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STEADY AND UNSTEADY RANSE SIMULATIONS FOR PLANING CRAFTS

Rodrigo Azcueta, MTG Marinetechnik, Hamburg 1

1. INTRODUCTION

For any vessel sailing at a high F},, like power boats, the change in the boat’s running attitude (sinkage, trim, heel) due to
the pressure field around the hull is quite significant so that its effects influence performance to a large extent and should
be taken into account.

In this work, a general approach was implemented, extending a Navier-Stokes code to couple the fluid flow with the body
motions induced by the flow and/or by external forces. This allows not only to compute dynamic sinkage and trim but
also to simulate the unsteady boat motions in the 6 DOF. The methodology has been applied to several dynamic cases
showing that large amplitude motions including capsizing, slamming, water entry, wave-piercing and water on deck can
be simulated. The robustness of this methodology is mainly due to the simplicity of tracking the vessel’s motions with-
out deforming the numerical mesh or using complicated multi-mesh strategies. The VOF method in conjunction with a
moving, rigid mesh attached to the vessel and suitable boundary conditions are shown to be very robust and efficient. In
this work, only the application of this methodology to planing crafts, with the additional difficulty of the extremely high
Froude numbers up to F;,, =4, will be demonstrated.

2. NUMERICAL METHOD

To couple the fluid flow and body motions I extended the Navier-Stokes solver COMET with a body-motion module.
COMET is a commercial code developed in Germany by ICCM GmbH, now a member of the CD Adapco Group, the
developers of the well-known multi-purpose STAR-CD code.

The general idea for coupling the fluid flow with the body motions is as follows: the Navier-Stokes flow solver computes
the flow around the body in the usual way, taking into account the fluid viscosity, flow turbulence and deformation of
the free surface. The forces and moments acting on the body are then calculated by integrating the normal (pressure)
and tangential (friction) stresses over the body surface. Following this, the body-motion module solves the equations of
motion of the rigid body in the 6 DOF using the forces and moments calculated by the flow solver as input data. The
motion accelerations, velocities and displacements (translations and rotations) are obtained by integrating in time. The
position of the body is updated and the fluid flow is computed again for the new position. By iterating this procedure over
the time, the body trajectory is obtained.

2.1 BODY-MOTION MODULE

Two orthogonal Cartesian reference systems (RS) are used: A non-rotating, non-accelerating Newtonian RS (O, XY, 7)
which moves forward with the mean ship speed, and a body-fixed RS (G, x,y, z) with origin at G, the centre of mass of
the body. The undisturbed free-surface plane always remains parallel to the XY plane of the Newtonian RS. The Z-axis
points upwards. The x-axis of the body-fixed RS is directed in the main flow direction, i.e. from bow to stern, the y-axis is
taken positive to starboard and the z-axis is positive upwards. The body motions are executed using a single-grid strategy,
where a rigid, body-fixed grid moves relative to the Newtonian RS, and the fictitious flow forces due to the grid movement
are automatically taken into account in the flow equations. The body-motion module is linked and run simultaneously
with the flow solver and can operate and update all flow variables, boundary conditions and parameters of the numerical
method.

The motion of the rigid body in the 6 DOF are determined by integrating the equations of variation of linear and angular
momentum written in the form referred to G (all vector components expressed in the Newtonian RS):

o — == =13 — == =1 -
mXg=F TIcT Q+QxTIT Q=DMg (1)
where m is the body mass, X & the absolute linear acceleration of G, F is the total force acting on the body, O and S_i are
the absolute angular acceleration and angular velocity, respectively, and Mg is the total moment with respect to G, I is

the tensor of inertia of the body about the axes of the body-fixed RS, T is the transformation matrix from the body-fixed
into the Newtonian RS.

The contributions to the total force and to the total moment acting on G are:
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where Fflow and J\Z/Gf 10 are the total fluid flow force and moment determined by integrating the normal (pressure) and
tangential (friction) stresses, obtained from the Navier-Stokes solver. They include the static and the dynamic components
of the water and of the air flow. TV is the body weight force. E ext Can be any external force acting on the body which one
wants to introduce to simulate for instance the towing forces and moments.

The boat motions are described in each time instant by the position of its centre of gravity X¢ and the body orientation
given by T'. Surge, sway and heave are defined in this work as the translations of G' in the directions of the Newtonian
RS. The angles of rotation are defined in the following order: First the rotation around the vertical axis in the Newtonian
RS (yaw or leeway angle), second the rotation around the new transverse axis (pitch or trim angle), and last the rotation
around the new longitudinal axis (roll or heel angle). To integrate in time the equations of motion a first-order explicit
discretisation method has shown to work well and is used preferably. Instead of integrating the angular velocity 3 to
obtain the rotation angles, the new orientation of the body is found by integrating the unit vectors of the body-fixed RS,

which are the columns of T'. For details on the body-motion module see [1].

2.2 FLOW SOLVER

The solution method in COMET is of finite-volume-type and uses control volumes (CVs) with an arbitrary number of
faces (unstructured meshes). It allows cell-wise local mesh refinement, non-matching grid blocks, and moving grids with
sliding interfaces. The integration in space is of second order, based on midpoint rule integration and linear interpolation.
The method is fully implicit and uses quadratic interpolation in time through three time levels.

The deformation of the free surface is computed with an interface-capturing scheme of VOF type (Volume Of Fluid),
which has proven to be well suited for flows involving breaking waves, sprays, hull shapes with flat stern overhangs and
section flare, etc. In this method, the solution domain covers both the water and air region around the hull and both
fluids are considered as one effective fluid with variable properties. An additional transport equation for a void fraction
of liquid is solved to determine the interface between the two fluids. The High-Resolution-Interface-Capturing (HRIC)
discretisation scheme for convective fluxes in the void fraction equation is used to ensure the sharpness of the interface.

The solution method is of pressure-correction type and solves sequentially the linearised momentum equations, the conti-
nuity equation, the conservation equation of the void fraction, and the equations for the turbulence quantities. The linear
equation systems are solved by conjugate gradient type solvers and the non-linearity of equations is accounted for by
Picard iterations. The method is parallelised by domain decomposition in both space and time and is thus well suited for
3-D flow computation with free surfaces — especially when they are unsteady, as in the case of freely-floating bodies —
since they require a lot of memory and computing time. For details on the flow solver see [3].

2.3 PREVIOUS APPLICATIONS AND VALIDATION

Calculations with this method including the dynamic sinkage and trim (steady-state case) were validated for the Series 60
hull and for the model of a very fat ship with a blunt bow similar to a tanker (breaking-wave computations). These two
examples showed that the method works well for very tiny changes in sinkage, trim (and also heel for the drift sailing
condition) as well as for very large ones. The inclusion of the dynamic sinkage and trim in the calculations improved the
agreement with experiments, and thus performance prediction.

Simulations of unsteady body motions were validated for 2-D drop tests with a wedge (used for slamming investigations).
Comparisons with experiments proved very good agreement for both magnitude and timing of the accelerations, velocities
and motions [1]. A validation for a 3-D case was also carried out for the model of a naval combatant in head waves and 2
DOF (heave and pitch) and showed good agreement with experiments. Slamming and green water on deck were simulated
as well. In all these simulations the body trajectory, velocity and accelerations are obtained from the flow forces and/or
external forces acting on the body without the need for prescribing the body trajectory.

The method has also been extensively applied to the steady flow around sailing yachts and for the simulation of the yachts
responses to incident waves coming from any direction [2]. Furthermore, investigations of the dynamics of very large
container vessels (up to 360 m length) sailing in extremely shallow water have been carried out (results to be published).

2.4 NUMERICAL MESH AND SIMULATION SET-UP

The model used for this investigations is a 1/4-scale model of a personal watercraft used for extensive studies in the towing
tank of Osaka Prefecture University, [4]. Its main dimensions are shown in Table I and its body plan in Figure 1.

Four grids of different resolutions and size of computational domain were used to assess the influence of these parameters.
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Table I. Model data /
length L,,  0.625 m | breath B 0.250 m
|

Il

length L,  0.600 m | draftd 0.059 m .
depth D 0.106 m | mass m 4.28 kg

deadrise (3 22°

KG 0.111 m | LCG-transom  0.285 m

Figure 1. Body plan of planing craft model

The grids were generated using the ICEM-CFD Hexa mesh generator. The coarsest grid had around 95 000 and the finest
one 230000 CVs for one boat side (symmetry plane at the centre-line plane). Even the finest grid is still a bit too coarse
in front of the model, in the wake and in transversal direction. Good resolution is achieved around the hull and in free-
surface region. The differences in forces and motions as computed on the three grids were not very large, so that in the
following only the results for the finest grid will be presented. The computational domain for the finest grid extends for
about 1.5 L, in front of the bow, 3.75 L, behind the transom, 0.65 L., above deck, 1.9 L, below the keel and 1.9 L,,,
to the side. The mesh has such a large domain, specially above the deck, to allow large pitch motions in head waves.
The CVs are mainly aligned to a water plane taking into account an average trim angle of 4.0°. Figure 2 shows the mesh

Figure 3. Numerical mesh around hull viewed from the front

Figure 2. Numerical mesh around hull viewed from the side

around the hull viewed from the side and slightly from the front and below and Figure 3 shows the mesh on the hull and
a transverse mesh surface viewed from the front. The mesh shown in the figures is the second finest. The finest grid was
obtained after a local mesh refinement in longitudinal direction in front of the model. This refinement was necessary to
avoid numerical problems with the incident waves due to highly stretched cells in longitudinal direction.

The pitch radius of gyration, not known from the experiments, was estimated to be k,, =0.2 L,, . The front, side, bottom
and top flow-boundaries were specified as an inlet of constant known velocity (boat speed in opposite direction plus orbital
velocity of the incoming waves) and known void fraction distribution defining the water and air regions (wave elevation).
The wake flow-boundary was specified as a zero-gradient boundary of known pressure distribution (hydrostatic pressure).
All calculations were performed using the standard k- turbulence model with wall functions (R, :1.8-10° to 5.6-10).

3. RESISTANCE TESTS

RANSE computations are usually carried out for a given boat speed at a time and then repeated for as many speeds as
are of interest. Here, a different approach is used: the entire resistance curve is computed in one single run. To achieve
this, the boat, starting from the position at rest or sailing at a low constant speed, accelerates very slowly until it reaches
the maximum boat speed expected. Since the acceleration is small and the flow basically converges for each instant boat
speed, the calculation can be considered to be quasi-steady. Note that although the flow is steady once converged, since
the free surface has to develop its final wave pattern, the computations (single-speed or accelerating) have to be carried
out iterating in time, i.e. solving the transient terms of the flow equations.

Figure 4 shows the resistance test computed accelerating the boat from 2 m/s to 9 m/s (F),-range from 0.8 to 4.04). The
solid line represents the resistance curve. As mentioned earlier, a very important feature of these computations is that
the dynamic sinkage and trim are computed throughout the entire F),-range. These curves are given in Figure 4 as well
(dashed and dotted lines respectively). The fat dots also shown in Figure 4 represent the results for the single-speed runs



forv, =2,3,4,5,6,7,8,9 and 10 m/s. The agreement with the resistance test calculation is good with exception of the
trim angle for F}, =1.2 (3 m/s).
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Figure 4. Numerical resistance test and computations at Figure 5. Curve shapes for boat speed, acceleration and
constant speeds At

The CPU time needed for computing the resistance curve over the entire F},-range is obviously greater than when comput-
ing only one boat speed, but it pays off if many boat speeds are to be computed. 25 hrs CPU on linux cluster using 3 AMD
2000+ processors were needed to simulate the resistance curve of Figure 4. The CPU time for computing one single speed
was about 8 hrs using one AMD 2000+ processor (1,000 time steps). That means that about 10 single speeds could have
been computed in the time needed to compute the whole resistance curve. The resistance curve for the entire F},-range
was computed performing 8,000 time steps, cf. Figure 5, and since for each time step the boat speed has changed, 8,000
different boat speeds were computed.

One important issue to take into account when performing these kind of resistance tests is to ensure that a constant Courant
Number ¢ =vAt/Ax is used for the entire F,-range. A value of ¢ < 0.5 seems to be appropriate. The Courant Number
is the ratio of the time step size At to the characteristic convection time, v/Awx, the time required for a disturbance to
be convected a distance Az. Since the mesh resolution giving Az remains unchanged for the entire Fj,-range and v
is changing (the boat accelerates), At should the suited accordingly. This is achieved in these computations by setting
At= Az, /v or a minimum value for At when v tends to zero. Here Az, is a characteristic CV length, which is given as
input at the beginning of the simulation.

The next issue to consider is that if a constant acceleration is used, in the high speed range where a small At is required,
the boat’s speed would change very slowly requiring too many time steps to reach the desired maximum speed. This is
solved by gradually increasing the acceleration with increasing speed. The resulting curve shapes for At, acceleration
and boat speed are given in Figure 5 as a function of the time step.

If the boat acceleration is small enough, the additional forces due to the added mass are negligible. In that case the single-
speed run and the numerical resistance test will yield the same results for a given speed, as is confirmed in Figure 4 with
the exception of the trim angle for 3 m/s. Furthermore, the same results should be obtained if the boat were decelerating
from maximum to minimum speed. This test was also performed using inverted function shapes for acceleration and
At. The results of the resistance test in "decelerating mode’ overlap with the lines in Figure 4 with exception of a small
F),-range between 0.8 and 1.4.

4. BOAT IN INCIDENT WAVES

This work is based on prior simulations of ship responses to incident waves coming from different directions. However,
F,, in the prior simulations was moderate (F), < 0.5). The obtained results were quite encouraging; some results could be
successfully validated with model tests and others, for which no model tests were available, showed plausible qualitative
results. Large amplitude motions including capsizing were simulated, [2]. Also the occurrence of slamming and water on
deck was simulated and animated by video sequences.

The challenge the present simulations constitute, however, results from the high F},, which introduces numerical difficul-
ties in the generation of the incident waves, since the mean flow velocity due to the boat forward speed is 2 to 3 orders of
magnitude larger than the orbital velocity of the waves. Special care is to be taken in the selection of aspect ratios of CVs
to avoid non-physical wave irregularities.

The incident waves are generated at the inlet flow-boundary by imposing the instantaneous wave elevation and orbital



velocities according to the linear wave theory. The orbital velocities of the waves are thus superimposed on the mean
flow velocity. Three wave parameters are set at the beginning of a simulation: The wave amplitude (,,, the wave length
Ay and the wave direction p relative to the boat course (u = 0° means from astern and g = 90° from port). Due
to numerical diffusion the wave amplitude hitting the boat is reduced to some extent, although the used VOF method
produces surprisingly good results on relatively coarse meshes.
Figure 6 shows a snap-shot during a simulation at an in- angle. Even the simulation of capsizing upside down is
stant when the boat is completely in the air after jump- possible.
ing in an oblique wave. The figure shows the edges of
the computational domain. Also shown is the cut of the
computational domain with the undisturbed waterplane.
In the single-grid strategy used in these simulations, the
computational domain moves as a whole relative to this
plane. The boundary conditions — the mean flow velocity,
the orbital velocity, the void fraction distribution defining
the wave elevations, the turbulence parameters and so on
— have to be very carefully imposed at each time instant
relative to the undisturbed waterplane. The VOF method
and the implemented boundary conditions have proven to
be very robust, since the free surface can leave the com-
putational domain in any place, i.e. through the top flow-
boundary in case that the boat heels or pitches with a large

Figure 6. Power boat model jumping in oblique waves at 9
m/s

4.1 VALIDATION OF MOTIONS

Figures 7 and 8 show the motions and forces for the boat sailing at 9 m/s in head waves of 0.02 m height and 3.5 m length.
Shown is also the start of the simulation: since the wave length is large in this case and the motions highly damped the
motions are already periodic after 3 to 4 periods. These simulation were performed over 4,000 time steps with a time-step

size At =0.0005 s and 5 iterations per time step. The CPU time needed for this simulation was 33 hours on one AMD
2000+ processor or 8.5 hrs on 4 processors.

The time histories of motions and forces shown in the last figures are typical for all the simulations. However, depending
on boat speed and the ratios of wave length to boat length and wave height to boat draft, the motions show sinusoidal
character, not-sinusoidal periodical character with motion periods of 1, 2 or 3 times the wave encounter period, or even
chaotic non-periodic character. Above certain boat speed and wave steepness the boat jumps completely out of the water.

Simulations in oblique waves including the roll angle and in head waves with the boat free to surge in the waves assuming
a constant drive force were also performed but will not be presented here due to lack of space.

Motions
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Figure 7. Motions for F,, = 3.6, u=180°, H,, =0.02 m and
Aw=3.5m. (T, =0.309 s)

Figure 8. Forces and moments for F,, = 3.6, p = 180°,
H,=0.02mand A\, =3.5 m

The results of these simulations are compared with experiments by Katayama et al. [4] performed at the towing tank of
the Osaka Prefecture University and with computations by Soding [5] based on an extension of Wagner’s theory. Figures
9 and 10 show respectively the non-dimensional heave and pitch for the boat sailing at 9 m/s (¥}, = 3.6) in head waves
of 0.02 m height for varying wave lengths. The heave, measured at the centre of mass of the model GG, was made non-
dimensional by dividing the maximum minus the minimum heave amplitude ;42 — Cnin by the wave height H,, = 2(,,.
The pitch angle was made non-dimensional by dividing the maximum minus the minimum pitch angle 6,,,4,—6n by the



(linear) wave slope double amplitude k£ H,, where k is the wave number. In all the simulations of Figures 9 and 10, since
the waves are relatively long and flat, the responses are periodic with the wave encounter period. The comparison shows
in general a slight improvement in prediction by the RANSE simulations compared to the Wagner-type method although
both fail to predict the peak motion by Ay, /Lyq =5.6.

Sources for uncertainties in these simulations of motions in waves are the guessed pitch radius of gyration and the re-
duction in wave height encountered by the boat due to numerical diffusion. The latter tends to reduce the predicted
non-dimensional values. On the other side, to perform experiments at such high speeds with a quite small model repre-
sents in principle a big challenge. Difficulties arise for measuring small angles and displacements, for producing regular
waves in the tank and for measuring transient motions — which depend to some extent on the initial conditions — in a very
short period of time. The latter also apply to the simulations, since the motions responses may i.e. switch from single-
period to double-period of wave encounter after a time span which is too large for RANSE simulations. In this case the
motion amplitude would change substantially. All these aspect may be deteriorating the agreement of results.
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Figure 9. Non-dimensional heave over non-dimensional Figure 10. Non-dimensional pitch over non-dimensional
wave length for H,, =0.02 m and F;, =3.6 wave length for 7, =0.02 m and F;, =3.6
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Unsteady nonlinear flows around submerged body in water of finite depth
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Introduction

Behaviour of bodies in waves is often calculated by inviscid methods, fully able to represent
the wave pattern. Linear calculations are limited to weak values of wave amplitudes in seakeeping
computations, giving results limited to fatigue calculations in ship design. In order to extend the
validity of the method to high values of wave amplitudes to predict the behaviour of ship in such seas,
non linear calculations are required. In this case, Rankine methods enable to satisfy non linear free
surface boundary conditions. For steady calculations, an iterative process has been often chosen, to
satisfy the non linear free surface boundary conditions, Raven [1] or Scullen [2]. The full and direct
resolution of the time dependent problem has been introduced by Longuet-Higgins and Cokelet [3],
using a mixed Euler-Lagrange method to solve the problem of 2D wave propagation. It is based on
two parts, an Eulerian one, where a linear problem has to be solved to obtain the strengths of the
singularities used to represent the free surface and the body. In the second part, the Lagrangian one, it
is necessary to follow the particles paths by integrating, with respect to time, the two non linear free
surface boundary conditions, to update the potential and the free surface elevation. This method has
been applied for 2D flows by Clément [4] and in 2D and 3D flows by Berkvens and Zandbergen [5],
Berkvens [6] for freely floating or oscillating bodies, by Dommermuth and Yue [7] or Ferrant [8] in
3D flows. One of the key points is in the choice of a stable and accurate stepping technique to
integrate the free surface boundary conditions. In [3], the authors use a predictor-corrector integration
scheme of the Adams-Bashford-Moulton type but saw-toothed instabilities appear; they can be
suppressed by a smoothing function. Park and Troesch [9] have studied the stability of the time
integrations and have shown that they are depending on the geometry and of the technique used; 3D
problems seem to be more stable than 2D ones. They conclude that the Euler explicit schemes were
unconditionally unstable while the implicit scheme and Runge-Kutta one are stable.

