathbb{R}^n)$, $\psi > 0$ on $\partial\Omega$. Additionally assume that $\partial \{u = 0\} \in C^2$. Then there exists a constant c > 0 so that

$$\inf_{\partial \{u=0\}} H \geq c$$

where H denotes the inward mean curvature of $\partial \{u = 0\}$

Remark. In particular, Theorem 3 says that the zero set of minimizers of \mathcal{F}^* is strictly mean convex in the classical sense, provided the classical mean curvature exists.

3. Proof of Theorem 1

Theorem 1 is a consequence of the following proposition.

Proposition 1. Let $\psi \in C_c^2(\mathbb{R}^n)$, $\psi > 0$ on $\partial\Omega$, be given boundary values and $u \in C^0(\overline{\Omega}) \cap C^2(\{u > 0\})$, $u \ge 0$, solve

$$\begin{split} u \in C^0(\overline{\Omega}) \cap C^2(\{u > 0\}) \\ u = \psi \text{ on } \partial\Omega \\ \operatorname{div}\left(\frac{Du}{\sqrt{1+|Du|^2}}\right) &= \frac{\alpha}{u\sqrt{1+|Du|^2}} \text{ in } \{u > 0\}. \end{split}$$

Then $u^2 \in C^{0,1}(\{u \le \delta\})$ for all $0 < \delta < \inf_{\partial\Omega} \psi$ and in addition $u \in C^{0,\frac{1}{2}}(\overline{\Omega})$.

The proof employs a method originally due to N. Korevaar and L. Simon [8].

Proof. We work on the of graph of $u \, \lfloor \, \{u > 0\}$ using the coordinates $x = \operatorname{proj}(x, u(x))$. ∇ and Δ denote the tangential gradient and Laplace operators also on graph u respectively. Note that in $\{u > 0\}$, $u \in C^{\infty}$ by Schauder theory. For any function $f \in C^2(\{u > 0\})$ we have

(2)
$$\nabla f = (Df, 0) - D_i f \nu^i \nu = \left(Df - \frac{Df \cdot Du}{1 + |Du|^2} Du, \frac{Df \cdot Du}{1 + |Du|^2} \right)$$

and therefore

(3)
$$|\nabla f|^2 = |Df|^2 - (D_i f \nu^i)^2$$

as well as

(4)
$$\Delta f = g^{ij} D_i D_j f + H \nu^i D_i f$$

where we used the symbol $\nu = \frac{(-Du,1)}{\sqrt{1+|Du|^2}}$ to denote the upward unit normal of graph(u), $g^{ij} = \delta^{ij} - \nu^i \nu^j$ stands for the inverse of the first fundamental form and $H(x) = -\nabla_i \nu^i = \frac{\alpha}{u\sqrt{1+|Du|^2}}$ denotes the mean curvature of the graph of u. Because of (4) we have

(5)
$$\Delta u = H\nu^{n+1}$$

T. TENNSTÄDT

Additionally we have the Jacobi equation (cmp. [6] chapter 3.4, proposition 2):

(6)
$$\Delta \nu^{n+1} = -\nu^{n+1} |A|^2 - e_{n+1} \cdot \nabla H,$$

where $|A| = \sqrt{\sum_{i=1}^{n+1} |\nabla \nu^i|^2}$ indicates the norm of the second fundamental form of graph(u). Obviously,

$$abla u = \left(\frac{Du}{1+|Du|^2}, \frac{|Du|^2}{1+|Du|^2}\right),$$

so that also

(7)
$$|\nabla u|^2 = \frac{|Du|^2}{1+|Du|^2} = e_{n+1} \cdot \nabla u.$$

Let now $\delta > 0$ be such that $\{u < \delta\} \subset \subset \Omega$. Since $u \in C^0(\overline{\Omega})$ such a δ exists and will in general depend on the solution u. δ will be fixed throughout the proof. Further let $\phi \in C_c^2(\mathbb{R}^n)$ be such that $\phi = 0$ in $\{u < \delta\}, \phi = \psi$ in a neighborhood of $\partial\Omega$ and $||\phi||_{C^2(\mathbb{R}^n)} \leq \gamma = \gamma(\delta, \psi) < \infty$. Now we define the auxiliary function $\eta \colon \mathbb{R}_+ \to \mathbb{R}_+,$