In order to avoid the numerical difficulties due to singular integrals in panel method, some
authors have proposed a method of desingularization (Webster [10], Schultz and Hong [11], Cao et al.
[12]), that is to say putting the singularities slightly outside of the fluid domain. To reduce the CPU
time, it had been shown [12] that the source distribution can be replaced by point sources without loss
of accuracy. Cao et al. [12] and Lalli [13] have proposed simple formulas to calculate the
desingularisation distance.

In the present paper, we use a Rankine panel method to study the 3D time dependent fully non
linear flow of a submerged body moving under the free surface of an inviscid fluid, with finite or
infinite water height. A Mixed Euler-Lagrange (MEL) method is used with desingularized sources
above the free surface, following [13] for the desingularised distance; the body is discretised using
source distributed panels. The results are compared with various linear and non linear methods
available. The influence of the presence of a bottom at finite distance is investigated.

Problem to solve

We consider an incompressible and inviscid fluid, and an irrotational flow. The body motion
can have unsteady velocity and direction. We use a frame of reference Oxyz fitted to the body. The
water depth is either finite or infinite. In the fluid domain, the continuity equation together with the
irrotational condition enables to use the perturbati9n Vel(l)city p(itential 0(x,y,z,t) which must satisfy
the Laplace equation. The velocity is given by V' = - U ¢)+ Nf . One boundary condition is the
condition of non perturbation at infinite distance of the body. The body condition can be written as:

T
V=00 foﬁzgi:z‘f(z)x;? (1)
n



where U (t) is the known body velocity and 7 the unit outer normal to the body. A similar condition

has to be written on the bottom if it is located at finite depth. The cinematic free surface condition can
be written as:
u
Dx L r
ZE = NS - UG) 2)
Dt

where D/ Dt is the material derivative and X (x,y, /) is the position vector of the points on the free

surface. 771s the free surface elevation. For the dynamic condition, we obtain:

Df R
=L = _oh+ =Nf <N onz = h (3)
Dp &t NS

Initial conditions has to be added: 7=0 and ¢=0 (in the whole domain) for # £ 0.

Method of resolution

Gridding

In order to use Rankine singularities, the free surface G, and the body G, are discretised by

quadrilateral panels. For the free surface, desingularised point sources located above the nodes of these
panels are used. The singularities are moved vertically with a distance Ld above the free surface. This
distance is a function of the free surface grid and has been calculated in [13] in order to lead to a
minimum error for the numerical solution of a wave propagation problem, the analytical solution of it
being known; this distance is given by: Ld = k xDx" xDy" , 4
with k=0.969, u=0.294 and v=0.016. Ax and Ay are the panel dimensions. The collocation points will
be the nodes. The body is gridded with quadrilateral panels everywhere except close to the ends where
triangular panels are used. The collocation points are the centres of gravity of the panels, the source
strength s X, being considered as constant on each elementary panel. Consequently, the free surface

boundary conditions can be written as:

a) Dirichlet condition on the free surface X, i Gfs ; i=1, np
o’ o s 1 5
3 UG- ) ®

P q s
X5 x5, 00
Y P(i - ij‘ e - Xs,|

G .
J b 1

where X's; are the np desingularized sources on the free surface and X's, the nc centers of gravity of

the panels on the body Gb. F , is the known potential on the free surface.

b) Neumann condition on the body Xl i (‘% ; I=1, nc
1 1
np (Xl - Xs. ) nc (X-XS ) Xn r
o M v W x B r (6)
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S 3 Xs 3
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1 . .
with 7 are for the nc outer unit normals of the body at the panel with center X, .
1

We then obtain a linear system of order np ~ nC to solve.

Mixed Euler-Lagrange (MEL) scheme

This method enables to solve step by step the mixed problem defined at the previous
paragraph, with a Neumann condition on the body (the normal derivative on the body is known) and a
Dirichlet condition on the free surface (the potential is known). At each time step, we have to solve a
linear system of equations deriving from the panel method, to calculate the strengths of the sources
satisfying the previous boundary conditions, (5) and (6). Then, the free surface conditions (2) and (3)
are used to update the potential and the free surface elevation.



Numerical results
Preliminary results on a single doublet

In order to check the results concerning the free surface and to optimize the calculation
parameters, we have applied the method previously described with a single doublet in transient
motion. The free surface grid is based on rectangular panels (with use of the symmetry of the problem,
only one half of the free surface is gridded) with constant length in the streamwise direction x and with
variable width (increasing of 10% from node to node in the y direction). No grid is required for the
doublet.

The doublet is formed with two (positive and negative) sources with intensity g, separated by

0.1m at a water depth of 1m under the undisturbed free surface. After an impulsive start, the steady
forward speed is U = Im.s™. In order to avoid too high velocity gradients, the velocity and the

U(t) = Uo(l— et o= mo(l— e ) (7)

where £ and o are parameters used to avoid starting instabilities. As the location and the intensity of
the doublet are known at each time, the potential on the whole free surface can be calculated. Equation
(5) is reduced to the following matrix:

gif%%%jg: goig'q %d% (8)

-1 . . . . .
A = }X - Xs.‘ , X ; and ij are collocation and source points of intensity Xsj respectively.
U i J

intensity are given by:

-1

- X k|' 1) is the potential of the doublet in X, .

F, = n)*(X, - X,

Figure 1 plots the comparison of the
present results after 10s of motion with
those of King et al [14], using an unsteady
linear method (time dependent Green
function) for 3 values of the doublet
strength. The agreement is excellent for the
lower values of the strength. When the
intensity increases, it can be seen that the
non linear wave amplitude increases too
with respect to the linear one, showing the
effect of the non-linearities.

To check the obtained results, we
have measured the wavelength of the waves
and compared them to the values of the
linear 2D theory (/ = 2pU?/ g). The

numerical values, given in table 1, are very
close to the theoretical one, the maximum
of the difference being smaller than 1.6%.

Figure 1 : Comparison of non linear and linear
[14] free surface elevation above the axis of
symmetry for a doublet in motion for three values
of its strength (7 =0.05; 0.75 and 0.9)

F A the A num error %
0.2 2.462 2.465 0.12
0.32 6.304 6.250 0.85
0.45 12.466 12.426 0.32
0.6 22.162 22.145 0.076
0.8 39.399 40.005 1.54
1.1 74.490 73.996 0.66

Table 1 : Comparison of the wave length calculated by the present method and the 2D linear theory for
various Froude numbers F




Optimisation of the parameters of the calculations

We have used the case of the doublet to optimize the parameters of the calculations as the
starting function, the time step, the spatial steps in x and y, the domain truncation on the free surface
for various Froude numbers ranging from 0.32 to 1.1. The comparison has been performed on the free
surface elevation in the central plane and the value of the wavelength. The following parameters have
been chosen:

Froude numbers | Starting parameters &, o At(s) Ax(m)
0.32 0.005 ; 2. 0.25 0.5
0.45 0.0001 ; 4. 0.25 0.5
0.6 0.0001 ; 4. 0.25 0.6
0.8 0.0001 ; 4. 0.2 0.8
1.1 4. ;1. 0.1 1.0

Table 2: Parameters chosen for the calculations

We have first performed the computations in a fixed domain (first formulation) but the
calculations have suffered from reflection of the waves in the downstream limit of the grid leading to
too large domain of computations. The results obtained after 30s with the 2™ formulation (moving
domain) are presented on figure 2. The reflected waves on the rear part of the domain are clearly
removed.

second formulation
a first formulation
second formulation

OO0 ~E R LA
cHHbHEH S e PR R ]

zoom in on the rear part
of the domain

oo o2

first formulation

Figure 2 : Comparison of the free surface elevation for calculations in a fixed and moving domain

Submerged ellipsoid

Calculations have been first performed on an ellipsoid with an axis ratio of 5:1 using the
analytical solution in unbounded fluid to choose the body grid. A 30*12 grid with step variation in
power law along the x axis has been chosen. We have compared the maximum wave amplitude of the
results obtained in [2] using a steady method of computation, figure 3. Our results are plotted as the
symbols and the ones of [2] by lines. The agreement is excellent whatever are the values of the Froude
number and of the body submersion.

In order to emphasize the non linearity effects on the wave amplitude, figure 4, we have
compared our results with those of a linear computation, Ponizy et al. [15], in the same conditions.
The linear results are plotted by lines and our non linear results by symbols. This figure shows that as
the non linear effects are important (when the depth of immersion is weak), the wave amplitude are
larger that the values given by the linear method. The difference is larger at weaker value of the
Froude number.



Steady non linear - Scullen 1998
Unsteady non linear - present method

diameter-to-depth ratio

Figure 3 : Maximum wave amplitude versus the
Froude number for various body depths
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Figure 5 : Kelvin dihedral angle versus the
Froude number
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Figure 4 : Influence of the non linear effect on the
maximum wave amplitude versus the Froude
number for various body depths

To check the results obtained, we have
tried to compare the results obtained on the same
ellipsoid than previously with the method of
Havelock [16] for a submerged source. Figure 5
shows the variation of the Kelvin angle for the
waves with the Froude number. This angle is
plotted versus the Froude number based on the

water height /4, Fh = U/ Jg.h . For weak values

of this parameter, the angle is constant with the
value 19°28’, increasing sharply until 90° close to
the critical value F =1 and decreasing more

slowly to reach the initial value for F,= 3.

The figure 6 (upper part) shows the free surface elevation for Froude numbers based on the
body length of 0.6, 1 and 1.2 for infinite water depth. It can be observed that the angle of the wave
pattern is constant. It can be seen that the wave pattern composed of transverse and V-shape waves if
F=0.6, is transformed into a pattern with only V-shape waves when the Froude number increases. Cal-
culations have also been performed in finite water depth, figure 6 (lower part). It can be observed that
the dihedral angle increases rapidly close to the critical value F, = 1 and then decreases for F, = 1.2.

F=0.6

F,=0.6

Figure 6 : Wave patterns in infinite depth (upper part, F=0.6-1.-1.2)
and finite depth (lower part, Fh =0.6-1.-1.2)



Conclusion

We have studied the unsteady 3D flow above a submerged body, and particularly the shape of
the free surface. The originality of our research is that we keep the two free surface conditions in their
nonlinear formulation. We use a MEL procedure to solve the problem: at each time step we know the
potential on the free surface and its position, we then solve a mixed boundary value problem to find
the unknown strength of the Rankine singularities. To update the potential and the elevation of the free
surface we use a 4™ order Runge-Kutta scheme. In order to avoid singular kernel in the integral
calculation we use a desingularized technique for the distribution of the singularities on the free
surface, while the body is discretised into quadrilateral (and triangular close to the ends) panels, where
the source strength is assumed to be constant. First we have applied this method to a source-sink pair
moving under the free surface to validate the discretisation and to optimize the calculation procedures.
Then, the motion of a submerged ellipsoid in infinite and finite water depth has been studied. The
influence of a Froude number based on the water height on the dihedral wave pattern has been put in
evidence; this angle increases close to F,=1.0 and decrease then to reach the value in infinite water
height. The method is also able to deal with unsteady body motions. Results concerning such motions
(change of direction, circular motion,..) will be presented during the conference. Work is in progress to
extend this method to a surface-piercing body.
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RANSE Simulations of Surface Piercing Propellers
Mario Caponnetto, Rolla Research, mariocaponnetto@hotmail.com
Introduction

RANSE methods have been applied to the analysis of ship propellers in open-water condition and
behind ships for a good decade now. So far, these applications focused on ‘conventional’ propellers.
These are typically modeled without consideration of the free water surface. This can be justified for
conventional propellers which operate sufficiently far away from the free surface. However, high-
performance boats resort often to surface-piercing propellers (SPP) which introduce several additional
challenges. The propeller profiles of SPP have a cusped leading edge, do not end in a point (tapered
forms), but have maximum thickness at the “trailing edge” which then becomes a trailing surface.
Naturally the free surface changes the flow at the propeller considerably and we have to model rapid
water exit and water entry. As in simulations of propellers interacting with ship hull or rudder, we
have to combine turning grids with stationary grids in a RANSE simulation. I will present results for
various SPP applications taken from the business experience of Rolla Propellers.

The simulations are performed using the commercial finite-volume RANSE solver Comet. Comet
proved once again to be a rather robust code capable of handling complex free-surface applications.
From a practical point of view, it is rather advantageous to have one single code to handle the
hydrodynamic analyses of calm-water planing, Caponnetto (2000), seakeeping of planing hulls,
Caponnetto (2002), and propulsive organs even if these are all unconventional.

SPP work at the interface between water and air. SPP are normally used on fast yachts for a number
of reasons. When speed becomes very high (>40 knots) conventional submerged propellers present
the major drawbacks of erosive cavitation and high resistance of their appendages (shafts, brackets,
rudders). On a properly designed SPP erosive cavitation is normally avoided since the water vapor
pocket is replaced by an air pocket; the driving shafts are completely out of the water and rudders can
be avoided using steerable shafts (Arneson drives). Moreover the possibility to trim the shafts and
tuning the vertical force developed by the propellers, can be very useful on planing yachts to obtain
the optimum running trim.

An SPP blade, during the rotation, works in the air for about 50% of the time (developing practically
no thrust), is completely submerged for 25/30% of the time and for the rest is partly submerged (in the
entry and exit phases). During the completely submerged phase only the face (pressure side) should
be wetted, while the back side should be surrounded by an air cavity connected to the free surface. On
the back side the pressure is “nominally” equal to the atmospheric pressure, while a large pressure
acts on the face. SPP blades have an outline similar to conventional propellers, but the sections
resemble those of a super-cavitating propeller. The leading edge is sharp and very thin to promote
cavity development; the face if highly cambered with the maximum depth close to the trailing edge
(cup). The shape of the back has no hydrodynamic influence as far as its contour remains inside the
air pocket. For this reason and to give the required robustness, the maximum thickness of the profile is
located at the trailing edge.

Compared to conventional propellers, there is a lack of data in the literature exploitable for the design
of an SPP. The first complete methodical series tested in a cavitation tunnel have been developed by
Rolla Propellers in 1991, Rose and Kruppa (1991). More recently an important experimental analysis,
giving more insight in the physical phenomenon, has been performed by Olofsson (1996), where not
only the global forces but also their instantaneous values on a single blade have been measured.

From the computational point, while in principle conventional potential flow theory could be applied
to SPP design, in reality the complex free-surface effects (cavity and spray), difficult to capture with a
panel method, make its accuracy insufficient for engineering purposes. Therefore Rolla started to



develop a numerical tool able to calculate SPP hydrodynamics. Due to its capability to compute
complex free surfaces and its feature of sliding meshes, the RANSE solver Comet has been tested for
our purpose. [ present here a brief description of the method used and some results.

Description of the numerical method

The flow is modeled as a two-phase flow computing both air and water flow simultaneously. The
conservation equations for mass and momentum are solved in integral form using a finite volume
method. The integrals are approximated using the midpoint rule. The SIMPLE algorithm couples
pressures and velocities. The Reynolds stress tensor (i.e. turbulence) is modeled using the standard k-¢
turbulence model. Time is discretized using an implicit Euler scheme. Demirdzic et al. (1998) give
more details of the method.At the inlet, velocity components, turbulent energy and its dissipation rate
are prescribed. At the outlet, zero gradients in longitudinal direction are enforced. On the propeller
surface, the no-slip condition is enforced using a wall function. The interface between water and air is
determined in a surface capturing method. We define a scalar function C (0<C<1) which describes the
volume percentage of water in each cell. C=1 for cells filled completely with water, C=0 for cells
filled completely with air. This scalar function allows us to model the two phases in our flow as one
effective fluid with locally weighted material properties (viscosity peff, veff ):

ueff = C uwater+ (1'C) “-air
Vetr = C Vwater+ (1'C) Vair

In addition to the RANSE and the turbulence transport equations, we solve one more convective
transport equation to capture the convection of the water-air interface defined by C=0.5. The
specially constructed high-resolution interface capturing (HRIC) scheme keeps the transition region
from C=0 to C=1 relatively narrow and allows thus a quite sharp resolution of the water-air interface,
Muzaferija and Peric (1998).

Description of the mesh

While in most of the cases performance calculations of submerged propellers can be carried on
assuming steady conditions, the flow on an SPP is always unsteady and then computation must be
solved marching in time, following the flow during some complete rotations of the screw. In our
approach the domain mesh is composed by two cylinders. A fixed external cylinder simulates the
contours of the cavitation tunnel; on its lateral surface a slip condition is imposed, while on the fore
and aft surfaces the inlet and outlet condition are imposed respectively. A smaller cylinder containing
the propeller is set inside the external one. At each time step the internal cylinder is rotated of a small
amount, and the propeller with it. Computational variables are interpolated at the sliding interface of
the common surfaces of the internal and external cylinders. The axis of rotation of the internal
cylinder can be oriented arbitrarily to represent the exact propeller shaft inclination. The Fortran code
that built the mesh has been in house developed. The mesh inside each block is structured and uses
hexahedral cells. Local refinements can be performed splitting a cell in a number of sub-cells. In the
following examples the number of cells used varied from 200.000 to 500.000.

Flow visualization

In the following series of figures the pressure distribution over the face of a blade is followed from the
entry to the exit phases. The pressure peak is at the leading edge in the entry phase, but the maximum
local pressure is found when the cup hits the water surface. In this moment also the thrust developed
by the blade, and its mechanical stress, is maximal. When the blade is completely submerged the
maximum pressure is along the leading edge (to promote ventilation) and along the trailing edge,
especially close to the tip; in between the blade is relatively unloaded. When the blade is already
above the undisturbed free-surface level (last image), the cup is still loaded by the water that is pushed
downstream but also upward; the large spray observed behind typical SPP is generated in this phase.
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The next series of figures show a cylindrical section of the propeller at r/R=0.4. These images
represent the cavity formation in the entry phase (flow from right to left). The cavity is unusually
thick due the low advance ratio used for this calculation. The influence between adjoining blades is
very clear.
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Similarly the last sequence of images shows the blades in the exit phase (flow from left to right). The
profile approaches the free surface with the back side completely ventilated. The face carries with it

some water even when it is well above the undisturbed free surface level.
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Exit phase
Forces calculation

Our main goal is to compute the correct forces and moments developed by the propeller. From our
preliminary work the code seems to be able to supply the right answers even with a moderate
numerical effort. The next figure compares our computation and cavitation tunnel experiments. The
instantaneous non-dimensional axial force generated by one blade is plotted vs. the blade angular
position. The experimental data are from Olofsson. The agreement is very good. The main
characteristics of the phenomenon are captured by the code, and the integral value of the thrust is
computed with an error of few percents. Also shown is the result obtained by a panel method.
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INTRODUCTION

Podded propulsors present alot of advantages compared to classica propulsion units: better manoeuvrability
[1], amore flexible installation of the engine, a more uniform wake distribution and a lower noise level. For
these reasons, electricaly driven pod propulsion units have gained popularity since their inception in the
early 90’s. However, the constant increasing power of the units (pod + strut + propeller) mounted on ships
such as cruise ships or navy ships induces new problems such as cavitation, noise and vibrations. In the early
stage of the projects, CFD tools help designers to predict the hydrodynamic performance of pod units.
Numerical results are compared to model measurements.

The different ongoing studies on these problems are not widely known mainly for confidentiality reasons.
Szantyr [2] proposes a surface panel potential method to compute the hydrodynamic characteristics of
podded propulsors in the vicinity of the design advance coefficient. Pustoshny and Kaprantsev [3] highlight
problems caused by pods such as cavitation and vibrations. Terwisga et al. [4] give a review of current
hydrodynamic issues in the design and application of steerable thrusters and podded propulsors. CFD and
full-scale measurements are an important aid to designers. Kinnas et al. [5] use a coupled potential-Euler
method to compute the entire flow around a podded propulsor. They do not predict the cavitation inception
on the strut.

The aim of this study is to show the feasibility of a coupling between a potential based method and a
RANSE solver to determine the hydrodynamic loading of a pod propulsor in order to determine the possible
risks of cavitation.

DEFINITION OF THE PROPELLER

Based on some available geometric parameters and hydrodynamic characteristics of an existing unit, a four-
bladed propeller was numerically determined using a mesh generator and a potential in-house solver. The
open water dimensionless performance characteristics of the propeller are presented in Figure 1. A realistic
unit similar to the one presented in Figure 2 can therefore be considered for our numerical simulations.

DESCRIPTION OF THE METHOD

The method used in this work to compute the flow around the unit (pod + strut + propeller) has been
developed by Laurens [6] to predict the characteristics of the propeller-rudder interaction. Here, the
velocities generated by propeller blade surface sources and doublets distributions are computed within a
actuator disk located directly behind the propeller. This velocity field is then used as a velocity inlet
boundary condition for the RANSE simulation of the flow around the pod and the strut. The method can be
used for steady state simulations by averaging the velocities during a propeller rotation or for unsteady state
simulations using the incident velocities in the rudder simulation.

A hybrid mesh of 700 000 cells has been generated around the pod. Particular attention has been paid to the
mesh density close to the strut and more precisely in the strut leading edge region. The position of the
leading edge of the strut is very close to the inlet boundary condition. Computational tests have shown that
this proximity of the leading edge does not interfere with the inlet boundary condition. The inlet boundary



condition based on the velacity field obtained by the potential flow solver respects the no dlip condition on

the pod surface.

In order to refine the grid within the pod boundary layer, a much larger mesh would have been required as
well as a better mesh generator. At first, the intention was to solve the Euler equations around the pod. But
the Neuman condition on the pod surface is then too close to the Dirichlet condition on the inlet velocity
plane. It was therefore decided to solve the Navier-Stokes equations to simulate the flow around the pod.
Zero velocity was aso imposed at the blade root to avoid having two incompatible conditions within a same
cell and to account for the forward hub boundary layer. Because of the relatively coarse grid within the pod
boundary layer, there is no point a this stage to invoke a turbulent model. Simulations are therefore
performed in laminar flow conditons.
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Figure 1. Open water propeller dimensionless performance predicted by the potential flow solver.
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RESULTS

Y-Lift (Cl), Z-drag (Cd) and Z-moment (Cm) hydrodynamic coefficients calculated on the strut in open
water condition (without the propeller) are presented in Table 1. Although, Cl and Cm are expected to be nil
because of the symmetry, we considered these values to be small enough to be regarded as negligible.

Pod without propeller Cl Cd Cm

- 0.004 0.024 -0.013

Table 1. Hydrodynamic lift, drag and moment coefficients of the translating pod without the propeller

The hydrodynamic coefficients computed on the strut for propulsion tests in steady state conditions are
presented in Table 2. As expected the hydrodynamic coefficients of the pod change in terms of the propeller
loading. The Cl and Cm values show a shift from zero which increases with the propeller loading due to the
rotational flow induced by the propeller. Cd is increasing because of the lift induced drag but a better
representation of the pod boundary layer may show a different result.

Pod with propeller Cl Cd Cm
J=0.87 - 0.06 0.025 -0.162
J=05 - 0.225 0.060 - 0.554

Table 2. Seady hydrodynamic lift, drag and moment coefficients of the pod with the propeller

The averaged hydrodynamic coefficients computed on the strut for propulsion tests in unsteady state
conditions are presented in Table 3. In view of the findings of reference [6] the values of Table 3 were
expected to be closer than those of Table 2. Further studies using a more refined mesh are necessary.

Pod with propeller Cl Cd Cm
J=0.87 - 0.043 0.029 -0.108
J=0.5 - 0.247 0.077 - 0.599

Table 3. Unsteady hydrodynamic lift, drag and moment coefficients of the pod with the propeller

The fluctuations of these coefficients in unsteady state conditions for both propeller loadings (J=0.87 and J
= 0.5) are presented in Figures 3 and 4. The amplitude of the fluctuations increases in accordance with the
propeller loading as expected. We aso note that the signals present different shapes. This behaviour which
was aready shown for the rudder in reference [6] tends to indicate that a complete coverage of the propeller
loadings range must be simulated in order to predict the risk of vibrations occurrences which are not
necessarily limited to the BR (Blade Rate).

Finally, Figure 5 shows the pressure coefficients (Cp) curve for a strut section (R = 0.9) at a given time step
when J = 0.87. The same results are displayed in Figure 6 for J = 0.5. It is important to note that the Cp
minimum value decreases significantly depending on the propeller loading since it may induce cavitation
inception. The notch appearing on both curves around x/c = 0.1 is caused by the geometry.

DISCUSSION

The numerical method presented here can be used to estimate pressure fluctuations on the pod strut for
various advance parameters. This will be useful in the early design stage and will help the designer to
determine the dimensions of the propulsion unit.

The strut is not only excited a the blade rate (BR) frequency. For a low propeller loading, significant
amplitudes of the fluctuating forces appear at the multiple of the BR frequency.

The pressure distributions computed on the strut show that the cavitation inception region is situated close to
the strut leading edge based on the local minima pressure value. For a more accurate prediction of
cavitation risks, the whole strut has to be inspected.
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Figure 6. Pressure coefficient distribution on the strut section situated at R= 0.9 (J = 0.5)

PERSPECTIVES

Future studies will be devoted to mesh improvements in the boundary layer region. This will alow for a
more accurate measurement of the drag effects. Additiona studies of drag-induced effects will alow to
determine any possible propulsion efficiency increase. Moreover, modifications of the geometry of the strut
will be proposed to delay cavitation inception. Finally, estimations of vibrations induced by pressure
fluctuations during manoeuvring phases will be discussed.
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Uncertainty Estimation :
A Grand Challenge for Numerical Ship Hydrodynamics

Luis Eca (eca@marine.ist.utl.pt)
Martin Hoekstra (M.Hoekstra@marin.nl)

1 Introduction

For many years model testing has been used as a fundamental tool of the development of ship
hydrodynamics. Nowadays, it is standard practice in experimental fluid dynamics to indicate the un-
certainty of a specific measurement. It is hard to believe that Computational Fluid Dynamics may
establish itself as a reliable alternative and complement to model testing without indicating the nu-
merical uncertainty of a given prediction.

The quantification of the uncertainty of a numerical prediction is commonly known as Verification
of calculations, [1]. Many of the procedures proposed in the literature are based on grid refinement
studies and Richardson extrapolation (RE), like the well known Grid Convergence Index (GCI) intro-
duced by Roache, [1] and the method proposed by Stern et al. in [2]2. Other alternatives are based on
techniques applied to single grid calculations, which, if successful, would clearly be very powerful
due to the need to compute only a single grid. Examples of this type of approaches are discussed in
[4], [5] and [6].

Recently, we have investigated the difficulties of performing a reliable grid refinement study for a
practical ship hydrodynamics application, which often corresponds to a complex turbulent flow, [7] to
[12]. In [7], we have tried to estimate the numerical uncertainty of the calculation of the flow around
the KVLCC2 tanker? using techniques based on RE. This effort led to a set of 24 grids where the
application of the standard techniques available was found to be rather troublesome. One of the most
striking features found in the data was the existence of scatter, which makes the estimation of the
uncertainty from a single grid triplet less reliable.

The difficulties found in [7] led us to address simple test cases, [9], to identify the main difficulties
of applying methods based on Richardson extrapolation to the uncertainty estimation in complex
turbulent flows. In our tests [11] and [12], we have identified several sources of scatter in the data
of a grid refinement study: the lack of geometrical similarity of the grids; the use of switches in the
turbulence models; the interpolation/integration techniques required to obtain a flow variable which
is not directly available from the flow solution at the grid nodes.

These difficulties are almost impossible to avoid in a complex turbulent flow and so we have
tested a least squares root approach, [10], to be able to deal with the existence of scatter in the data.
The reliability of such procedure has been checked in several test cases, [11], which led us to the
conclusion that the establishment of a reliable procedure for a practical calculation may be more
difficult and time-consuming than what would be desirable. Therefore, we have started a systematic
study of the procedure based on a least squares root version of Roache’s Grid Convergence Index.

The results presented in [12] for a simple turbulent boundary-layer with zero pressure gradient
are encouraging. However, further testing is required to investigate the viability of such method in a
practical application. Furthermore, it is important that this or other methods of uncertainty estimation
are applied by different groups to assess the difficulties and usefulness of each method in order to de-
velop robust and reliable procedures for uncertainty estimation. Therefore, we have selected two 2-D
steady, incompressible, turbulent flows taken from the Ercoftac Database, [14], which we propose to
the Numerical Ship Hydrodynamics community as a starting point for the joint evaluation and devel-
opment of reliable tools for uncertainty estimation. For these two test cases, we have produced sets

1This method is the basis of the procedure proposed in the ITTC Quality Manual, [3].
2This attempt follows the citation of the mathematician George Polya cited by Roache in [13] to introduce the Method
of the Manufactured Solutions: "Only a fool starts at the beginning. The wise man starts at the end”.



of geometrically similar, single block, structured grids which can be used by almost all the numerical
approaches available.

2 Uncertainty estimation with aleast squaresroot approach
The basis of our procedure for the estimation of the uncertainty U of the solution on a given grid
is the standard Grid Convergence Index (GCI) method, [1], which says

U= Fs‘aRE’ : (1)

Fs is a safety factor and dg¢ is the error estimation® obtained by Richardson extrapolation:

Oe =@ — @ =ahf, (2)
where @ is the numerical solution of any local or integral scalar quantity on a given grid (designated
by the subscript ), @ is the estimated exact solution, a is a constant, h, is a parameter which identifies
the representative grid cell size and p is the observed order of accuracy.

There are three unknowns in equation (2): ¢, a and p. Therefore, three geometrically similar
grids are required to estimate dge. If solutions on more than three grids are available, more than one
grid triplet can be chosen to estimate dge. It is our experience that these estimates can vary a lot.
Therefore, we compute @, a and p in such cases with a least squares root approach that minimizes
the function:

S(g.a,p) = \/i(cn ~(@+anp)’. ©

where ng is the number of grids available. The minimum of (3) is found by setting the derivatives of
(3) with respect to @, p j and aj equal to zero, [11].

When we only have a grid triplet, it is not difficult* to classify the apparent convergence condition
from the convergence ratio:
R %%
-%
where @, stands for the finest grid solution, ¢, for the medium grid and ¢, for the coarsest grid
solution. As mentioned by Roache, [15], we have:

O<R<1 = Monotonic convergence R>1 = Monotonic divergence
IRl<1AR<0 = Oscillatory convergence R < —1 = Oscillatory divergence

When more than the three grids are available and the least squares root approach is applied this
classification is not as straightforward, because the data may exhibit scatter, [11]. Therefore, we have
established the apparent convergence condition using the p obtained from the least squares solution
of equation (3). To identify the cases of oscillatory convergence or divergence we also perform a fit
using @ = | — @, | in (3). The following four conditions are applied in sequence:

1. p > 0 for ¢ = Monotonic convergence.
2. p > 0 for ¢* = Oscillatory convergence.
3. p < 0 for ¢ = Monotonic divergence.

4. p < 0 for ¢* = Oscillatory divergence.

3In this case we are talking about the discretization error. However, one should not forget that we also have the
round-off error and the iterative error that we are assuming to be negligible in this section.
4This does not mean that the classification based on a grid triplet is reliable.



Our experience with the GCI method has shown that its application in monotonic convergent
solutions which exhibit an observed order of accuracy significantly larger than the theoretical order
of accuracy may be troublesome. To avoid these problems, Roache, [16], suggests that the error
estimation should be performed with the theoretical order of the method when the observed order of
the method is larger than the theoretical one. This would mean in a simple three grids study, that the
data of the coarsest grid would be irrelevant and that the error estimation would be performed from
the data of two grids. This has been one of our criticisms, [17], on the procedure proposed by Stern
et al. in [2]. Therefore, we have considered a different alternative based on an error representation
with power series of fixed exponents, which we have tested before in [11]. The idea is simple and it
has been discussed in [18]. When the observed order of the accuracy is larger than 2, we consider an
alternative representation of the error estimation given by :

Ore2 = @ — o = ashf +ahy . 4)
In equation (4), there are still three unknowns: @, a; and a,. This means that we still require the

information from at least three grids to perform our error estimation.
In our least square root approach, the solution of (4) becomes the minimization of the function:

(@b, ay, @) = \/;m — (o ayh2+ aph?))? ©)

that leads to a system of linear equations, [11]. The value adopted for the uncertainty estimation is
the maximum of |8gc| and O, |-

In the cases of monotonic convergence, the standard deviation of the fit, Ug, is used as one of the
contributions of the uncertainty. Us is given by

Ny Ny

> (- (@+ahP))? > (@- (@+a;h?+ a,h?))’

Us= 4| = or Us= 4| = 6
S ng—3 S ng—3 I ()

depending on the equation, (2) or (4), used to estimate the error.
The procedure for the estimation of the numerical uncertainty, valid for a nominally second-order
accurate method, is as follows:

1. The observed order of accuracy is estimated with the least squares root technique to identify
the convergence condition according to the definition given above.

2. For monotonic convergence with 0.5 > p < 2:
The uncertainty is estimated with the G.C.I., equation (1), using Fs = 1.25 and the numerical
error estimated with Richardson extrapolation, (2), using the least squares root technique. The
standard deviation of the fit, Us, is added to the uncertainty.

3. For monotonic convergence with 2 < p < 4.5:
The uncertainty is estimated with the G.C.I., equation (1), using U = 1.25max(|dge|, |Ogeol)-
Us, is added to the uncertainty.

4. For monotonic convergence with p < 0.5 or p > 4.5 and for oscillatory convergence :

U is set equal to the maximum difference between the solutions obtained in the available grids
multiplied by a factor of safety. Fs = 3 for p < 0.5 and Fs = 1.25 for p > 4.5.



5. The uncertainty estimation is not performed for the two divergence conditions.

This procedure is very similar to the one tested in [12]. However, we have introduced the power
series expansion with fixed exponents in cases where the observed order of accuracy is larger than
expected to serve as a confirmation of the error estimation obtained from Richardson extrapolation.

In the previous description, we have assumed that the iterative and round-off error are negligible,
which may not always be possible to achieve. The iterative error is a consequence of the iterative
procedures commonly applied in the solution of the non-linear systems of algebraic equations solved
in Computational Fluid Dynamics. In principle, the iterative error maybe decreased as far as the
machine accuracy permits, which defines the minimum level of the round-off error.

The evaluation of the discretization error requires grids in the so-called asymptotic region, which
usually means highly refined grids. On the other hand, the increase of the grid density may be trouble-
some to ensure that the iterative error is negligible and it also increases the round-off error. Therefore,
one should be aware that it is not possible to increase the grid refinement indefinitely in a grid refine-
ment study.

3 Example of application

As an example of the problems that we may face, figure (1) presents the convergence of the
friction resistance coefficient, C, with the grid refinement of the flow around the KVLCC2 Tanker at
model scale Reynolds numbers. The calculations were performed with PARNASSQOS, [19], and the
integration of the wall shear stress was performed with a third order technique, [11]. The error bars
estimated with our procedure for the two finest grids are plotted in figure (1). Although these results
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Figure 1: Friction resistance coefficients as a function of the typical cell size. Turbulent flow around
the KVLCC2 tanker.

are not discouraging, it is clear that it is not easy to perform a reliable uncertainty estimation with this
behaviour of the data.

4 Aninvitation to the numerical ship hydrodynamics community

Our experience so far has shown that it is important to test the uncertainty estimation procedures in
simple test cases to build confidence and to investigate the origins of the difficulties that we may have
to face in practical applications. Therefore, we have selected two test cases of 2-D, steady, incom-
pressible, turbulent flows from the Ercoftac Classic Database to evaluate our uncertainty estimation
procedure: Case 18, [20], the flow over a hill and Case 30, [21], the flow over a backward facing step.
In both cases there are experimental data available.

For the flow over the hill we have generated two sets of 11 geometrically similar, single block,
structured grids. The first set includes nearly-orthogonal grids whereas the second set includes vertical



straight lines. The grids range from 101 x 101 to 401 x 401 grid nodes. The coarsest grids of each set
in the hill region are depicted in figure (2).

Nearly-Orthogonal
Figure 2: Coarsest grids for the flow over a 2-D hill.

For the backward facing step we have generated three sets of 7 geometrically similar grids ranging
from 101 x 101 to 241 x 241 grid nodes. The grid sets include also single block, structured grids and
so the two kinks of the wall geometry are included at the boundary line. In two of the sets, there is
always a grid node at the two kinks, whereas for the third set there are no grid nodes at the wall kinks.
Figure (3) illustrates the coarsest grids of each set.
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Figure 3: Coarsest grids for the flow over a 2-D hill.

For these two test cases we have generated inlet conditions for the velocity components and for the
turbulent quantities of the following turbulence models: Menter’s one-equation model, [22], Spalart
& Allmaras one-equation model, [23], Low Reynolds Chien’s k — € model, [24], and TNT and STT
k — w models, [25] and [26].

For all these turbulence models we have computed the flow field in the available grid sets and
reduced the iterative error to machine accuracy. With these results we have performed uncertainty
estimates with the method described above to check if the intervals of the solution of a given flow
variable obtained from different grid sets overlap.

All the grids and boundary conditions of these two test cases are available to all the groups of the
Numerical Ship hydrodynamics community which are interested in performing this verification exer-
cise. We believe that we could learn a lot from the experience of performing uncertainty estimations
with different procedures and using CFD methods based on different approaches in a common grid
set. Therefore, we invite all the groups to perform such calculations, which could then be confronted
in a Workshop that should lead us on the way to produce a reliable procedure for the uncertainty
estimation in numerical ship hydrodynamics.
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RANSE and Vortex-Lattice Simulation for Podded Rudders

Ould El Moctar, Afred Junglewitz, Germanischer Lloyd, moct@GL-Group.com

Podded drives have been developed and successfully introduced in the marked during the
last two decades. Despite of some problems of single components, podded drives have
proven their suitability and capability as the main propulsion and steering device. They are
used mostly in the segment of cruise liners and ferries which need especially at low ship
speed a good manoeuvrability. The installed power ranges from 5 up to about 20 MW per
piece. The most spectacular ship with podded drives will be launched this year: the Queen
Mary 2 with four pods totalling about 80 MW driving power. The ship with a length over all of
345 m will have a speed of 30 kn.

In contradiction to conventional rudder propellers, podded drives produce the lateral steering
force not only by changing the propeller jet direction, but also by using a considerable area of
the shaft like a conventional rudder. In this respect the pod can be regarded as the Sphinx of
steering.

Traditional rules can not be applied on a pod due to the mixed nature of steering device.
Consequently, new approaches have to be developed based on CFD calculations and
mechanical considerations. Since the traditional rules incorporate decades of positive
experience a new approach should be based on traditional formulae or at least should show
a connection or comparative philosophy.

The current paper deals with the steering capability of a pod. As an example a SSP-type pod
( Siemens Schottel Propulsor) has been chosen. The calculation results of propeller in
inclined flow obtained with different methods will be presented. Steering forces and moments
are calculated with a RANSE and a Vortex- Lattice code and correlated to those of a
conventional rudder. Traditional formulae are applied for both — conventional rudder and pod
— and conclusions are drawn, how the gap could be closed with a view on further steps in the
near future.



Numerical study of a suction anchor
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Introduction

The suction anchor is a new concept designed to provide strong mooring to offshore platforms. This
anchor is a hollow steel cylinder (over 15 m in height) that is deeply embedded in the seabed. Part
vacuum is created inside the anchor to ensure a good fixation. The positioning of such a cumbersome
element causes some problems to arise, especially when the anchor is lowered from the ship to the
seabed. During this translational vertical movement, the anchor is submitted to the ship heave. This
additional movement is likely to generate extra constraint on the wire, which could in turn lead to its
deterioration. Experimental tests have been performed by Ifremer, using a scaled model, Fig.1. This
work aims at simulating the movement of the anchor using a new version a commercial code Fluent.
The computations will consider a sinusoidal movement of the anchor (roughly corresponding to its
heave) both in a fluid at rest and in a uniform flow. They will be validated with the experimental
results provided by Ifremer.