$$\eta(t) := (e^{Kt} - 1)e^{-2\gamma K}$$

with a constant K > 0 to be chosen later. If we denote with $(u - \phi)^+$ the maximum of $u - \phi$ and 0, then we get $0 \le \eta((u - \phi)^+) \le 1$, as by the weak maximum principle $u \le \gamma$. Let $\epsilon > 0$ and M be the maximum of

$$f(x) := \frac{\eta((u-\phi)^+)}{\nu^{n+1}+\epsilon}$$

on $\overline{\{u > 0\}}$. Clearly, f is continuous on $\overline{\{u > 0\}}$, nonnegative, f = 0 on $\partial \{u > 0\}$ and positive in $\{0 < u < \delta\}$, so that f must achieve its maximum M in a point $x_0 \in \{u > 0\}$. Define the function

$$\Psi(x) := \eta((u - \phi)^+) - M(\nu^{n+1} + \epsilon) \le 0,$$

which, at x_0 , fulfills the relations

(8)
$$\Psi(x_0) = 0, \ \nabla \Psi(x_0) = 0, \text{ and } \Delta \Psi(x_0) \le 0.$$

We calculate

(9)
$$\nabla \Psi = \eta' \nabla (u - \phi) - M \nabla \nu^{n+1} = 0$$

in x_0 (Obviously, in $x_0, u > \phi$). Since u solves the differential equation

(10)
$$H = \frac{\alpha \nu^{n+1}}{u}$$

in $\{u > 0\}$, there we also have $\nu^{n+1} = \frac{uH}{\alpha}$ and thus

$$\nabla \nu^{n+1} = \frac{1}{\alpha} (\nabla u H + u \nabla H).$$

Inserting this into (9) we get

$$\eta' \nabla (u - \phi) - \frac{M}{\alpha} (\nabla u H + u \nabla H) = 0,$$

or after rearrangement

(11)
$$\nabla H = \frac{1}{Mu} \left(\alpha \eta' \nabla (u - \phi) - M H \nabla u \right).$$

Now we calculate

$$\begin{split} \Delta \Psi &= \eta'' |\nabla(u-\phi)|^2 + \eta' \Delta(u-\phi) - M \Delta \nu^{n+1} \\ &\text{using (5) and (6):} \\ &= \eta'' |\nabla(u-\phi)|^2 + \eta' H \nu^{n+1} - \eta' \Delta \phi + M(\nu^{n+1}|A|^2 + e_{n+1} \cdot \nabla H) \\ &\text{using (10) and (11):} \\ &= \eta'' |\nabla(u-\phi)|^2 + \alpha \eta' \frac{(\nu^{n+1})^2}{u} - \eta' \Delta \phi + \frac{e_{n+1}}{u} \cdot (\alpha \eta' \nabla(u-\phi) - M H \nabla u) \\ &+ M \nu^{n+1} |A|^2 \\ &\text{We make use of (7) and (10):} \\ &= \eta'' |\nabla(u-\phi)|^2 + \alpha \eta' \frac{(\nu^{n+1})^2}{u} - \eta' \Delta \phi + \alpha \eta' \frac{|\nabla u|^2}{u} - \alpha \eta' \frac{e_{n+1} \cdot \nabla \phi}{u} \\ &- \alpha \frac{M |\nabla u|^2}{u^2} \nu^{n+1} + M \nabla^{n+1} |A|^2 \\ &\text{Recall that } (\nu^{n+1})^2 + |\nabla u|^2 = 1. \\ &= \eta'' |\nabla(u-\phi)|^2 + \alpha \frac{\eta'}{u} - \eta' \Delta \phi - \alpha \eta' \frac{e_{n+1} \cdot \nabla \phi}{u} - \alpha \frac{M \nu^{n+1}}{u^2} |\nabla u|^2 \\ &+ M \nu^{n+1} |A|^2 \\ &\leq 0. \end{split}$$