Experimental setup

Experimental results are issued from tests realised in the basin of Ifremer, at Brest, in December 2001,
in partnership with Bouygues-Offshore. The basin is 10 meters depth, 50 m long and 12.5 m large,
Fig.2. For these tests, a model of suction anchor is hanged on a vertical wire loop, which is anchored
at the bottom by two pulleys and moved at the top by a servomotor. The servomotor is PC-controlled. .
To simulate the heave of the anchor, vertical sinusoidal motions are imposed at several periods and
amplitudes, with or without superposed vertical translatory motions. Sensors measure out the
displacement, speed and acceleration of the model as well as the vertical hydrodynamic forces on it.

The hydrodynamic forces are supposed to be as :

_ar dez npdz|dz
=M. i +B. ditds
where z is the vertical displacement of the model. M, and B are two coefficients which characterize the
hydrodynamic behaviour of the model, respectively the added mass and the quadratic damping
coefficient.

A numerical identification using the Fourier series of force and displacement provides these two
coefficients. The comparison between numerical and experimental results can be then more accurate.

Model description

We use the Beta version of the code FLUENT 6 which includes a new functionality enabling to
deform the mesh and therefore generate the unsteady movement of a body. This version will be tested
on the simple movement of the suction anchor.

We choose a computational domain according to the experimental set up, which itself has a reduction
coefficient of ten. The main geometrical characteristics of the anchor are given hereafter. Its upper
surface is doted with two circular holes to allow water to flow inside the anchor. These holes can be
caped if need be.

length 1730 mm, diameter 450 mm, Fig.3

lateral thickness 4 mm, border thickness 10 mm,

holes - diameter 31 mm, height 80 mm.

weight 34.4 kg,

YVVY



Meshing

Given the geometry of the anchor, it is tempting to use a 2D axisymmetrical mesh. In this case, the
holes on the upper surface cannot be correctly modelled, and are substituted with a single hole on the
axis of the anchor, with an equivalent area. Although this introduces some minor changes in the flow,
we believe that these changes are well balanced by a considerable decrease of the mesh size and
computational time. A very tight structured grid is generated, in particular in the zone close to the hole
and along the anchor, to accurately compute the flow in the boundary layer, Fig.3. The number of
hexahedral cells is 37000. In order to check the influence of the changes in the geometry of the upper
face, a 3D hexahedral mesh has also been generated, Fig.4, using approximately 110000 cells.

To use the dynamic layering model implemented in Fluent 6, three zones are defined. One will move
with the anchor and will include the dynamic mesh the two other zones, which surround the first one,
will be fixed. In a given fixed zone, cell layers are either created or destroyed according to whether the
dynamic zone moves towards or from a fixed zone. Several parameters can be used to monitor the
creation and destruction of cell layers, including the layer thickness, Fig.5:

if the dimension of the cell is not between two given values [c-[,(1+s) -/ ], the code will add a new
cell layer [1]. The addition or suppression of layers occurs in the vicinity of the dynamic grid.

The parameters for this dynamic layering are:

- ¢ — a dislocation coefficient <<split/collapse factor>> (c=0.4) ;

- s— a regeneration coefficient <<spring constant factor>>( s=1) ;

- | — reference dimension along the x axis (movement axis) for elementary cell (/ = 0.015m).

Given the fact that we used a beta version, only the movement of a rod could be modelled at first.
Later on we have had the possibility to build a movement using a programmable function. This point
has been very important for the success of this study.

Resolution

The fluid is incompressible but viscous. The boundary conditions are: velocity inlet of 0.8m/s, outflow
in the vicinity of the seabed, symmetry along the axis.

The Reynolds number is 1.45-10° Generally we use the k-¢ standard model for turbulence. The k-o
standard model has also been used on some occurrences.

Residuals are reduced to 10™. We choose an implicit segregated scheme. After convergence with
“first-order’ scheme, we use a second-order scheme.
We do not use the gravity because the experimental set-up eliminates its effects.

First Numerical results

The first test was to compare the results in 3D with 2 holes and the results in the axisymmetrical case
with a single hole. We did several calculations for a stationary flow and although some noticeable
changes in the flow were observed, the net results for the drag on the anchor were strictly the same.

To compare with the experimental results, we choose the following sinusoidal movement:

z=A-cos(2-7-1/T). The movement begins with the anchor first going down. The forces are

positive when they are oriented toward the top.

Several cases have been simulated:

= period T=2.222s and several amplitudes A=0.1, 0.15, 0.2 (m),

= amplitude A=0.1/m and several periods 7=1.389, 2.222, 3.03, 4.762 (s),

= in the case, 7T=1.389s, A=0.2m, we simulate both situations with the hole open and shut. The
differences between the holes open or shut seem to be insignificant.

As can be seen on Fig.5, the forces on the anchor increase when the amplitude is increased.



Comparison with the experimental results shows a poor agreement, Fig.6. Important differences can be
observed for the maximum and minimum effort (in the legend, ‘'mgama’ denotes the force due to
added mass).

This discrepancy between the numerical and the experimental results is observed in all cases, whatever
the amplitude and the periodicity.

Displacement

The movement is given with the function z = A4 - COS(2 7-t!T ), but in the beta version of the code

we have to use the movement of a piston. When the theoretical movement: z = A-cos(Z-ﬂ'-t/ T )

(« cos » on Fig.7) is compared to the actual numerical path, it can be seen that the two curves are not
superimposed. In fact, the extremes are almost identical but there is a slight difference in the medium
part of the curves because the length of the piston is not large enough. The movement in the code
doesn’t correspond to our case. The Fourier analysis shows that the ratio L/R (length of the rod L and
the diameter R of the crank) must be larger than 10 to have little influence on the symmetry of the
movement.

If the length of the rod is too large, it becomes difficult to reach the convergence of the computations.
By changing progressively this length from 10 to 20, this convergence is eventually obtained, and in
the last step we can calculate the movement for a length of 20.

In the final version of Fluent 6, it is possible to model a real movement using a function.

Numerical results

When the movement of the anchor is corrected and is truly sinusoidal, the agreement between
numerical and experimental results turns out to be very satisfying for all the studied cases. Some
examples are shown on pictures 8 and 9, for the anchor in a fluid at rest. When we calculate the
damping coefficients between the holes open or shut, both for the numerical and experimental results,
we can see that when we shut the holes, this coefficient is reduced by 25%. For translation and heave,
the comparison is again excellent, except close to the extreme where we have some discontinuities
most likely due to a large time step. Unfortunately the time step could not be further decreased, since it
took a week to obtain the results for 4 periods with a Sun Ultra 10 workstation.

Conclusions

Several conclusions can be drawn from this work:

» We have to be careful about the imposed movement; programming the movement with the rod
isn’t very convenient. The best way to create the good movement is to use the profile function in
Fluent.

»  The results are not affected by the opening of the holes on the upper surface of the anchor. The
results are very sensitive to the movement, but if the movement is accurate, the numerical results
are very close to the experimental ones.

»  On this example, we consider ourselves satisfied by the new version of Fluent. We have begun to
simulate other movements using programmed functions.

REFERENCES
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Adaptive grids for RANSE based on numerical error

Alexander Hay and Michel Visonneau
Division Modélisation Numérique, Laboratoire de Mécanique des Fluides CNRS UMR 6598
Ecole Centrale de Nantes, B.P. 92101, rue de la no€ 44321 Nantes, France

1 Introduction

The goal of CFD research is to find solutions free from
numerical error or at least of a desired prescribed ac-
curacy for the lowest computational and human costs.
Adaptive h-refinement techniques have been designed
for reaching such a solution by dynamically refining
and coarsening meshes until the error is under a pre-
scribed value.

For guiding the adaptation process both error estima-
tor and error indicator can be used. The error estimate,
considered here, is based on an equation for the error.
The equation presents a source term which is approxi-
mated by the use of a higher order operator.

The whole procedure is applied to steady turbulent
flows and unsteady multi-fluid flows. The gains made
by the use of the adaptive mesh strategy compared to
single mesh computation are evaluated.

2 Flow Solver

The ISIS flow solver, developed in our laboratory, uses
the incompressible Reynolds-Averaged Navier-Stokes
equations. The solver is based on the finite-volume
method to build the spatial discretization of the trans-
port equations on unstructured grids. The face-based
method is generalized to unstructured meshes com-
posed of arbitrary volume shapes (they are bounded by
an arbitrary number of constitutive faces).

The velocity field is obtained from the momentum
conservation equation and the pressure field is extracted
from the mass conservation constraint transformed in
a pressure equation. The whole discretization is fully
implicit in space and time and is formally second or-
der accurate. Several near-wall low-Reynolds number
turbulence models, ranging from one-equation Spalart-
Allmaras model, two-equation k£ — w closures, to a full
Reynolds stress transport R2;; — w model are imple-
mented in the code.

Incompressible and non-miscible flow phases are
modeled through the use of conservation equations for
each volume fraction ¢; of each phase. These vol-
ume fractions permit to determine the effective physical
properties of the flow. More details on this topic can be
found in [1]

3 A posteriori error estimation

The error considered here is often called discretization
error. It involves the discretization of the equations
which are to be solved as well as the discretization of
the geometry and the boundary conditions .

The present method is based on an equation for the
discretization error in order to take into account the
known transport properties of this quantity. The local
error is thus potentially influenced by the whole com-
putational domain.

Considering the exact solution ¢ which satisfies the
differential operator £ representing the PDE governing
this conserved variable, and a grid GG, of size h from
which a numerical solution ¢ is computed with the
ISIS code, then the discretized error is defined as :

en=¢— dn

An equation for the error is derived by applying the ex-
act operator £ of the PDE that governs ¢ to ej. For a
linear operator the following equation can be derived :

’C(eh) = ’C(d)) - £(¢h)
=0- ﬁ(¢h)
= —L(¢n) = Sh

From this equation, it can be observed that the error is
driven by the same transport rules than the solution ¢
itself and the extra source term comes from the trunca-
tion of functions that appeared in L.

For a nonlinear operator, the same analysis is not pos-
sible but similar features are expected. Thus, the opera-
tor L of the Navier-Stokes equations is linearized in the
Newton’s sense.

The source term of the resulting equation can not be
computed exactly as it involves the exact operator of
the PDE. A higher order discretized operator £j, is con-
sidered in order to obtain an approximation S, of .Sj,.
For this approximation to be reliable, £; must be more
accurate than the discretized operator L; of the flow
solver. The higher order finite-volume discretized oper-
ator is obtained by a cubic reconstruction of ¢, and its
derivatives at nodes and center of faces of the control
volume and by integration over faces by the Simpson’s
rule. The whole discretization is formally fourth order
accurate. And, as £} is fourth order accurate and L, is
at most second order accurate, a good approximation of
this source term is thus expected.



Concerning the resolution of the equation for the er-
ror, we have shown a posteriori that it is not neces-
sary to use the higher order operator. Both £; and
L, have been considered for solving the equation and
close results have been obtained for the error field. Con-
sequently, the error can be computed with the same
method (and on the same grid) used for solving the PDE
of ¢. Finally, the equation that leads to an estimation of
ep is :

Ln(en) = =L (¢n) = Sy,
More information on the developments of this method
and its results can be found in [2].

4 Adaptive Techniques

During the adaptive procedure, each control volume
marked for grid refinement is subdivided into several
smaller ones of the same topology. As the initial mesh
can possibly be too fine in some region for the desired
accuracy, it can be coarsened by an agglomeration algo-
rithm. The adaptive procedure is completely included in
the ISIS code making it an automatic single numerical
tool.

The adaptive procedure is summarized on figure 1. It
starts with the computation of a first numerical solution
on an initial uniform grid with an arbitrary number of
cells. The error estimator or the error indicator is then

Criteria
reached ?

IERROR ESTIMATION

( CFD SIMULATION |

idual. Computation of the
error a posteriori

Reduction of r
of several orders

Initial Mesh "~ ADAPTATION
Refinement
Unrefinement

INTERPOLATION

Figure 1: Adaptive procedure

computed to decide which changes should be made on
the current mesh. The criteria of selection of a cell 7 on
the current Grid; are the following :

Refinement : Errgriq, (i) > TolR* |[|[Errgria, |21

Unrefinement : Errgyiq; (i) < TolD * || Errgria, || 21

The parameters TolR and TolD control the intensity
of the procedure during one adaptive step for the re-
finement and the unrefinement process respectively.
The numerical solution is then “mapped” on the new
adapted mesh and the computation is resumed on this
grid. If an error estimator is considered, this procedure
is repeated until the error estimate is below a desired
value. In practice a reduction of a factor Red of the L
norm of the error over the domain is asked for handling
the accuracy of the numerical solution. Thus, the pro-
cedure ends when the current Grid; satisfies :

[|Errarid, || o1

||[Errarid|lo1 < Red

All these possible grid alterations can be canceled as the
initial mesh can be recovered by the use of connectivi-
ties between the different generations of meshes. Thus,
the regions of the mesh that must be adapted are allowed
to change during the computation as it is the case for
unsteady computation.

S5 Numerical application

5.1 Turbulent flow around a square-cross
section cylinder

The problem consists in simulating the flow of air for a
Reynolds number of 22000 around a square-cross sec-
tion cylinder located in the vicinity of a solid wall. The
geometry is described on figure 2. With a gap between
the plate and the bottom square-cross section cylinder
of S/D = 0.25, the flow is stationary.

The two-equation k& — w turbulence model of FR.
Menter is considered in this study. Details on the
computational domain and boundary conditions can be
found in [2]. For this non-linear problem, the exact so-

prescribed inlet wall of the tunnel free outlet
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s
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Figure 2: Computational domain

lution is not known. In order to evaluate the quality of
the adapted solutions, a uniform grid refinement study
has been performed. Six uniform grids of increasing
fineness have been considered for making single mesh
computations (see table 2). The different solutions ob-
tained from the considered grids converge to a practi-
cally mesh independent solution (see figure 5) which
will be used as a reference for evaluating the quality of
the adapted solution.

The coarsest uniform mesh (Grid 1) is used as the
starting point of the present computation. The norm of
the error vector of the velocity, and the error for the ki-
netic turbulent energy k were considered in the adaptive
process. It is believed a priori that taking into account
the error for k allows to resolve accurately the turbulent
properties of the flow since the kinetic turbulent energy
is linked to the intensity of turbulence.

The parameters that control the adaptive procedure
are TolR = 0.4, TolD = 0.08 and Red = 5. The same
tolerance of refinement TolR is applied for the treatment
of 5} and k. For reaching the chosen criterion, three
adaptive steps of isotropic refinement were performed
and the resulting final adapted mesh has 35314 compu-
tational points. The initial uniform mesh and the final
adapted mesh obtained after the three cycles of adap-
tation are presented in figure 4. The regions that were



refined or coarsened can clearly be seen along with the
agglomerated cells created by unrefinement of the ini-
tial mesh.

Figure 5 presents a comparison of the profiles of the
normalized streamwise component of the mean flow
U/Uy, for the all the grids considered, extracted at
X/D = 0, i.e. on the middle top face of the square
cylinder. The profiles of the normalized shear compo-
nent of the Reynolds stress are also given. It can be con-
cluded from these profiles that the solution of the adap-
tive procedure has reached the fine grid solution. This
is especially true for the turbulent correlation. More
precisely, the adapted solution profiles are close to the
ones obtained on the uniform grid 5 so that the two com-
putations can be considered as comparable in terms of
accuracy. In figure 6, the same profiles are extracted
at X/D = 2, i.e. in the wake of the square cylinder.
Once again, these profiles indicate that the solution of
the adaptive computation is comparable to the uniform
grid 5 solution. From these results, it can be concluded
that the adapted grid solution is at least of comparable
accuracy to the one of the uniform grid 5 solution.

In order to quantify the gains obtained by the use
of the adaptive procedure compared to single uniform
mesh computation, table 2 presents also the number of
computational points of the different meshes considered
in this study and the CPU time (relative to the one of the
coarsest uniform grid) needed for reaching a converged
solution. The CPU time for the adaptive computation
referred to the whole adaptive procedure from the ini-
tial grid to the final adapted grid including error esti-
mations. Compared to the uniform grid 5, which has
been demonstrated of the same accuracy, the adaptive
computation requires almost 4 times less computational
points and more than 10 times less CPU time.

5.2 Unsteady multi-fluid flows

The free oscillations of a free surface in a tank are con-
sidered here. The initial state of the interface between
air and water is a half-cosinusoide of amplitude 0.005m
for a mean level h of 0.05m as illustrated on figure 3.
As the main feature of interest is an accurate capturing
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Figure 3: Computational domain

of the interface, the adaptation process will be guided
by the norm of the gradient of the volume fraction so

that it will occur around the free surface. Changes in
the mesh are performed 20 times per period. Examples
of meshes generated during the adaptive computation
are shown on figure 7. The force applied during two
periods by the flow on the left-hand side wall of the
tank computed by the adaptive computation is plotted
on figure 8. This result is compared with the one of
a uniform mesh as fine as the adapted meshes in the
region of the free surface (Grid 2) and the one of a uni-
form mesh with almost the same number of points than
the adaptive grids (Grid 1). The table 1 gives the CPU
times consumed by the different computations. It can
be concluded that the adaptive solution is more accurate
than the solution on Grid 1 and in close agreement with
the fine solution on Grid 2 for almost 6 times less CPU
time requirement and 7 times less computational points.

Grid 1 Grid 2 Adaptive
Nb of Cells 1748 11781 1668-1785
CPU Time || 438.94 | 4737.73 719.00

Table 1: Informations on computations

More complex multi-fluid flow problems will be treated
using the adaptive procedure for the final presentation.

6 Conclusions

An adaptive h-refinement procedure guided by both er-
ror estimator and error indicator has been presented.
It has been shown to be general since the initial mesh
can be both refined and coarsened. The adaptive proce-
dure included in the ISIS flow solver is a complete au-
tomatic single tool for reaching accurate solutions for
a low computational cost. This tool has shown inter-
esting gains for two-dimensional flows in term of CPU
time and memory requirement compared to single mesh
computations.

References

[1] G.B. Deng, E. Guilmineau, P. Queutey and M. Vi-
sonneau, Interface capturing and interface track-
ing of incompressible and immiscible viscous
flows, Huitiemes journées de 1’hydrodynamique,
March 5-7, Nantes , France, 2001.

[2] A.Hay and M. Visonneau, Adaptive error control

ATAA

16th Computational Fluid Dynamics Conference,
ATAA Paper 2003-3848, June 23-26, Orlando, FL,
2003.

strateov : Annlication to a turbulent flow
oJ rr 2



Grid1 | Grid2 | Grid3 | Grid4 | Grid5 Grid 6 | Adaptive
Nb of Cells || 4288 8355 | 16733 | 68293 | 135436 | 550609 35314
CPU Time 1 3.27 13.89 | 138.06 | 709.65 | 7162.86 69.77

Table 2: Informations on computations
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Figure 4: Global view of the meshes
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Surface ripples past breaking waves generated by a submerged hydrofoil
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1 Abstract

The bulge-capillary wave system generated by a hydrofoil
moving beneath the air-water interface is numerically in-
vestigated via a heterogeneous domain decomposition tech-
nique that uses a two-fluid Navier-Stokes solver to describe
flow about the free surface. Attention is here focused on
the surface ripples generated by a gentle spilling breaker at
small scales when surface tension effects significantly affect
the dynamics of the air-water interface. As a matter of fact,
at the smallest scales, surface tension suppresses the forma-
tion of the plunging jet and the breaking wave establishment
takes place without water impact and no air is entrapped. A
bulge grows about the wave crest which slides down upon
the forward face of the wave and an intense shear layer de-
velops beneath. Instabilities of this shear layer is found to
be the mechanism responsible for the generation of coherent
vortex-structures which interact with the free surface and
lead to the formation of large downstream propagating free
surface ripples.