We have $\Psi(x_0) = 0$, so that in x_0

$$\nu^{n+1} = \frac{\eta - M\epsilon}{M} \le \frac{1}{M} - \epsilon \le \frac{1}{M}$$

or equivalently $\sqrt{1+|Du|^2} \ge M$. In addition we get using (3)

$$\begin{split} |\nabla(u-\phi)|^2 \\ &= |D(u-\phi)|^2 - \frac{|Du \cdot D(u-\phi)|^2}{1+|Du|^2} \\ &= |Du|^2 - 2Du \cdot D\phi + |D\phi|^2 - \frac{|Du|^4 - 2|Du|^2Du \cdot D\phi + (Du \cdot D\phi)^2}{1+|Du|^2} \\ &= \frac{|Du|^2 - 2Du \cdot D\phi + |D\phi^2| + |Du|^2|D\phi|^2 - (Du \cdot D\phi)^2}{1+|Du|^2} \\ &\geq \frac{|Du|^2 - 2\gamma|Du|}{1+|Du|^2} \\ &\to 1, \text{ as } |Du| \to \infty. \end{split}$$

Whence there exists a constant M_0 , depending only on γ , so that in case $M > M_0$ also $|\nabla(u - \phi)|^2 > \frac{1}{2}$. Assume for a moment that $M > M_0$. Then we may estimate further

$$\eta'' + 2\alpha \frac{\eta'}{u} - 2\eta' (\Delta \phi + \alpha \frac{e_{n+1} \nabla \phi}{u}) - 2\alpha \frac{\eta}{u^2} \le 0,$$

since in x_0 :

$$-M\nu^{n+1} = -\eta + M\epsilon \ge -\eta.$$

Let us further assume that also $x_0 \in \{u < \delta\}$. There we have $\phi \equiv 0$, which means

$$u^2\eta'' + 2\alpha u\eta' - 2\alpha\eta \le 0$$

or rather

$$(u^2K^2 + 2\alpha uK - 2\alpha)e^{Ku} + 2\alpha \le 0.$$

s := Ku thus fulfills the inequality

$$(2\alpha - 2\alpha s - s^2)e^s \ge 2\alpha.$$

However, this can only be the case if s = 0. As s is strictly positive, we obtain a contradiction and therefore $x_0 \in \{u \ge \delta\}$ or $M \le M_0$ must be true. Let us now continue to assume that $M > M_0$ and therefore $x_0 \in \{u \ge \delta\}$. Because of (4), (2), (10) and $u(x_0) \ge \delta$ we get

$$\left|\Delta\phi + \alpha \frac{e_{n+1}\nabla\phi}{u}\right| \le C = C(\gamma, \delta).$$

This yields

$$\eta'' - 2C\eta' - 2\alpha \frac{\eta}{u^2} \le 0$$

which implies

$$\left(K^2 - 2CK - \frac{2\alpha}{\delta^2}\right)e^{K(u-\phi)^+} \le \frac{-2\alpha}{\gamma^2}.$$

By choosing K large so that $K^2 - 2CK - 2\frac{\alpha}{\delta^2} > 0$ we obtain

$$0 < -\frac{2\alpha}{\gamma^2},$$

an obvious contradiction. We conclude that $M \leq M_0$ must hold and hence

(12)
$$\frac{\eta((u-\phi)^+)}{\nu^{n+1}+\epsilon} \le M_0$$

By applying the above procedure to the function

$$g(x) := \frac{\eta((\phi - u)^+)}{\nu^{n+1} + \epsilon}$$

in place of f, we get the estimate (12) also for $(\phi - u)^+$. Note that here it is immediately clear that the maximum M of g must be attained in $\{u > \delta\}$, since gvanishes in $\{0 < u < \delta\}$. Again we define

$$\Phi(x) := \eta((\phi - u)^+) - M(\nu^{n+1} + \epsilon) \le 0.$$

When calculating $\Delta\Phi$ one easily recognizes that $\Delta\Phi$ and $\Delta\Psi$ differ only on the sign of the term $\frac{\alpha}{u}\eta'$, which in turn is bounded by $\frac{\alpha}{\delta}\eta'$. The remaining calculations are identical to the above, so we refrain from repeating the argument. Concluding we obtain

$$\frac{\eta(|u-\phi|)}{\nu^{n+1}+\epsilon} \le M_0$$

for all $\epsilon > 0$. Letting $\epsilon \to 0$ it follows

$$\eta(|u-\phi|)\sqrt{1+|Du|^2} \le M_0.$$

Consequently

$$|u - \phi| |D(u - \phi)| \le \frac{1}{K} e^{2\gamma K} \eta (|u - \phi|) (\sqrt{1 + |Du|^2} + |D\phi|) \le \frac{1}{K} e^{2\gamma K} (M_0 + \gamma).$$

The function $|u - \phi|$ may be extended continuously by 0 outside of $\{u > 0\}$ and it follows that $(u - \phi)^2 \in C^{0,1}(\overline{\Omega})$, which clearly implies $(u - \phi) \in C^{0,\frac{1}{2}}(\overline{\Omega})$. Since $\phi \in C^2$ we thus conclude that $u \in C^{0,\frac{1}{2}}(\overline{\Omega})$. Finally $u^2 \in C^{0,1}(\{u \le \delta\})$ follows since $\phi \equiv 0$ on this set.

4. Proof of Theorem 3

Proposition 2. Let u be a minimizer of \mathcal{F}^* in Ω , $\partial \{u > 0\} \in C^2$ and $\{u = 0\} \subset \subset \Omega$. Then the inward mean curvature $H \in C^0(\partial \{u = 0\})$ fulfills the following inequality:

$$\inf_{\{u>0\}} \frac{\alpha}{u\sqrt{1+|Du|^2}} \le \inf_{\partial\{u>0\}} H$$

Proof. Let $\epsilon > 0$, $\phi \in C_c^1(\Omega)$ be nonnegative and ν denote a continuously differentiable extension of the outward unit normal ν of $\partial \{u = 0\}$. Then

$$\Phi_{\epsilon} \colon \Omega \to \Omega, \quad \Phi_{\epsilon} \colon x \mapsto x + \epsilon \phi(x) \nu(x)$$

is a variation of $\{u > 0\}$ into its interior. From the known formula for the first variation of perimeter (see [7] Theorem 10.4) and the mean convexity of the zero set $\{u = 0\}$ (see [10] Theorem 2) it follows that

•

$$\int_{\partial \{u>0\}} H\phi \, d\mathcal{H}^{n-1}$$

$$= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(\int |D\chi_{\Phi_{\epsilon}(\{u>0\})}| - \int |D\chi_{\{u>0\}}| \right)$$

$$\geq \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\{u>0\} \setminus \Phi_{\epsilon}(\{u>0\})} \frac{\alpha}{u\sqrt{1+|Du|^2}} \, dx$$

Upon setting $f := \frac{\alpha}{u\sqrt{1+|Du|^2}}$ this implies

$$\begin{split} &\int_{\partial\{u>0\}} H\phi \, d\mathcal{H}^{n-1} \\ &\geq \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\{u>0\} \setminus \Phi_{\epsilon}(\{u>0\})} ||f||_{-\infty,\{u>0\}} \, dx \\ &= \lim_{\epsilon \to 0} \frac{||f||_{-\infty,\{u>0\}}}{\epsilon} \left(|\{u>0\}| - \int_{\{u>0\}} |\det D\Phi_{\epsilon}| \, dx \right) \\ &= \lim_{\epsilon \to 0} \frac{||f||_{-\infty,\{u>0\}}}{\epsilon} \left(\int_{\{u>0\}} 1 \, dx - \int_{\{u>0\}} 1 + \epsilon \operatorname{div}(\phi\nu) \, dx \right) \\ &= -||f||_{-\infty,\{u>0\}} \int_{\{u>0\}} \operatorname{div}(\phi\nu) \, dx \\ &= ||f||_{-\infty,\{u>0\}} \int_{\partial\{u>0\}} \phi \, d\mathcal{H}^{n-1} \end{split}$$

so that also

$$\frac{\int_{\partial \{u>0\}} H\phi \, d\mathcal{H}^{n-1}}{\int_{\partial \{u>0\}} \phi \, d\mathcal{H}^{n-1}} \ge ||f||_{-\infty,\{u>0\}}.$$

Now for every $x_0 \in \partial \{u > 0\}$ one can choose a sequence of radially symmetric $\phi_j \in C_c^{\infty}(\Omega)$ such that

$$\lim_{j \to \infty} \frac{\int_{\partial \{u > 0\}} H\phi_j \, d\mathcal{H}^{n-1}}{\int_{\partial \{u > 0\}} \phi_j \, d\mathcal{H}^{n-1}} = H(x_0)$$

In particular

$$\inf_{\partial \{u>0\}} H \ge ||f||_{-\infty, \{u>0\}}.$$

Proof of Theorem 3. Theorem 3 follows by combining propositions 1 and 2. Lipschitz continuity of u^2 in a neighborhood of $\partial \{u = 0\}$ implies the boundedness of u|Du| from above, which in turn yields the bound from below for $\frac{\alpha}{u\sqrt{1+|Du|^2}}$. \Box

Acknowledgement. Part of this work is contained in the author's doctoral dissertation [9]. He would like to thank his advisor, Professor Ulrich Dierkes.