2 Introduction

In [8] it is shown how the wave breaking establishment is
affected by surface tension when reducing the length scale.
The air entrapment and the plunging jet, characterizing large
scale wave breaking, progressively disappears. The plung-
ing jet is replaced by a growing bulge that eventually slides
down on the forward face of the wave. This mechanism
characterizing the establishment of gentle spilling breaking
has been experimentally found by Qiao & Duncan [6] and
reference cited therein.

During the downslope motion of the bulge toward the
forward wave trough, an intense shear layer develops as a
result of the interaction with the upslope incoming flow be-
neath. Although with a reduced
still present when the bulge reaches its final, quasi-steady,
configuration near the wave trough. In this conditions, down-
stream propagating ripples have been observed experimen-
tally. With the help of a stability analysis, in [3] it is shown
that their characteristic wavelength matches rather well that
of the most unstable modes of the shear layer.

In this paper the small scale wave breaking flow gener-
ated by a submerged hydrofoil is numerically investigated
through a heterogeneous domain decomposition technique
[4] which makes use of a potential flow solver to describe
the flow about the body and of a viscous flow solver to de-
scribe the flow about the air-water interface. To allow the
description of the complex interface topology changes, the
flow in air and water is simulated as that of a single in-
compressible fluid physical properties of which smoothly
changes about the interface. The latter is captured via a
Level-Set approach.

The numerical model is used to simulate the unsteady

intensity, the shear layer is

flow generated by a towed hydrofoil starting from rest. Re-
sults showing the surface ripples formation and their down-
stream propagation are presented in terms of free surface
profiles. The evolution of the vorticity field is also pre-
sented clearly showing the shear layer instabilities as the
responsible mechanism for the surface ripples generation.

3 Numerical model

An unsteady heterogeneous domain decomposition approach
has been developed to tackle the wave breaking flow in-
duced by a submerged hydrofoil moving beneath the free
surface [4]. In the free surface region, a viscous flow model
with an interface capturing technique is adopted, while, in
the body region, a potential flow approximation is used. To
dynamically couple the flows in the two subdomains, a pro-
cedure is developed which allows exchange of information
without overlapping between the subdomains.

In the body subdomain the flow is governed by a Laplace
equation for the velocity potential ¢ which satisfies Neu-
mann boundary conditions at the inflow, the outflow, the
bottom of the channel and all along the body contour. Along
the matching line between the subdomains, the velocity po-
tential is assigned by the integrating in time ¢ the unsteady

Bernoulli equation:
t
dyp
= — dt
v /0 at

B

ey

with
|uf?

o= e T o
where p is the fluid density, g is the acceleration of gravity,
y is the vertical coordinate oriented upward and w is the lo-
cal fluid velocity. To enforce continuity of normal stresses,
the pressure acting on the body domain p® is related to that
provided by the Navier-Stokes solver in the free surface do-
main p” by the equation

dp _ p

ou,,
P =p" =2
n

n being the normal vector and p the local fluid viscosity, as
evaluated in the free surface domain. Furthermore, a steady
Kutta condition is applied at the trailing edge of the hydro-
foil to properly account for the vortex shedding.

In the free surface region, the two phase flow of air and
water is approximated by that of a single incompressible
fluid with density and viscosity varying smoothly through
the interface. The system of Navier-Stokes equations is
solved by using a finite volume method on a non staggered
grid. A fractional step approach is used: the momentum
equation is advanced in time neglecting pressure contribu-
tions whose effects are successively reintroduced by enforc-
ing continuity of the velocity field. Integration in time is
carried out with a three-step Runge-Kutta scheme.
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Figure 1 Time sequence of free surface profiles for Re = 1000 (left) and Re = 2480 (right). Here At = 0.1 is the time
delay and also the vertical shift between two successive profiles.

The air-water interface is captured as the zero level-set
of a signed normal distance d from the interface which is
initialized as d > 0 in water, d < 0 in air. During the mo-
tion, the distance is transported by the flow and the interface
at the new time is given by the level-set d = 0 of the new
distribution of the distance function. To avoid difficulties in
evaluating derivatives, fluid properties are assumed to vary
smoothly in a small neighborhood of the interface. To keep
constant in time the width of the jump region, the distance
function is periodically reinitialized as the minimum dis-
tance from the interface [7].

4 Some numerical results

The numerical model is used to simulate the unsteady free
surface flow generated by a NACA 0012 hydrofoil moving
at a depth d = 0.783 beneath the still water level (length is
nondimensionalised by the chord L) with an angle of attack
a = 5°. Starting from the experimental data by Duncan [2],
wave breaking conditions are found for

Fr = g% =0.576 We =U+/pywLo =10.5

where g,, is the water density and o is the surface tension
coefficient. Numerical simulations are carried out at two
different values of the Reynolds number Re = 0, UL/ iy
based on water properties, that is Re = 1000 and Re =
2480.

The computational domain extends from z = —15 to
x = 15, the leading edge of the hydrofoil being located at
x = 0. The matching surface between the lower and up-
per subdomains is located at y = —0.2 and the top bound-
ary is at y = 0.4. The grid has 768 x 192 cells, and is
clustered about the breaking region where we have Ay =
0.0025 and Az ~ 0.0027. The density and viscosity jumps,
ratios of which is the same as that of air and water, are
spread on a stripe which thickness is 0.04. In order to re-
duce the formation of forward propagating waves, the hy-
drofoil is smoothly accelerated up to the final speed which
is reached at t = 10. Two numerical beach models are intro-
duced about the two ends of the computational domain. In
these regions an additional term is introduced in the equa-
tion governing the interface dynamics aimed at damping
disturbances outgoing from the computational domain.

In Fig. 1 the sequence of free surface profiles obtained



for Re = 1000 in the hydrofoil frame of reference is plot-
ted. It shows the initial steepening of the crest, the bulge
growth and its subsequent sliding motion as a consequence
of the breaking establishment. Next, the front of the bulge
experiences damped oscillations which are due to the start
from the rest [1]. Although this picture exhibits a rather

frequency-wavenumber spectra of the free surface fluctu-
ations are evaluated. From the spectra it is seen that the
ripples wavelength grows during the downstream propaga-
tion while their amplitude decays rather slowly. In [5] it
is speculated that the lower decay rate of the numerical re-
sults compared to the experimental results reported in [3]

smooth and regular behaviour, a closer inspection (not shown has to be ascribed to the lower Reynolds number and, more
here) reveals the presence of small amplitude ripples which
propagates downstream.
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Figure 3 Sequence of vorticity contours during the first
upstream motion of the bulge, revealing the development
of shear layer instabilities and the corresponding formation
of free surface ripples.

To get more insights about the nature of these ripples
and of the mechanisms governing their propagation, the nu-
merical simulation is repeated by using Re = 2480. The
resulting profile history, reported in Fig.2, exhibits signifi-
cant differences with respect to the previous case. In par-
ticular, the bulge reaches an upstream foremost position
and much larger downstream propagating ripples appear.
Clearly evident is also the recurrence of ripples formation
and the faster damp of the bulge oscillations, likely due to
the increased energy dissipation provided by the larger rip-
ple formation. A deeper discussion is reported in [5] where

important, to the neglected three dimensional effects.

A better understanding of the ripples formation can be
drawn by looking at the sequence of vorticity contours shown
in Fig. 3. In this picture three density levels are also de-
picted to show the interface position. The three levels de-
note the air, average and water values, respectively. The
sequence shows the development of a shear layer at the toe
between the flow into the bulge and the incoming upslope
flow. Hence, shear layer instabilities are generated which
give rise to separated coherent structures that strongly inter-
acts with the free surface. As a consequence, free surface
ripples are just traces on the free surface of the underly-
ing vortex blobs and their propagation speed is the same
at which vortex-blobs are convected into the water. This
mechanism agrees with that experimentally observed in [6]

and alan anpenilatad 1 121
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It is worth of noting that the interaction of the coher-
ent structures with the wave troughs induces a strong ver-
tical asymmetry of the free surface profiles. Furthermore,
this continuous interaction can lead to the formation of sec-
ondary vortex structures, as it can be noted in the last con-
figuration of Fig. 3. Once secondary vorticity structures
appear, they acts to slow down the primary ones and, as a
consequence, the curvature at the wave troughs is progres-
sively reducing.
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Abstract

The free surface flow generated during water entry of 2D
finite wedges is here investigated. The flow is potential and
the fluid incompressible. Attention is devoted to the anal-
ysis of the transition from the chine-unwetted to the chine-
wetted condition, when flow separation from the body cor-
ner takes place. To achieve this goal, the spray develop-
ing about the intersection of the free surface with the body
contour is accurately described by a hybrid finite-element
model coupled with the boundary-element approach that is
adopted to describe the solution in the whole of the fluid.
When the spray tip reaches the separation point, a Kutta
condition is applied requiring slope continuity of the fluid
boundary at the corner. Free surface shape, pressure dis-
tribution and history of the hydrodynamic force throughout
the water entry process are presented.

1 Introduction

The free surface flow taking place during the water entry of
2D finite wedges is investigated. The study is carried out by
assuming the flow to be potential and the fluid incompress-
ible. Gravity and surface tension effects are also neglected.

Attention is mainly concerned with the development of
a numerical model to describe the free surface flow taking
place during the flow separation taking place when the thin
spray reaches the wedge corner. This rather complicated
problem has been analysed in the past by Vorus [5] and by
Zhao et al. [7]. In [5] the water entry problem is analysed
with the help the so called flat cylinder theory which en-
forces nonlinear boundary conditions on a linearized body
contour (that is on the horizontal axis). Within this approach
the occurrence of flow separation is handled in terms of a
suitable boundary condition.

In [7], under the same potential flow assumptions, the
problem has been investigated through an extension of the
fully nonlinear numerical model originally proposed in [6].
In this latter a model is introduced which cuts off the spray
that develops about the intersection between the free surface
and the body contour as a result of the local flow singularity
and replaces it by an appropriate boundary condition ap-
plied at the truncation. In [7] a Kutta condition is enforced
at the separation point as soon as the jet truncation passes
through it.

In the present paper a fully nonlinear numerical model
able to deal with flow separation from body contour is de-
veloped. Differently from the model adopted in [7], here
the spray is not cut off but, instead, is accurately described
in terms of a simplified model based on a finite element dis-
cretization of the thin layer [2].

The set of differential equations governing the free sur-

Figure 1: Sketch of the system.

face flow is solved with the help of a mixed Eulerian-Lagrangian

(MEL) formulation [3]. The jet layer is discretized into
small control volumes and the velocity potential within each
one is written as an harmonic expansion in power series.
The coefficient of the power series are derived from the
boundary conditions applied at the free surface and at the
body contour. Additional matching conditions among ad-
jacent elements are also applied to guarantee regulatity of
the solution. When the first control volume of the jet ap-
proaches and crosses the separation point, a Kutta condition
is locally applied requiring that fluid particles have to leave
the body tangentially.

2 Mathematical model

Within the above assumptions, let ¢ denotes the velocity
potential, the free surface flow is governed by the following
set of equations

Ap = 0 Q
on = —Vny Sp
. (1)
Do _ Vel g
Dt 2 s
Dx
oo %5

where V' is the entry velocity which is assumed to be con-
stant (Fig. 1). This initial value problem is solved through
a MEL technique and at each time step a boundary value
problem is solved by using an integral representation of the
velocity potential (.

The hydrodynamic load acting on the impacting body
is calculated through integration of the pressure field along
the wetted portion of the contour, evaiuated by means of the
unsteady Bernoulli equation

|V<p|2)
5 .

P = —po («pt + (2)



Figure 2: Sketch of the definitions used for the control vol-
ume V; in the modelled jet region.

where pg is the fluid density. The unsteady contribution
¢ 1s obtained first by exploiting its harmonic properties.
Hence a boundary value problem is formulated similar to
that used for the velocity potential itself. As for the velocity
potential problem, the boundary condition on the body is of
Neumann type [1]:

(‘Pt)n = _Vr(un)r + Vn(ur)r -k V-u (3)

where k. is the local curvature of the body contour. On the
free surface a Dirichlet type condition holds instead, that is
easily derived from the Bernoulli equation (here the atmo-
spheric pressure is set equal to zero):

[Vel?
= @)
The numerical solution of the water entry flow is rather
challenging because of the particular features of the flow
about the intersection between the free surface and the body
contour. A great simplification of the problem is achieved
through a model which cut off the thin layer from the com-
putational domain and replaces it with a suitable boundary

condition [A1
CONG1uoH (U).

affect the pressure distribution and total hydrodynamic load
[1], details about the fluid motion inside the truncated part
of the jet are completely lost. For this reason a new model
has been developed in [2] which is based on a subdivision
of the modelled part into small control volumes. Within
each one the velocity potential is written in the form of an
harmonic Taylor series, up to the second order, about the
corresponding centroid (27, y;) (see Fig.2):
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The coefficients appearing in eq. (5) are obtained by en-
forcing boundary conditions on the body and free surface
side. Furthermore, an additional matching condition is ap-
plied among adjacent elements to guarantee regularity of
the solution [2]. A completely similar model is used when
evaluating the time derivative of the velocity potential, ¢;.

Once flow separation from the corner of the wedge takes
place, we assume that particles which were moving along
the body contour, continue moving along the tangent to the
body at the separation point. This aim is achieved by en-
forcing a Neumann boundary condition on a very small part
of the free surface adjacent to the wedge corner.

From the numerical point of view, once the fluid starts
leaving the body, the jet model is simplified, by reducing
the series expansion to the first order. This assumption gives
to any pair of points (15,-, P;) lying on the two free surface
pieces that bounds the control volume V;, the same velocity
and then the thickness of the jet layer remains “frozen”. Al-
though this assumption does not allow to strictly conserve
the mass, it is of great help in terms of stability of the nu-
merical algorithm.

3 Numerical discretization

The numerical discretization is zero order in space, thus ap-
proximating the unknowns with piecewise constant func-
tions on straight panels, and second order in time, making
use of a Runge-Kutta integration scheme. For stability rea-
sons, the time step is chosen such that the (maximum) dis-
placement of the centroid is smaller than one fourth of the
corresponding panel length. At each time step, centroids
of the free surface panels are moved in a Lagrangian way.
Their position is interpolated with splines and panel ver-
tices are located along the interpolating contour. Once flow
separation takes place, a Neumann condition is applied at
the first panel of the free surface, requiring that the normal
velocity is equal to that of the last panel on the body.

To account for the finite extension of the computational
domain, the far field behavior of the solution is profitably
used. At very large distances rr from the body, the poten-
tial is approximated by that of a vertical dipole

Y sin 0
Cp(t =Cp(t)—=———= =Cp(t . (6
b)) = Op(t) gy = Co®™ = . ©
A far field domain boundary of circular shape (r = rg)

is introduced, which joins the two ends of the free surface
portions lying inside the computational domain. Along this
far field boundary a Dirichlet condition is applied and the
normal derivative of the velocity potential is obtained from

tha galiitinn o ary intoagral neahlans

£ tha haind 7
Uuiv Suiluuvil vl uiv UUulanly llllbélal PlUUlblll.

A dinala

Th

11v UIPUIL
constant C'p is derived by assuming that the total incoming
flow obtained as the integral of the inflow from the far field
boundary equals that provided by the dipole solution, that
is:

- /g 60(@ dS@) +Cp /

Sr

epn(Q) dS(Q) =0 .
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4 Numerical results and model vali-

dation

The fully nonlinear numerical model so far discussed has
been already deeply validated in [2] for what concerns the
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Figure 3: Free surface configurations and pressure distributions at five time instants, for a 20° wedge.
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Figure 4: Force history for a 60° wedge. The horizontal line
is the value of the corresponding cavity flow solution [4].
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Figure 5: Asymptotic pressure distribution on a 60° wedge,
at Vt/B = 11.3 (solid), 19.7 (dashed), 28.1, (dotted). The
dash-dotted line represents the cavity flow solution.

free surface evolution and the modelling of the thin jet.

Here, attention is mainly focused on the use of the nu-
merical model to describe the free surface flow during the
separation phase. In Fig.3, some results in terms of free
surface configurations and distributions of pressure coeffi-
cient are presented for the impact of a finite wedge with 20°
deadrise angle. In the early stage, the jet still entirely lies
along the solid body contour, therefore the free surface con-
figuration and the pressure distribution coincide with those
predicted by the similarity solution with a peak occurring
about the jet root. As the jet detaches from the body, this
pressure peak progressively disappears and the distribution
becomes monotonic. Concerning the free surface dynam-
ics, since gravity effects are neglected in the present work,
the separated jet does not collapse onto the free surface and
no waves are produced.

If the water entry is followed for quite a long time evo-
lution, it is expected that the cavity flow solution for the
considered wedge shape is approached. To prove this con-
jecture, a very long simulation is performed for a wedge
with 60° deadrise angle. The resulting history of the to-
tal hydrodynamic load is depicted in Fig.4 along with the
theoretical asymptotic value of the cavity flow solution as
provided by [4]. Although the numerical solution seems

to provide an asymtotic trend, the final value is about 5%
larger than the theoretical value. Reason for this disagree-
ment are still under investigation.

The pressure distribution at three different stages of the
wedge entry are evaluated and compared with the theoret-
ical solution for the cavity flow in Fig.5. The time delay
among the three numerical pressure distributions is constant
thus making it evident the reduction of the convergence rate
with time. The comparison shows that the shape of the pres-
sure curves is rather similar to the theoretical one.
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Preliminary Investigations for CFD Fire Simulations in Ship Rooms
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Ould (Bettar) El Moctar, Germanischer Lloyd, moct@GL-Group.com

Testing a commercial CFD code for fire simulations was the subject of a final year research project at
ENSIETA, Junalik (2003), conducted at Germanischer Lloyd. Calculations covered four different
scenarios typical for ships: (1) a cabin arrangement, (2) an atrium and a shopping mall, (3) an engine
room, (4) a Ro-Ro ship deck.

RANSE simulations for fires cannot reproduce the evolution of large eddy structures observed in most
fire plumes. Thus fire turbulence models resort sometimes to “Large Eddy Simulation” (LES) or even
Direct Numerical Simulation (DNS). For ship rooms, LES can be performed at best for single rooms
and DNS is prohibitively expensive. The employed commercial code FDS (Fire Dynamics Simulator)
solves a low-mach number form of the Navier-Stokes equations using a fast Fourier transform solver
for pressure, a LES turbulence model (the original Smagorinsky model) and a mixture fraction com-
bustion model. The energy conservation equation is not explicitly solved, but its source terms are in-
cluded in the expression for the flow divergence. FDS has sub-models for radiative and conductive
heat transfer, sprinkler nozzles, droplet transport and evaporation, simple pyrolisis, fuel sprays, liquid
fuel pool and multi-grid operation. Fire simulations require in addition a combustion model. Combus-
tion models tracking the significant species required to calculate the heat release rate are often compu-
tationally too expensive due to the require fine grid resolution. Mixture fraction models offer a relative
simple alternative. All of the species are described in terms of a mixture fraction Z(x,t). The mixture
fraction, defined as the fraction of the fluid mass that originated as fuel, is a single scalar quantity that
obeys a conservation equation.