References

- Bemelmans, Josef; Dierkes, Ulrich On a singular variational integral with linear growth. I. Existence and regularity of minimizers. Arch. Rational Mech. Anal. 100 (1987), no. 1, 83–103.
- [2] Dierkes, Ulrich Minimal hypercones and C^{0, ¹/₂} minimizers for a singular variational problem. Indiana Univ. Math. J. 37 (1988), no. 4, 841–863.
- [3] Dierkes, Ulrich A classification of minimal cones in ℝⁿ × ℝ⁺ and a counterexample to interior regularity of energy minimizing functions. Manuscripta Math. 63 (1989), no. 2, 173–192.
- [4] Dierkes, Ulrich Boundary regularity for solutions of a singular variational problem with linear growth. Arch. Rational Mech. Anal. 105 (1989), no. 4, 285–298.
- [5] Dierkes, Ulrich Singular minimal surfaces. Geometric analysis and nonlinear partial differential equations, 177–193, Springer, Berlin, 2003.

HÖLDER CONTINUITY

- [6] Dierkes, Ulrich; Hildebrandt, Stefan; Tromba, Anthony J. Global analysis of minimal surfaces. Revised and enlarged second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 341. Springer, Heidelberg, 2010. xvi+537 pp. ISBN: 978-3-642-11705-3
- [7] Giusti, Enrico Minimal surfaces and functions of bounded variation. Monographs in Mathematics, 80. Birkhäuser Verlag, Basel, 1984. xii+240 pp. ISBN: 0-8176-3153-4
- [8] Korevaar, Nicholas J.; Simon, Leon Continuity estimates for solutions to the prescribedcurvature Dirichlet problem. Math. Z. 197 (1988), no. 4, 457–464.
- [9] Tennstädt, Tobias Untersuchungen zur singulären Minimalflächengleichung. Dissertation, Universität Duisburg-Essen, 2016.
- [10] Tennstädt, Tobias Mean convexity of the zero set of symmetric minimal surfaces. Preprint, Universität Duisburg-Essen, 2016.

Fakultät für Mathematik, Universität Duisburg-Essen, 45127 Essen, Germany E-mail address: tobias.tennstaedtQuni-due.de

IN DER SCHRIFTENREIHE DER FAKULTÄT FÜR MATHEMATIK ZULETZT ERSCHIENENE BEITRÄGE:

- Nr. 769: Mali, O., Muzalevskiy, A., Pauly, D.: Conforming and Non-Conforming Functional A Posteriori Error Estimates for Elliptic Boundary Value Problems in Exterior Domains: Theory and Numerical Tests, 2013
- Nr. 770: Bauer, S., Neff, P., Pauly, D., Starke, G.: Dev-Div- and DevSym-DevCurl-Inequalities for Incompatible Square Tensor Fields with Mixed Boundary Conditions, 2013
- Nr. 771: Pauly, D.: On the Maxwell Inequalities for Bounded and Convex
 Domains, 2013
- Nr. 772: Pauly, D.: On Maxwell's and Poincaré's Constants, 2013
- Nr. 773: Fried, M. N., Jahnke, H. N.: Otto Toeplitz's "The problem of university infinitesimal calculus courses and their demarcation from infinitesimal calculus in high schools" (1927), 2013
- Nr. 774: Yurko, V.: Spectral Analysis for Differential Operators of Variable Orders on Star-type Graphs: General Case, 2014
- Nr. 775: Freiling, G., Yurko, V.: Differential Operators on Hedgehog-type Graphs with General Matching Conditions, 2014
- Nr. 776: Anjam, I., Pauly, D.: Functional A Posteriori Error Equalities for Conforming Mixed Approximations of Elliptic Problems, 2014
- Nr. 777: Pauly, D.: On the Maxwell Constants in 3D, 2014
- Nr. 778: Pozzi, P.: Computational Anisotropic Willmore Flow, 2014
- Nr. 779: Buterin, S.A., Freiling, G., Yurko, V.A.: Lectures on the Theory of entire Functions, 2014
- Nr. 780: Blatt, S., Reiter. Ph.: Modeling repulsive forces on fibres via knot energies, 2014
- Nr. 781: Neff, P., Ghiba, I.-D., Lankeit, J.: The exponentiated Henckylogarithmic strain energy. Part I: Constitutive issues and rankone convexity, 2014
- Nr. 782: Neff, P., Münch, I., Martin, R.: Rediscovering G.F. Becker's early axiomatic deduction of a multiaxial nonlinear stressstrain relation based on logarithmic strain, 2014
- Nr. 783: Neff, P., Ghiba, I.-D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum, 2014
- Nr. 784: Müller, F.: On $C^{1,1/2}$ -regularity of *H*-surfaces with a free boundary, 2014
- Nr. 785: Müller, F.: Projectability of stable, partially free H-surfaces in the non-perpendicular case, 2015
- Nr. 786: Bauer S., Pauly, D.: On Korn's First Inequality for Tangential or Normal Boundary Conditions with Explicit Constants, 2015
- Nr. 787: Neff, P., Eidel, B., Martin, R.J.: Geometry of logarithmic strain measures in solid mechanics, 2015
- Nr. 788: Borisov, L., Neff, P., Sra, S., Thiel, Chr.: The sum of squared logarithms inequality in arbitrary dimensions, 2015
- Nr. 789: Bauer, S., Pauly, D., Schomburg, M.: The Maxwell Compactness Property in Bounded Weak Lipschitz Domains with Mixed Boundary Conditions, 2015
- Nr. 790: Claus, M., Krätschmer, V., Schultz, R.: WEAK CONTINUITY OF RISK FUNCTIONALS WITH APPLICATIONS TO STOCHASTIC PROGRAMMING, 2015
- Nr. 791: Bauer, S., Pauly, D.: On Korn's First Inequality for Mixed Tangential and Normal Boundary Conditions on Bounded Lipschitz-Domains in R^N, 2016
- Nr. 792: Anjam, I., Pauly, D.: Functional A Posteriori Error Control for Conforming Mixed Approximations of Coercive Problems with Lower Order Terms, 2016
- Nr. 793: Herkenrath, U.: "ARS CONJECTANDI" UND DIE NATUR DES ZUFALLS, 2016
- Nr. 794: Martin, R. J., Ghiba, I.-D., Neff, P.: Rank-one convexity implies polyconvexity for isotropic, objective and isochoric elastic energies in the two-dimensional case, 2016

- Nr. 795: Fischle, A., Neff, P.: The geometrically nonlinear Cosserat micropolar shear-stretch energy. Part I: A general parameter reduction formula and energy-minimizing microrotations in 2D, 2016
- Nr. 796: Münch, I., Neff, P., Madeo, A., Ghiba, I.-D.: The modified indeterminate couple stress model: Why Yang et al.'s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tenso may be chosen symmetric nevertheless, 2016
- Nr. 797: Madeo, A., Ghiba, I.-D., Neff, P., Münch, I.: A new view on boundary conditions in the Grioli-Koiter-Mindlin-Toupin indeterminate couple stress model, 2016
- Nr. 798: Claus, M.: ON STABILITY IN RISK AVERSE STOCHASTIC BILEVEL PROGRAMMING, 2016
- Nr. 799: Burtscheidt, J., Claus, M.: A Note on Stability for Risk Averse Stochastic Complementarity Problems, 2016
- Nr. 800: Pauly, D., Picard, R.: A Note on the Justification of the Eddy Current Model in Electrodynamics, 2016
- Nr. 801: Pauly, D., Yousept, I.: A Posteriori Error Analysis for the Optimal Control of Magneto-Static Fields, 2016
- Nr. 802: Zimmermann, A.: Martingale solutions for a pseudomonotone evolution equation with multiplicative noise, 2016
- Nr. 803: Tennstädt, T.: MEAN CONVEXITY OF THE ZERO SET OF SYMMETRIC MINIMAL SURFACES, 2016
- Nr. 804: Tennstädt, T.: HÖLDER CONTINUITY FOR CONTINUOUS SOLUTIONS OF THE SINGULAR MINIMAL SURFACE EQUATION WITH ARBITRARY ZERO SET, 2016