A simple test case served to familiarize with the code: A cubical room (L=B=H= 5m) with two holes
with the outside and a fire from burning heptane on an area of 4=0.25 m” (0.5m-0.5m). According to

classical theory, we expect for a heptane fire a heat release O=m"AAH of 715 kW. m" is the maxi-
mum burning flux value (65 g/m’s for heptane), AH . the effective heat of combustion (44 kl/g for

heptane). According to classical theory we expect a flame length L,=0.23 Q0‘4—1.O2D =293 m. Dis
the hearth diameter. The temperature expected at the tip of the flame is 400°C. The temperature of the
fire plume should decrease with height. The heptane fire was described in FDS with the following
combustion parameters:

— Stoechiometric coefficients: NU_02=11, NU H20=8, NU_ CO2=7

— Heat Release Rate per Unit Area of 2860 kW/ m” (giving the theoretical heat release)

— CO and soot yields are set to 0.010 and 0.037 (g/g) based on the FDS manual.
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Fig.1: Heat release for single-fire, single room case  Fig.2: Temperature for single-fire, single room case



The evolution of this fire in time was realistic, Fig.1. The heat release rate grew within one minute to
700 kW which is 2% below the expected 715 kW. Fig.2 shows the temperature recorded at a height of
3 m, just above the fire in the middle of the room. The temperature does not evolve smoothly over
time: Air does not rise continuously above the fire due to the fire plume turbulence: Hot smoky eddies
raise until the ceiling, those eddies alternate with cooler air. This explains the fluctuations. The spatial
temperature distribution was realistic, Fig.3. In the center, a fire plume comprises the burn-out zone
and the buoyant rise of the combustion gas. The hot upper gas layer is indicated by its temperature. A
layer of cold gas is lying beneath. Indicated temperatures agreed well with values from classical fire
plume theory. At a height of approximately 3 m (the theoretical flame length) the average temperature
was 400°C as expected.
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Fig.3: Temperature distribution in single-fire, single-room Fig.4: Cabin plan, height 2100mm
test simulation as predicted by FDS

A standard passenger cabin with door closed was selected as test case, Fig.4. Bed and wardrobe as
biggest furniture were modeled as cubical obstacles. The cabin is equipped with a shower block. The
inlet of the cabin ventilation (0.4m-0.4m) is in the ceiling above the bed. One outlet (0.5m-0.1m) is in
the lower part of the shower block (60 Sm*/h), another (0.6m-0.2m) on the lower part of the wall with
the corridor, under the wardrobe. The strength of the inlet ventilation was varied in the different simu-
lations. Values tested were 350, 110 Sm*/h and no ventilation. 110 Sm*/h is the standard comfort value
of the ventilation in a cabin

FDS allows specifying different boundary conditions for the obstructions:

= Walls and ceiling (mineral wool) were defined as thermally-thick solid with thermal diffusivity
0=0.35-10°m?/s, thermal conductivity KS=0.04 W/m‘K, and thickness A=0.025 m. Thus FDS per-
formed a one-dimensional heat transfer calculation in the material.

= Floor (concrete) was defined as a thermally-thick solid with 0=0.57-10° m?s, KS=1 W/mK,
A=0.03 m.

= Wardrobe and bed frame (wood) were defined as a thermally-thick solid with a=8.3-10® m?s,
KS=0.0611 W/m'K, A=0.016 m. To prevent heat loss from the backside of the material, the option
backing="insulated’ was activated.

= Bed upholstery was defined as a thermally-thin material. C DELTA RHO (the product of the spe-
cific heat (kJ/kg-K), density (kg/m’) and thickness (m) of the liner) was set to 1.29 kJ/m*10°K.
The ignition temperature of the upholstery was set to a high temperature to avoid the phenomenon
of flashover.



For reasons of simplicity, polystyrene was used as a combustible. This fire was set in the cabin on the
floor, with an area 4=0.4m-0.4m. The fire parameters set in FDS followed data from classical theory.
For an assumed polystyrene pellet fire (72"=38 g/m’s; AH- =39.8 kl/g for polystyrene), we expect

then a heat release Q= 240 kW, a flame length L,=1.6 m, a temperature at flame tip 400°C. The fol-
lowing combustion parameters were set in FDS:

= Stoechiometric coefficients: NU_02=10, NU _H20=4, NU_CO2=8

= Heat Release Rate per Unit Area = 1500 kW/ m” (giving the theoretical heat release 240 kW)
= COyield =0.06 g/g, soot yield =0.164 g/g

= 30 s ramp-up time of the heat release

LES computations with FDS were compared with a classical zonal approach (code Multi Room Fire
Code MFRC) deemed reliable and well validated up to the point of flashover. Same geometry and fire
parameters were used.

Two discretizations in FDS were tried: (1) a discretization consisting of a fine mesh for the fire (5cm
cubic cells) and 4 coarser overlapping meshes (10 cm cubic cells) for the cabin. (2) A discretization
with a fine mesh for the fire (Secm cubic cells) and a mono-block mesh (10 ¢cm cubic cells) for the
cabin. Test computations showed similar results for distributions of temperature, carbon monoxide,
and smoke density. However, for a test computation without fire considering just the mechanical ven-
tilation, the grid with overlapping grids did not converge to the expected results even after 300 s of
simulated flow, while the simulation with the second grid converged within 15 s to the expected re-
sults, Fig.5. Therefore all following simulations used the second grid.
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Fig.5: Flux for overlapping mesh and single mesh Fig.6: Influence of ventilation on temperature

Fig.6 shows the influence of ventilation on the temperature in the cabin. This temperature is the one
recorded at a point, situated between the shower block and the wardrobe, at z=1.1m. Two ventilation
cases were investigated (110 and 0 Sm’/h). Perhaps contrary to intuition, ventilation increases in this
case the temperature, because ventilation provides oxygen to the combustion. The more oxygen you
provide, the more fuel you burn, the higher the temperature. In the simulation without ventilation, the
temperature reaches 500°C within 400 s and then decreases slowly. There is no more oxygen in this
room and the fire is smoldering. In the simulation with the 110 m’/hour ventilation, the temperature
also reaches 500/600°C within 400 s and then, starts to decrease before being stabilized. The fire is
ventilation controlled.

For strong ventilation of 350 Sm’/h, results between MFRC and FDS differ considerably, Figs.7 and 8.
350 Sm?/ h ventilation is in theory just enough to over-ventilate the fire. Thus we should expect after a



transition time a constant heat release rate of 240 kW. This is the case with MRFC, but in the FDS
model, after reaching this value, the heat release decreases slowly to considerably lower values, Fig.7
(left). Correspondingly, the temperatures (in an upper layer, averaged for MRFC; single point for
FDS) develop quite differently with a constant rise for MRFC, and a fluctuation around a rather con-
stant plateau for FDS, Fig.7 (right). Maximum temperatures predicted are for both simulations around
400°C. The explanation for the differences is probably that (unlike FDS) MRFC does not consider the

exact geometry of the room and its obstacles that could disturb the oxygen flow from the inlet ventila-
tion to the hearth of the fire.
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Fig.7: Heat release and temperature in the upper layer results of MRFC (zone model) and FDS (CFD
model) for a 350m’/hour ventilation
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Fig.8: O, and CO, concentrations in the upper layer for a 350 m’/hour ventilation

Fig.8 shows the oxygen and the carbon dioxide rates given by MRFC and FDS. Predictions of the
oxygen and the carbon dioxide rates are close with both codes. Rates predicted by MRFC are after 800
s constant, while rates given by FDS still fluctuate even after 1000 s of simulation. But FDS rates tend
to MRFC rates. FDS indicated also a concentration of 4000 ppm CO in the hot gas. MRFC did not

indicate any CO, although a theoretical value of 6000 ppm is expected from theory in stoechiometric
combustion.

JUNALIK, B. (2003), Fire simulation, final thesis, ENSIETA



SIMULATION OF SHIPS IN LARGE WAVES USING A FINITE-VOLUME-METHOD
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1. INTRODUCTION

Ship motions and associated loads on a ship hull are
usually predicted with methods based on potential
flow assumptions. Large errors can be introduced by
these assumptions for a few practically important
cases like ship motions in large amplitude waves, ship
responses under a wave impact (slamming), or ship
capsizing etc. The need for a numerical tool that can
predict the motions and loads in large waves, taking
into account viscous effects, turbulence, flow
separation and wave-breaking phenomena is obvious.

The objective of this research is to develop and
validate a computional technique for the coupled
analysis of viscous flow and flow-induced body-
movements in large waves. For this purpose, some
cases are selected to be investigated using this method
and compared with experimental results.

2. NUMERICAL METHOD
OVERLAPPING GRID-METHOD

The Navier-Stokes-Equations and the body dynamic
equations are to be solved in a coupled manner. A
Finite-Volume-Method on block structured grids is
used to predict the viscous flow around a floating-
body. The velocity of the floating-body is corrected by
a Crank-Nicholson-Method after every iteration (fully
implicit). An Approximation for the hydrodynamic
masses is used to make the coupled procedure robust.
An approach with overlapping grids has been
employed to avoid the difficult grid-management
caused by changing of the body position. There is a
space-fixed grid with a hole close to the body and a
body-fixed grid. Fig. 1 shows the principle of this
approach.
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Fig. 1 2-dimensional body with overlapping grids

The flow solution has to be interpolated on the
boundaries of every grid from each other to force a

unique solution on both grids in the overlapping
area. Finally a correction of the convective
velocities makes sure that the mass conservation
law will be satisfied.

There are two ways to calculate the flow in the
case of body-movement. First by changing the
coordinates of the bodyfixed grid in every
iteration (moving grid) and after that solving the
Navier-Stokes-Equations in the space-fixed
coordinate system. The disadvantage of this
method is that the geometry in the program is
only written in single precision while all
variables are in double precision. In case of
small timesteps this could lead to problems.

The other way, which is employed here, is to
keep the coordinates of the body-fixed grid fixed
and the Navier-Stokes-Equations will be solved
in the body fixed coordinate system. In that case
the consideration of the grid-accelarations and
velocities is necessary. This could be done in
double precision. Another advantage is the
reduced requirement of memory because there is
no need for saving the updated vertex nodes of
the grid during the calculation.

NUMERICAL TANK

The numerical tank consists of a fluid domain
with two phases (water and air) bounded by a
layer of air on top, a bottom surface in water and
four vertical boundaries. Regular waves are
generated by giving inlet velocity and waterheigt
based on potential theory (Airy, Stokes I-IV) at
the inlet boundary [1]. At the other side of the
tank a numerical beach is defined to avoid
reflection of the waves.

Numerical beach Wave-maker

Fig. 2 Numerical tank



3. APPLICATIONS Table 1 Main particulars of reference ship

MOTIONS OF A FAST CONVENTIONAL PASSENGER Symbol | Value Unit
FERRY

Length between | Lpp 173.00 m
A fast conventional RoRo passenger ferry was perpendiculars

selected as reference ship for the study. The ship was

designed by IZAR for the Eurpean research project Beam B 26.00 m
DEXTREMEL [3]. Model tests were carried out at a Draft T 6.50 m
scale of 1/40 in a seekeaping basin by MARIN.

Figure 4 shows the discretisation of the ship and its Displacement | A 16800 t
main particulars are listed in Table 1. Service Speed | Vs 28 Kis
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e

ﬂ [\ f [\ Fig. 5 Ship in head waves, ®=0.6, H=8.0 m,
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Fig. 4 Calculated heave and pitch motions

-3000 |- ;

The computation was done for a ship speed of 26 kn

(93 % of full speed) in head waves. Only half of the 000, T yo : = - =
ship at model scale has been discretized and pitch and time [s]

heave were the degrees of freedom. At the beginning Fig. 6 Calculated heave force and pitch moment
of the calculation the whole computation domain was

initialised with undisturbed waves and the ship was at Noted is that the amount of the negative pitch
rest. Figure 5 shows the calculated heave and pitch angle is much higher than the positive one
motion in waves with ®=0.6, H=8m and a plot of the caused by bow flare effects and impact loads.

situation at t=8.7 s is presented in Fig. 6.



The corresponding force and moments acting on the
hull are shown in Fig. 6.

The time traces of the forces have a nonlinear
appearance due to the impact loads during the water
entry. Fig. 7 presents the comparison of calculated and
measured RAOs of heave and pitch motion.

CONTAINER SHIP IN LARGE WAVES

A container ship travelling in an extreme wave
situation was selected to test the numerical
properties of the computational method. The ship
was built on the shipyard HDW in Kiel. The
objective were to measure shipmotions and local
loads on the bow flare during the bow water
entry. Figure 8 shows the discretisation of the
ship and its main paritculars are listed in Table 2.

Table 2 Main particulars of the container ship

Symbol | Value Unit
Length between | Lpp 204.00 m
perpendiculars
Beam 26.66 m
Draft 8.70 m
Service Speed | Vs 25 kts
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Fig. 7 Predicted RAOs of heave and pitch motion
compared with measurements

The heave and pitch response were a bit

underpredicted by the computional method. This effect
might be caused by the coarse discretisation of the
ship. The refinement of the whole computation
domain has to be investigated in the next time.

i

n
L

7,

Fig. 8 Discretisation of the container ship

The computation was done without forward
speed in head waves. The wave length was
equal to the ship length (204 m) and the wave
height has been choosen H=21m. Figure 9
shows the calculated heave and pitch motion.
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Fig. 9 Calculated heave and pitch motions

The calculated motions are very strong caused
by the extreme wave. No stationary solution in
the ship behavior can be observed until now. In
Fig. 10 can be seen that green water effects play
an important role in such a high wave.



4. POSTPROCESSING

A lot of data are generated during a CFD-Simulation
using the Finite-volume-method. A saved restart-file
contains the data of every control volume for one or
two time steps in case of using three-time-level-
scheme, so you can't hold much of these data on the
hard disk for long. The standard way of postprocessing
is to make one or two pictures of the situation in the
computation area and save the time traces of several
local and global variables like ship motions or local
impact loads. Once the restart-file is deleted, an
external viewer has no chance to get further
information of the remaining results. The objective
was to improve the postprocessing-procedure and to
extract the most important information from a restart-
file. The "Virtual Model Language (VRML)" [6] has
been used to visualize the extracted information in one
3D-model. The interpreter is a share-ware plug-in for a
standard internet browser and can be downloaded by
everyone.

For that purpose the region elements of the ship-
geometry was reduced. This has been done by joining
some faces to larger polygons [7]. The arbitrary free
surface of both computation domains has been
extracted and a bit simplified for the region far from
the ship. The distribution of pressure and friction
forces has been mapped on the hull and is shown by
coloring the values. Some interaction buttons was
added to switch between pressure and friction forces.
There is also the possibility of coloring the wave
height by pressing another button or to make the
surface transparent in steps. Further interaction is to
start and stop the animation, to set the speed and to go
through it stepwise. Figure 9 shows a picture of the
model.
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Fig. 10 VRML model of the container ship in head
waves, H=21m, t=18.0 s

The advantage is to give the viewer the chance to view
the results in more detail by going around the ship and
viewing one or more variables alone or together. In
this model we included the possilbility to select some
points of a set and to follow the particle traces in time.
Noted is that the particles didn't take the way of a
circle like in linear waves. In such a high wave a mass

transfer in direction of the wave propagation can
be observed.

Another advantage of using such a VRML-
database is the use of internet-abilities. The
results are loaded by giving internet-addresses,
so the files or parts of them could be saved and
changed on a physical space far away from the
viewer.
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Numerical Simulation of Passive Anti-Roll Tank Devices

Jean-Marc Laurens, Eric Frébet (Ensieta), laurenje@ensieta.fr
Introduction

Since their introduction by Frahm in 1911, U-tanks as passive dampers have been chosen as the
stabilisation system of many ships. Using a fluid tank for roll damping is an ancient and attractive
idea. The principle is simple, if the water motion in the tank and the ship’s roll are in the opposite
phase, the weight of the water in the tank acts as a counteractive force which dampens roll motion.
Among the several types of existing fluid tanks, U-tanks are recognised to be more difficult to tune
than free surface tanks, Barr (1975). That is simply because their natural frequencies depend on more
parameters. Partially because of the progress made to simulate unsteady state two-phase flow at low
computing costs and also because of the advent of double hull tankers, renewed interest for the device
seems to exist. At first, the present study only intended to test the feasibility of U-Tanks numerical
simulations using an existing RANS solver with a VOF model but once the Pandora box opened it was
impossible to refrain ourselves from looking at its content.

Numerical simulations

The RANSE solver Fluent version 6.1 was used for the simulations presented here. Unsteady state
two-phase flow is solved using the VOF model.

We noted that a better behaviour is obtained when S’ ek
imposing a pressure inlet condition at tank N Alr
extremities. To simulate to roll motion, the gravity it

force was forced to vary in a cyclic way. This
would normally impose a correction of
accelerations because of the moving referential
system but since they are only a fraction of the
gravity we leave that minor correction aside for
the time being. Preliminary computations showed
that results are not sensitive to grid refinement. Figure 1. Boundary conditions

Because of the pressure inlet condition, the water is evacuated from the computational domain when it
reaches the top of a reservoir which does not allow simulations under such conditions and as a result
amplitudes of oscillations must be kept low.

Validation

To validate our simulations, we used the experimental results obtained by Field and Martin (1975)
later used by Van Daalen et al. to validate their own computations. The set-up is presented in Figure 2.

Water level
Case A : 3 feet, Case B : 5 feet

Reservoir width : 9 feet
Distance between reservoirs : 24 feet
Duct height : 1 foot

Amplitude of forced motion : 5°

Figure 2. Experimental set up used by Martin and Field (1975) used for validation

Figure 3 is an example of the curves obtained after simulation. The coordinates of the water
centre of gravity in the U-Tank, Xg and Yg, are computed at each time step. The righting
moment will of course mostly depend on Xg. The dynamics of the water produces higher
amplitudes of movements for Xg then steady state hand computations as we approach the tank
natural frequency and the obtained non zero phase shows that the water in the U-Tank does
not roll in phase with the boat; which is as expected.
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Figure 3. Example of response obtained compared to steady state (Period 15s, Amplitude 5°)

Based on curves such as the curve presented in Figure 3, we computed amplitudes and phase
angles obtained for the range of forced oscillations expressed as ®. In order to comply with
the presentation of results by Van Daalen et al. (2000), the amplitude of response is given in
terms of Am/A@ which represents the righting moment (N.m) per degree of forced oscillation.
All the results are compiled in Figure 4 where they are compared with both the computations
of Van Daalen et al. (2000) and the experimental results of Fields and Martin (1975).
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Figure 4. Amplitude of the righting moment (left) and phase angle (right) versus forced pulsation
obtained in the present calculations compared to computations performed by Van Daalen et al. (2000)
and experiments by Field and Martin (1976). First row (Case A), water level 3ft and second row
(Case B), 5ft of water.

Although our results are in excellent agreement with these two aforementioned references, we
verified that the amplitude of the response and the amplitude of forced motion are indeed
linear. We noted from these simulations that the response phase angle is also linearly
dependent to the amplitude of the forced motion.



Effects of geometrical parameters: attempting to tune the system

The first question is to determine what is really driving the response of the system. Since gravity is the
main force, a scale model should be based on the Froude number. Hence, if the model is 10 times

smaller its period of forced motion should be made +/10 times shorter. Respecting the transit time of a
water particle from one end to the other would have lead to a scale model period of forced motion

which is 10 times smaller.

As confirmed by the results of
Figure 5, the Froude number does
indeed as for seakeeping problems
drive the system. The little
difference between scale:1 Xg and
extrapolated Xg from 1/10 scale
model indicates the negligible
influence of viscous effects.
Additional simulations  using
various viscosity factors confirmed
this observation.
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Figure 5. Scale (metric symposium)

Figure 6. Rounding the U-tank angles

Because viscous effects appear to be negligible
here, rounding the angles of the U-shape tank
should not greatly affect the response behaviour.
The set up of Figure 6 was used to confirm that
results were not greatly affected by this
geometrical parameter although the flow presents
important vortices.

Other geometrical parameters have been tested. Main tendencies are summarized in Table 1. A ‘+’
indicates that the response variable increases with the parameter.

Table 1. Effect of geometrical parameters on amplitude and phase of the response

Amplitude | Phase
4 A/Ao + +
/ C + -
d ~
[ AL - -
1 T L + -
. l |
5 5 A - +
2 ’/ 1 1
\m) N T
o - -

In order to determine the significance of the effect of a particle transit time, or travelling
distance A, from one end to the other compared to the more important effect of L measuring
the distance between the two reservoirs, the set-ups of Figure 7 were used and their results

compared.



Figure 7. The two set-ups present the

_ _ same value of A for two different values
‘ . of L. Results using these two geometries
. - showed that L, the distance between the
i ' ; two tanks is far more significant for the
response of the system than the path

length. It only emphasizes that the
system is driven by the Froude number.

The size of a U-tank is made to fit the inner hull. This way its natural roll period should be close to the
natural roll period of the vessel. The ratio C/L can be adjusted to tune the U-tank. The natural ship roll
period depends upon the GM value and therefore varies with the cargo for example. We saw that
adjusting the water level in the tank does not significantly affect the response. The only reasonable
geometrical modification would be to partially close the pathway between the two reservoirs. As
presented in Table 1, increasing the blockage, A/Ao, decreases the response phase and amplitude. The
U-tank geometry has to be designed for the smallest value of GM so the pathway section can be
reduced when this value increases. Figure 8 shows the effect of reducing the pathway cross-section of
a given U-Tank geometry. As expected, when totally blocked (A/Ao=l), the system is almost
neutralised.
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Figure 7 Effect of increasing the blockage (A/40).

Several studies exist on the possibilities of the active or semi-active tuning of free surface tanks and
U-Tubes. Birmingham et al. (2002) for instance, have designed a system involving baffles and valves
mechanism whilst Van Daalen et al. (2000) suggest to prevent the water from rising in one arm of the
U-Tube alternatively on the starboard and port side. All systems have their advantages but will suffer
from severe maintenance problems. Without pretending to make a final statement, the best strategy is
probably to adjust the system for each encountered sea state which renders it unadvisable for warships
for instance because they are often changing course unless equipped with an additional system such as
fin stabilisers.

Irregular motions

Finally, it is natural to ask how effective a U-Tank would be when the ship is animated with irregular
motions. Simulating such motions does not involve any additional problems since our simulations are
performed in the time domain. We restricted our investigations to bi-chromatic oscillations. We
considered that the main roll period was accompanied by a secondary roll period four times smaller in
length and in amplitude. The responses obtained, such as in Figure 8, shows that the secondary
frequency has very little influence. Compiled results presented in Figure 9, confirm this observation.
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Figure 9. Compared responses for regular and irregular forced motions.
Conclusion

The primary objective of our work has been achieved since our results are in excellent agreement with
the experimental results of Fields and Martin (1975) and the earlier simulations performed by Van
Daalen et al. (2000). The effects of the principal parameters involved were examined. However we
recognise that we achieved very little in comparison to the full extent of the subject.

As stated in Birmingham et al. (2002), it is surprising that systems such as free surface tanks or U-
Tanks are not more frequently installed on vessels whilst they are increasingly used as anti-seismic
devices in architecture, Yalla (2001). Using a RANSE solver for their simulations is certainly an
advantage but not an absolute necessity. Experimental set-ups do not seem to involve considerable
investments. Simplified mathematical models developed prior to computer age have shown perfectly
valid results: Stigter (1966), Van den Bunt (1969), Van den Bosch (1966), Journée (2000), etc.
General recommendations to fit such systems in ships exist. Perhaps this information is not widely
available and accessible. Ship stability is also perhaps regarded as of secondary importance compared
to economical considerations. In that case, it can be purported that a stabilised ship can shut down its
propulsion and drift.

Scope for future work

The work reported here only consists of a preliminary study. We showed that the numerical tools
available produce results in agreement with experimental data. Computing requirements are
reasonable enough to plan full 3D simulations. Coupling these simulations with a potential flow
seakeeping code should permit to simulate the ship movements equipped with U-tanks or free surface



tanks. In parallel with these developments an experimental system should be designed to confirm the
findings. Ideally, such a development program should also include trials in a towing tank on a ship
model scale equipped with passive anti-roll devices.
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1 Introduction mitted to the hydrodynamic forces.

The first step consists in the definition of an initial iner-

The growth of storage capacity and computers powg§| frame of reference, linked to the physical space, as-
enables more and more complex simulations. Therefoggnilated to a Galilean referential. It is called the primary
Navier-Stokes flow solvers integrate new physical fegsferential. The origin of this referential is fixed to the
tures to deal with more and more realistic applicationsass center of the body at the initial time. Then, one spe-
Viscous flows around moving bodies is one of them. Apifies the referentiak; linked to the body, coincident with
plications are numerous, especially in the hydrodynamig at initial time. Therefore the transformatidty — R,
field : seakeeping, slamming, bio-mimetism, .. can be parameterized (position and orientation).

This paper deals with this feature recently implemen- oo - a5 far as flexible bodies are concerned, their
ted into the ISIS flow solver developped by D.M.N. ("eshape is imposed in the primary configuration. Their po-

CFD Department of the Fluid Mechanics Laboratory). Igyion, in space is obtained after carrying out the transfor-
particular, it describes the methods used to achieve Slrlﬁgtionﬂio R

simulations (regridding strategies induced by bodies mo-
tion, Fluid-Structure coupling). Lastly, some applications
are presented to illustrate the new possibilities of the flow A7 =

solver. n Ay

2 Description of the ISIS features ﬁ o

T = >
ISIS uses the incompressible unsteady Reynolds-

Averaged Navier-Stokes equations (RANSE). The solver translation

is based on a finite-volume method to build a second of- imposed deformation

der accurate spatial discretization of the transport equ 7

tions on unstructured grids. Pressure field is obtained fr D e hody

the mass conservation constraint transformed in a pres-

sure equation. Hydrodynamic flows can be simulated by

using a capturing method with appropriate discretisation

schemes to keep the sharpness of the interface between air

and water. Several turbulence models ranging from ON8p the frame of this general 3D resolution, classical des-

equation to full RSTM glosures are also ava|.labl'e. cription of the body orientation by 3 successive rotations
Flows around an arbitrary number of bodies in freeﬂgke Euler Angles), writtent,6,¢), is unsuitable because

imposed 3D motion can now be simulated by ISIS. Bodig singular configurations for which the triplap©,9) is

can be rigid or flexible with a prescribed law of deforma;o; ynigue. The use of a quaternion eliminates these pro-
tion In time. , _ blems (quaternion can be roughly considered as a spatial
For each body, the motion can be : _extension of the plane representation of complex number).

— imposed by giving an explicit temporal law provi-The integration scheme to solve motion is second-order
ding the space position of the body. accurate as in the flow solver.
— resolved at each time step by coupling the RANS

equations and Newton’s Laws. Only the intial kine- - .
matic screw is imposed. Imposed external forces or4 Regridding strategies
moments can be added too.
One can freeze some degrees of freedom (DOF) to control0 implement bodies motion in a flow solver, the mesh

FiG. 1 — Flexible body with rigid transformation

possible kinematic links. must be adapted to the new position of bodies in time.
In order to keep an appropriate grid, three methods have
3 Resolution of the Newton’s Laws been integrated :

— Spring analogy regridding
The aim is to calculate the temporal evolution of the — Rigid transformation of the mesh
kinematic characteristics of a rigid or flexible body sub- — Analytical weighted regridding



4.1 Spring analogy regridding This is described by algorithm Fig. 2.

With this method, the mesh is viewed as a mechanical q ® € time
structure composed by compression and torsion springs 1 1 1
([1]) The new mesh is obtained by resolving a system after .., sme sep et 4 dr
imposing the new position of nodes belonging to bodies. |
This technique is very convenient because of its capacittgg: if ‘ Prediction by extrapolation ‘

of the bodies position at ¢,

to deal with any deformation. Nevertheless, the calcula- :
tion cost is quite expensive. |

Computation of the mesh at ¢.
in agreement with new bodies position

4.2 Rigid transformation

Here, all the nodes are moved with the solid motion
of the body, coming from the resolution of the Newton'’s Eualuation of the fow
Laws or from an imposed law. This approach is operatio- (non-linear iteration)
nal only for a simulation with one body in an infinite fluid
domain, but tolerates movement of arbitrary amplitudes.

Computation of fluid forces acting on bodies at .

4.3 Analytical weighted regridding

This method can be considered as an alternative to thg
spring analogy for solid motion. It is derived from the ri- §
gid transformation. But in this case, the displacement of
each node is weighted by a factor varying between oné
and zero according to the distance of the body. This fac™
tor is allocated to each node of the mesh. It is imposed
to one for nodes belonging to the studied body and zero
for nodes of other domain boundaries. The values of this
factor are calculated at the beginning of the simulation by
solving a Laplacian operator. This approach is faster than
the spring analogy one because nodes position are recom- FIG. 2 — Non-linear coupling
puted analytically without solving any system.

Note : in the flow solver, mesh mobility is taken into ac- This coupling clears away the time discrepancy pro-
count by calculating on each face a moving velocity fluklem between flow and bodies kinematic. However, even
The latter is obtained by computing the exact voluméghis procedure is definitely more stable, divergent oscil-
swept by cell faces, which ensures the space conservataions may remain in severe configurations. To achieve
law ( [2]). a stable coupling, a specific treatment of the equations of

motion needs to be applied.

Resolution of the Newton’s Laws :
— new bodies position at ¢.

non-linear iteration

no . . .
. non-linear residual reduction

> desired reduction

5 Fluid-Structure coupling 5.2 Stabilization of the non-linear coupling

In the case of prescribed motions, bodies are displaced\s Soding showed in7], the instability comes from
at every time step. After recomputing the new mesh, fldf}e dependence of fluid forces on body acceleration. This
is solved. Therefore, there is no real coupling when migrce is usually formulated by splitting it in an unlinked
tion is imposed, due to the lack of fluid feedback on tHart with acceleration and in a linear linked one. The latter
body position. Problem is different when motion is solvel§ the added mass term.
with Newton’s Law. As a matter of fact, bodies kinema-
tic is linked to the flow at the same time step by forces

carrying on them. This characteristic is used to modify the resolution of
In the first method, called weakly coupled method, hyhe Newton’s Laws equations in order to produce a stable

drodynamic forces and moments provided by the RANQupling.

equations are calculated only at the end of every time stegok at the 1D problem. The equation of the motion is

They are used to obtain the new position of bodies. In thisjuced to :

case, a one time step discrepancy between flow and bodies my= f

motion appears in the resolution (hydrodynamic forces on ) ¢ thi ) . f
bodies calculated at time t are used to create the t+dt ki® 'Wo side of this equation are increased of an added

nematic configuration). Consequently, errors may be Ipass term in which the right hand side is evaluated at the

cumulated. Moreover, instabilities may appear as soonpéhgv'ous npn—lmea: |terat|rﬁ)n. _
a body density is close to the density of one fluid. A strof '€ €duation to solve is then :

ger coupling is then necessary. (m+a)ynlit — fpaylit-1

5.1 Non-linear coupling

f = f —ay withy : body acceleration

At convergencey"t = -1y the initial equation is re-

In order to stabilize coupling, the estimated flow duringovered. The terna needs not be accurately assessed,
the non-linear iteration is used to calculate forces and nsince it does not affect the converged solution. It must
ments acting on bodies and then new bodies position. only be chosen just high enough to ensure stability.



6 Application

6.1 Free fall of a prismatic hull

6.2 The self-propelled fish-like body

This case deals with the free motion of one flexible

body (Fig. 5).
These simulations are based on experimental symme-
tric and asymmetric drop tests with a 20 deadrise prisma %'%%?' gag

tic wedge (See] and [5]). The hull is dropped with an
initial zero speed from different heights H, with various
heel anglex (Fig. 3). The dynamic characteristics of the
hull (mass, inertia, position of the mass center) are para-

meters of experiments too.

free surface V

air

water

FiG. 3 — Experimental overview

{
i
N
i
N
M
W
N

A

M
R
AR
il
A
o
g
\
&

L

f
/\
\/

é
()
M
i
i
4

LN SSAZSE

i
A
ity

FiG. 5 — 3D fish-like body

Only the shape of the body is imposed, and the response
of the fluid induced by the deformation of the body creates
fluid forces on it and then movement. Hence, the position
of the "virtual fish" in space is an additional unknown of
the computation.

The deformation of the body shape imposes to have
recourse to the spring analogy method at every new step
time to compute a fish-fitted mesh. This mesh is then
moved by a rigid transformation to position the body in

Owing to the high aspect ratio of the hull (0.61m fPace. Here, a non-linear coupling with an added mass
2.44m) , 2D hull section simulations were able to be dor{€M is required to achieve a stable coupling.
The results of vertical and angular accelerations were
compared with the experimental data (Fig. 4 ).
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Kinematic conditions Dynamic conditions
H 0.61m M 124kg
o 5° Ig 8.85kg.n?

CG 0.216m

FIG. 4 — Example of comparaison for an asymmetric case

2D and 3D simulations were already performed by im-
posing a periodical fish-like deformation law, with an ini-
tial zero body speed. One observes that after a transitio-
nal state, the speed of the fish becomes periodical with a
constant mean speed (Fig. 6).

FiG. 6 — Time evolution of the speed of the fish

This periodical behaviour can also be viewed on Fig. 7
since the curve tends to be superimposed on itself.

—
:e;—;l,i

==

—

—

Good agreement is noticed. Fast variations on experi- ' h v
mental data are not captured by simulations since they are

produced by structural vibrations.

FiG. 7 — Transerval versus longitudinal velocity



6.3 Free motion of a floating box on waves genera-
ted by a wave-maker

This study used experiments realized at the Technical
University of Berlin and described ir5]. Here, two bo-
dies are involved. The water-maker which angle is impo-
sed in time by experimental data, generates a large wave
package. The other one is the free-floating box, which
density is 068g/cn? (See Fig. 8).

I 1N I o
N IS » IS
= S 15 IS
EE EEEEE EEmmE

o
w

— — — sim. (slip)
— - - sim. (no-slip)
- —e— Exp.

Preliminary simulations were performed. The non-
linear coupling without added mass term ensures the sta-
bility of the coupling for the floating body. The spring
analogy technique is invoked at each new time step. Ad-
ditionally, the analytical weighted reggridding is required
during the non-linear iterations to adjust the body posi-

Y-position (m)
g o
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w
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o
w
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tion. Two meshes have been employed, one with a no-

slip condition on the body surfaces, the other with a slip

FiG. 10 — Vertical motion of the body

condition. Comparisons with the experimental body posi-

tion measurements already show that viscous effects ar¢  conclusion

important. Fig. 10 confirms that the motion of the floating

box is greatly influenced by the type of boundary condi- 1p;g paper was focused on techniques which were ad-

tion onit. Nevertheless, these meshes have to be improyed i, the flow solver ISIS, to achieve coupling between
even these first simulations are encouraging.
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FIG. 8 — Experimental Case
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IG. 9 — Horizontal motion of the body

body motion and flow simulation. These described appli-
cations demonstrated the robustness of the chosen metho-
dology.

However, parallelization of the spring analogy regrid-
ding remains to be completed to compute finer grids wi-
thin reasonable CPU time. All the presented test cases will
be assessed to evaluate the influence of the discretization
error before the computation of seakeeping configuration.
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1 Introduction

This paper intends to show a comparison between two different free surface flow solvers.

The first one is a fast potential flow method based on a spectral technique. This one-phase potential
flow model is limited to non-breaking flows, due to a single-valued free-surface formulation. However,
its features of fast calculation, high accuracy and robustness up to almost vertical slopes may be of
interest. It will also be the occasion to compare different spectral techniques, including a new variant of
fully-dealiased High-Order Spectral method.

The second model solves the Navier-Stokes equation and uses a "Volume Of Fluid’ method for predic-
ting the free surface in a fully-coupled approach to calculate the flow motion. This VOF method includes
no reconstruction. Indeed, to ensure the accuracy of the method, the sharpness of the interface is conser-
ved using a High Resolution scheme for the convection discretisation. The discretisation is made by a
finite volumes technique such that structured or unstructured meshes are usable.

Previous validating two-dimensional cases will first be presented. Comparisons of simulations of slo-
shing waves in a three-dimensional tank will then be presented and discussed, including the post-breaking
stage in the VOF-model calculations.

2 Spectral Solver

The application of spectral methods to potential flow simulations are limited to a few examples up to
now (including e.g. [13] [8], [10], and [14]), despite their well-known quick convergence and high accuracy
features. However, their application was limited until recently to simulations of wave fields starting from an
initial sea-state. Le Touzé & Ferrant [15] have proposed an extended model able to generate and propagate
accurately fully-nonlinear wave fields starting from the rest. This model is included in the novel Spectral-
Wave Explicit Navier-Stokes Equations (SWENSE) model recently derived by Ferrant et al.[1] to calculate
the diffraction on bodies submitted to a fully-nonlinear wave field in viscous flow. To compare with the
VOF method here, only the kernel of the spectral model is employed, i.e. a three-dimensional wave tank
without generating device, in which fully-nonlinear free surface conditions (FNFSCs) are modelled. Both
the direct method by Fenton & Rienecker [9], and the High-Order Spectral technique by West et al.[10]
will be used and compared.



Under potential flow theory considering the free surface to be single-valued, the potential and the free
surface elevation verify in the fluid domain D of the L, x L, x 1 tank :

A = 0 in D

on _ 99 0¢0n 0940n _

ot 0z Oxdxr Oydy onE=0

3 L 3 (1)
%~ =Ll on 2=

g—z =0 on x=0,L,; y=0,L,

Then the potential is expressed by means of a spectral expansion on the natural modes of the fluid domain
D 9] :
cosh[kn,n, (2 +1)]

(kg @tkny, y) in D 92
cosh[kn,n, ] ¢ o @)

¢($,y,z,t): Z Anzny(t)

(ne,ny)

This expansion is plotted in the preceding set of equations. Then collocation nodes are spread over the
free surface at its instantaneous position, and from the two FNFSCs one can get the time derivatives of
n and of the time modal amplitudes A, 5, (t) in a pseudo-spectral manner, involving the resolution of a
linear system at each sub-step of the time-marching process. 7 at the collocation nodes and the A, (t)
are then advanced in time using a 4*"-order Runge-Kutta scheme.

Alternatively, the FNFSCs can be written by means of the Zakharov surface potential [17]. The only
remaining non-surfacic quantity in their expression is the potential vertical derivative 0¢/0z. The so-
called High-Order Spectral (HOS) technique consists then in expanding this last quantity located at
the ezact free surface position, in Taylor series about the undisturbed free surface position z = 0. An
iterative process can then be settled to obtain d¢/0z through that development, starting from known
surface quantities (such as the surface potential). This iterative process is also solved in a pseudo-spectral
manner, this time by means of FFTs, benefiting from the evaluation at the fixed surface z = 0. However,
by plotting in the FNFSCs the solution obtained for 0¢/0z out of this iterative process, one gets the
full expression of these FNFSCs still at their exact position. The surface quantities, again at this exact
position, can next be updated through the time-marching scheme. This is to say that the HOS technique
retains the fully-nonlinear feature of the solution, despite the Taylor expansion and the following iterative
resolution, which is inner and not correlated to the main resolution. This model is therefore not linked
to classical perturbation series expansions.

This HOS technique has been proposed independently and almost simultaneously by Dommermuth
& Yue [8] and West et al.[10]. However, as noticed by Tanaka [14], the West et al.version should rather
be considered since its consistent development in orders of 5 fully retains the Hamiltonian conservative
structure of the solution. So here a new fully-dealiased version of the West et al.solution is used, formulated
in a bounded tank whereas theirs is for unbounded periodic free surfaces.

3 Free Surface Capturing Solver

The 2D Free Surface Capturing method used in this comparison has been presented during the Nutt’s
of 2002 [4]. The novelty in the code is the used of a new correction method for volume fraction field,
and the new ability of it to simulate three dimensional application. Practically, the ’Volume Of Fluid’
method employed has been investigated by several authors as Ubbink[16], Peri¢[11, 5] and Didier[7]. This
method calculate the flow in the two fluids (air and water), considered as one single fluid whose physical
properties vary across the interface. The physical characteristics p and p are determined using the value
of an additional variable (c) the volume fraction, given in equation (3). The value of (c¢) is such that, if
a cell is filled with fluid 1, (¢=0), and if it is filled with fluid 2, (c=1). The behaviour of the free surface
is calculated through an additional advection equation (4). Consequently, the computation is performed
on one a large fixed grid, which is one of the advantages of the method.

cp1 + (1 —c)po cpu1 + (1 —c)us
pz—( ) uz—( ) (3)
P1 M1

Oc
TR (cd)=0 (4)



The disadvantage of the method is the difficulties to conserve correct global volume of fluid. In
the correction method employed, different level of neighbour of the free surface are defined, the level 1
corresponding to the cells crossed by the interface. Then the cell which have a level higher to 4, the volume
fraction is corrected to 0 or 1. The others with a level lower than 4 is corrected in order to obtained the
exact initial volume of fluid. So, the conservation of the global volume is ensured and the transition is
thin.

The flow is calculated using the incompressible Navier-Stokes equations which drive the motion of
the fluid. In order to discretise the system, their dimensionless conservative form, as presented below
(5, 6), is employed using a fully implicit finite volume method. To ensure the accuracy of the solver,
the integrals are approximated to second order and the flux approximation is evaluated with a deferred
correction. One critical issue of the VOF method is the choice of the differencing schemes employed to
solve the convective term of the volume fraction equation. Low order schemes like central differencing
schemes are not suitable because bounded solution is not ensured. And other differencing schemes like
first-order upwind scheme are too diffusive, smear the interface and introduce artificial mixing of the two
fluids over a wide region. Therefore high order mixing schemes have been designed for this application
such as the CICSAM scheme developed by Ubbink[16]. It preserves a sharp transition zone with a checked
boundedness criterion.

V%dV—F/SPUi (2. 7) dS+/SP_z’>,-.ﬁdS+/57% (?77) ds .
1 1
:/VE (?u).(?.ﬁ) dV+/VpF—r2?dV

/ ©.ndV =0 (6)
S

As indicated before the system is built through a Fully Coupled method. Numerically this technique
presents the advantage of accelerating the velocity-pressure coupling and fasten the convergence. More
precisely, the Rhie and Chow[12] velocity flux reconstruction is applied to the conservation of momentum
Navier-Stokes equation to obtain a single system using the pressure, the velocity and an added variable the
second velocity. The solution is calculated with an iterative algorithm BiCGSTAB-w using an incomplete
LU decomposition preconditionner.

The VOF solver capabilities have been checked on different applications [3, 4, 2], such as the flow in
a sloshing tank or the simulation of a Rayleigh-Taylor instability.

4 Results

The first sloshing flow used to compare the solver is an two-dimensional test case . It has been
compared to experiment made by Corrignan[6]. The tank employed is 0.4 m wide, 0.2 m high and is filled
to 60% of water. The movement of the tank is an horizontal oscillating displacement. It is ruled by the
equation (7). The VOF calculations were performed on a structured of about 3500 control volumes and
the time step is about dt = 0.001.

| A (sin(2m f1t) — sin(27 fot)) if 0 <t < 3.43s
=(t) = { 0 otherwise (M)
A=17510"3m
fi = 1.598Hz (8)
fo = 1.307H >

On the following figures, the exact interface shape of the experiment, the spectral and the VOF
simulation is showed. the numerical results are in good agrement withe the experimental one. And it
can be notice that the transfers between the potential energy and kinetic energy seem to be correctly
simulated for the VOF solution and the numerical diffusion seems to be negligible.



. exp. . exp.
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. exp. . exp.
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The second application has been made in a three-dimensional tank. The tank is B=25 m and L=25 m
wide and contains 1 m fluid. The translational movement is explain in 9, where wo, and wo, are calculated
using 10, the terms with m=1,3,5... ,.n=0 and n=1,3,5... m=0 correspond to the symmetric motions in
the x and y directions, respectively. in our case each first frequencies are obtained by taking m=1, n=0
and n=1, m=0.

z(t) = A - 5in(0.998wo,t)
{ y(t) = A - sin(0.998wo,t) (9)

= VOB (5 e (V) - C5) .

F1G. 1: Free surface elevation in the tank at t=10



F1G. 2: Free surface elevation in the tank at t=21

F1G. 3: Free surface elevation in the tank at t=44.1

The different views show the free surface shape obtained using the VOF (left) and spectral (right)
models. Four selected instants of the simulation are presented, as the forced motion of the tank leads
to steeper and steeper slopes in the free surface. Contours on the various snapshots represent the water
elevation, the levels shown are exactly the same in the two simulations. On the first pair of views, one
can notice a nice agreement between the two potential and viscous flow models. With the increase of the
energy given to the fluid, the free surface motion becomes more and more violent, leading to dissipation
in the viscous model. Therefore one can observe small differences increasing with time between the two
solutions, in particular less pronounced crests and slopes in the VOF results. However, the much faster
potential model and the VOF solution are in close agreement up to the time of the third pair of views,
where a violent crest occurs in one corner of the tank. Of our two spectral models, only the direct method
is able to keep on, with the inclusion of smoothing, up to the time of first breaking shortly after (fourth
pair of snapshots). The very fast HOS technique (without smoothing) stops at the time of the third
views, where very steep slopes close to breaking are already present. A finer comparison of the direct and
HOS spectral methods will be presented at the workshop, as well as the post-breaking stage of the VOF
calculation.
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F1G. 4: Free surface elevation in the tank at t=>54
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A 2D Smoothed Particles Hydrodynamics (SPH) code has been developed at INSEAN and
applications to the breaking-dam problem have been described at a previous NuTTS, Colagrossi
et al. (2001), and expanded in Colicchio et al. (2002). Landrini et al. (2003) applied INSEAN’s
SPH code to sloshing. Colagrossi and Landrini (2003), Landrini et al. (2003) give details of the
theory. The described SPH method is rather robust (even for large free-surface fragmentations
and folding), efficient and simple to code. CPU times are comparable to other techniques capable
of modeling breaking waves.

The SPH technique studies the fluid flow as the movement of fluid particles, which have their own
mass, density, velocity, and pressure. Each particle is influenced in its evolution by the evolution
of the neighbor particles. Consequently, the characteristics of the particles are estimated through
interpolation equations, which are weighted sums of the characteristics of the nearby particles.
These equations are governed by a kernel function W which assigns its weight in the sum to each
particle involved in the computation of a given property. We use a Gaussian kernel function with
cut-off limit of 3h. Fig.1 explains how a Gaussian kernel of length A influences the computations
of the properties of the particle centered on z*.

Kernel function
W(xP - xX*;h)

Domain Q
[
° [
[

° .
°
s
Domain of
influence Q,
Influenced node x*
Point x,

Fig.1: Implementation of the kernel function Fig.3: Coordinates and nomenclature
W on the fluid domain 2

The SPH code solves the Euler equations in Lagrangian formulation together with an equation
of state for the pressure. This suffices for the sloshing problem which is substantially governed
by inviscid mechanisms. The method treats the flow as a weakly-compressible inviscid fluid
for numerical efficiency, ensuring that this does not introduce errors in representing the actual
physics. We consider a reference system fixed relative to the tank, Fig.2.

The fluid equations for a generic excitation of the tank are:
dp;
d—fl = —pi Yy M (1)
J

du; 1
dt = —;ZFij_fi (2)
g




dz;
th = U (3)

o) = nl(L) -] (4)

o

p; is the fluid density of the i*" particle, u; its velocity, and z; its position; in the following only
the liquid phase will be modeled, while a two phase flow SPH model are described in Colagrossi
and Landrini (2003). The interaction terms M;; and Fj; follow from the discretization of the
mass and momentum conservation equations. Finally, p; f; represents any body force; here we
account for gravity and apparent forces. The interaction terms can be computed independently,
resulting in an explicit method easily implemented on parallel computers. The state equation
(4) must be satisfied by the particle pressure and depends only on the value of the density.
The parameters Py, po and 7 are chosen to have maximum density oscillations of order of 1%
around the reference value py. The reference value is obtained by choosing the speed of sound
cs = (dp/dp) at least ten times larger than the highest fluid velocity expected in the analyzed
physical problem.

To maintain consistency between mass, density and occupied area during the simulation (correct-
ing for accumulating numerical errors), the density field is periodically re-initialized by applying:

pi =y mjWi (5)
j

This is not straight-forward along the fluid domain boundaries. In these areas, the number
of particles seen by a given particle decreases, i.e. the computed density is smaller than the
original value. By adapting the kernel function to account for the fluid boundary, Eq.(5) is
adapted to this demand. This gives slightly longer computations, but mass conservation is
restored, a more regular pressure distribution is derived and total energy is better conserved.
An artificial viscosity is included in the discretized momentum equation to increase the stability
of the numerical algorithm. Time integration follows a fourth-order Runge-Kutta method.
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Fig.3: Limits of the particle searching Fig.4: Location and velocity of the
algorithm €2 ghost particles for a straight wall

For the weakly-compressible treatment of liquids and to prevent particle inter-penetration, we
implemented a velocity (XSPH) correction Awu; in the equations of particle motion following
Monaghan (1994). This correction considers the neighbor velocities through a mean velocity
evaluated within the particle support. A background Cartesian grid covers the whole fluid
domain and beyond. This grid consists of square cells of length 3h. The particle searching
algorithm to compute Fj; and M;; is implemented only for the cell where the particle is and



the eight closest adjacent cells, Fig.3. In Fig.3, the cell which contains the particle is in the
dashed line, the cells taking part in the interpolation equations are included in the thick-sided
square. The dashed circle represents the influence domain for a particle located on a vertex of
the dashed-limited cell. In practice, a first list collects all the cells with their respective particles
at a given time. A second list contains pointers from a given particle to the cell containing it.
These lists are updated at each time step.

Pressure continuity at the free surface is granted by the definition of the kernel function W. The
kinematic condition is satisfied by the Lagrangian tracking of the particles. A no-penetration
condition on solid boundaries (walls) is imposed using 'ghost particles’. Density, pressure, and
velocity of these fictitious particles are deduced from those of the physical particles adjacent to
the solid boundary. At each time step, all the particles within a layer with 3A thickness from
the wall are mirrored inside the body. Fig.4 shows the case of a straight wall, giving also the
velocity law for the ghost particles.

The code has been validated against an extensive series of sloshing experiments performed
recently at INSEAN. Faltinsen et al. (2000) proposed a multimodal approach, improved in
Faltinsen et al. (2001) to solve a pitch and surge-excited sloshing problem in a rectangular tank.
They compare their theoretical results with the sloshing experiments in a rectangular tank
with sinusoidal surge excitation performed by Olsen and Johnsen (1975). We compared these
theoretical and experimental data for h/L = 0.35 and excitation amplitudes A = 0.05 - L and
A =0.1-L. Fig.5 compares SPH results, original experiments of Olsen and Johnsen, multimodal
approach and our own experiments for the maximum free-surface elevation ¢ measured (=
maximum absolute value measured by the gauge within the steady-state flow) at 5 cm from the
right wall as a function of the excitation period T'. The results fit well except for the T'/T) <1
for A/L = 0.1. T is the first natural period according to linear theory. Since we do not know the
details of the experimental set-up used by Olsen and Johnsen and their procedure for evaluating
¢/L, it is not straightforward to explain the disagreement. The two experiments diverge for high
excitation frequencies. There, flow non-linearities will be more relevant making steady-state flow
conditions in the tank difficult. Thus the results could be sensitive to the used transient. Olsen
and Johnsen initiated the measurements 5 minutes after the tank motion started; we did so
after 4 min and 10 s. Also, we used a crank-connecting rod system to drive the excitation.
As a consequence, for excitation frequency larger than resonance frequency, during the initial
transient the resonance frequency was excited (briefly) which could affect the resulting sloshing
conditions. In particular for T/T) < 1 and for A/L = 0.1, we observed in the experiments
during the transient regime water impact on the tank roof which will modify the steady-state
conditions. This could explain also differences between our experiments and the multimodal
approach. Current research focusses on a more detailed investigation of the transient regime.
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Fig.5: Max. wave amplitude vs. period of oscillation; A/L = 0.05 (left), A/L = 0.1 (right)



In the SPH simulations, a linear ramp was enforced numerically to gradually reach the desired
excitation frequency. Then, the frequency was maintained constant during 32 periods. The
SPH results were finally obtained by analyzing the last 20 simulated periods. SPH predictions
agree generally with experiments. For T'/T) < 1 they agree better with Olsen and Johnsen’s
measurements and multimodal approach results for A/L = 0.05, better with our measurements
for A/L = 0.1. However, the numerical simulations consider an evolution of only 40 periods.
Therefore the considered time history is earlier than the time range used in either experiments.
Thus, there are no definite conclusions possible.

08 =476 08 oT=5.00 o0sf VT'=5.09 o0sf YT=520
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Fig.6: Experimental observations and SPH simulations for h/L = 0.125, A/L = 0.1, T/T; = 1.
Related time instants from left to right, top to bottom: ¢t = 8.82s, t = 9.21s,
t=9.43s, t = 9.65s, t = 9.82s, t = 10.09s, t = 10.65s, and t = 10.91s

SPH simulations have also been compared for shallow filling height to experiments performed
at INSEAN. Flow features differ substantially from those at h/L = 0.35. Fig.6 compares SPH
results and experimental observations for h/L = 0.125, A/L = 0.1, and T/T} = 1. A linear
ramp was used to reach gently the excitation period, then the excitation frequency was kept
constant. The shown sequence refers to the evolution phase between the end of the linear ramp
and a few cycles after it. The water moves first from the right to the left of the tank, hits the
left wall and creates a very thin jet flow along the structure. Then under the action of gravity a
reversed motion is caused with the formation a plunging wave traveling towards the other side.
The plunging wave quickly breaks on the underlying water and generates a splash-up series.
The moving wave forms then a bore finally hitting the opposite wall. From this time on, the



bore travels back and forth along the tank alternatively hitting the side walls. SPH results give
free surface and velocity vectors of free-surface particles.

Experimental snapshots are in good agreement with the SPH predictions until the last time
instant shown. Here, SPH predicts an earlier break-down of the wave than observed in the
experimental recordings. Therefore, the subsequent wall impact will differ in energy and the
maximum free-surface elevation experienced in the tests was higher than predicted by the SPH
code, Fig.7. Results agree well up to t/T ~ 6, then start to deviate. The numerical maximum
free-surface elevations predicted after this initial phase are lower than measured.

05 g C/L T/T,=1.00 Right Probe

f H/L = 0.125 Left Probe
04r e Right Probe SPH
03l A/L =0.10 e Left Probe SPH
0.2F
0.1}

OF eI el ;

01f D

0 5 o 10

Fig.7: Time history of the free-surface elevation and related SPH predictions
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RANSE analysisof 2D flow about a submerged body
using explicit incident wave models

R. Luquet, B.Alessandrini, P. Ferrant & L. Gentaz
Ecole Centrale de Nant

Introduction

Today a lot of ocean or coastal engineering problems involving wave-body interactions is numerically treated by
solving Reyolds Averaged Navier-Stokes Equations (RANSE). This is quite interesting because vorticity and viscosity
effects can be very important for understanding of wave-body interactions.

However numerical simulations under viscous flow theory lead to very large CPU requirements because grids must
be very refined between location of the structure and location of wave generation (for structured or non-structured grids
used with finite differences or finite volumes). Thisis indeed necessary to propagate the wave signal from the paddle to
the structure with no noticeable damping. Moreover successive wave reflections on the body or the paddle affect the
incoming wave train and reduce the useable duration of the numerical simulation. However this kind of problem which
concerns Numerical Wave Tanks (NWTS) based on potential or viscous flow theory can be easily largely avoided by
using immersed singularities (spinning dipole is the most efficient because it can be generate waves in downstream
direction only) or pressure patch (Armenio & Favretto, 1997).

To overcome these problems an original formulation is used here by modifying the initial problem in order to solve
the diffracted flow only. This approach has previously been used in the frame of potential theory , by Di Mascio et al.
(1994) or Ferrant (1996) in three dimensions, and e.g. Schenberg and Chaplin (2001) in two dimensions. It consistsin
splitting al unknowns of the problem (potential and free-surface elevation) in a sum of an incident term and a diffracted
term. The incident terms are described explicitly. Thus only the part of the grid in the vicinity of the structure needs to
be refined. Far from the body a stretched grid allows an efficient damping of the diffracted flow.

Here splitting of unknowns will be applied to a 2D viscous flow solver, Gentaz et al. (2000). The incident flow is
supposed to verify a non-linear potential flow and the diffracted flow is solved by assuming that the total flow verifies
RANS Equations : modified RANS Equations verified by the diffracted flow are named in the following SWENS
(Spectral Wave Explicit Navier-Stokes) Equations.

This technique has been already successfully used for the case of a non-linear regular wave train on a submerged
sguare cylinder (with its axis parallel to the wave crest) — see Ferrant et al. (2002) — and hydrodynamic forces had been
compared with numerical and experimental data. Here an submerged horizontal circular cylinder under regular wavesis
considered in order to focus on free-surface elevations and its harmonic components on lee the side of the cylinder and
to compare them with numerical and experimental results by Schegnberg & Chaplin (2001) and Chaplin (2001)
respectively.

M odification of the RANSE Solver to solve the diffracted problem

The viscous flow solver used in this study solves 2D RANS (Reynolds Averaged Navier-Stokes) Equations under
laminar flow assumption and non-linear free-surface boundary conditions.

In theinitial formulation of the problem primitive variables are Cartesian components of velocity (ul, uz), pressure p
and free-surface elevation h. Dependant space unknowns are (x1, x2) horizontally and vertically upward oriented
respectively.

To consider the single diffracted problem, primitive unknowns (Cartesian components of velocity (u”) with aD{1,2} ,
pressure p and free-surface elevation h) are decomposed as follows :

L LMFE/DHN, UMR 6598 du CNRS, 1, rue de la Nog, F-44321 Nantes Cedex 03, France



u? =uf +uf
P=P *Pp atfLd 1)
h=h, +h,

Variables with the subscripts | and D represent incident and diffracted variables, respectively.
This decomposition is then introduced in the set of initial equations assuming that the incident wave flow fulfils the
Euler equations and non-linear free surface boundary conditionsin potential flow theory :

- Transport equations :
a ) ) a 2.a ) a 2 a
ot ox! ax! P ox? ox! ox]

- Mass conservation :

j
auD

ax/ =0 ®

- Free-surface boundary conditions :
Mo, p O0fay1)o0 _ 2

i) kinematic condition — Up |—=u 4
(i) ot D o [ D ot D 4
(i) normal dynamic condition Po = pahp +2pvaxij(u,] +u[],jni n; (5)
. . ” 0 ( . )_
(iii) tangential dynamic condition (njti + nitj)a7 u, +up =0 (6)

In Equations (2) to (6) terms with incident variables (velocities, velocity gradients, free-surface elevations and free-
surface elevation gradients ...) are explicitly computed knowing kinematics and interface position of the incident flow.
This set of equations will be named in the following SWENS (Spectral Wave Explicit Navier-Stokes) Equations. Note
that the equations have been given for laminar flow, which is consistent with numerical examples given in the sequel.
SWENS equations for turbulent flows are easily obtained by taking the turbulent viscosity 1 into account.

In order to compute the set of equations defined previoudly the fluid domain is discretised by a structured monoblock
grid. The equations (2) to (6) are modified by using a set of curvilinear space variables fitted to the geometry of the
fluid domain to simplify the implementation of boundary conditions. A free-surface tracking method is used to update
the interface : at each time step the mesh is regridded following the new shape of the free surface. Equations are
discretised by second-order finite difference schemes in space and time. A pressure equation is obtained by combining
the equation of mass conservation (3) with transport equations (2) following the Rhie & Chow procedure (Rhie &
Chow, 1983) : thus checkerboard oscillations classically associated with centered second-order schemes are suppressed.

An origina fully-coupled method, developed by Alessandrini and Delhommeau (1995), is used to solve the
discretised set of equations: at each iteration all equations (RANS Equations, pressure equation, free-surface boundary
conditions, no-dip conditions) are assembled in a single large and sparse linear system which is solved using a bi-
CGSTAB agorithm with an incomplete LU preconditioning.

M odels of incident flows

To consider a non-linear regular incident wave train an algorithm based on the stream function theory of Rienecker
& Fenton (1981) has been implemented.

A irregular wave train could be prescribed as well by using a spectral formulation. This kind of procedure has been
already developed by Ferrant & Le Touzé (2002) combining a spectral formulation and a Boundary Element Method
(BEM) to simulate an irregular wave train interacting with a 3D body under potential flow theory.



Finally the combination of incident potential flow and RANS solvers for the diffracted problem can be summarized
as follows : At each time step of the computation the geometry of the fluid domain is updated. The kinematics of the
incident wave flow is calculated on this updated grid and then the diffracted problem defined by the set of SWENS
Equations (2) to (6) is solved using the viscous flow software described previously.

Preliminary results

Two unnecessary approximations used previously (Ferrant et al., 2002) have been modified in the present work.
First, finite differences methods were used to determinate the derivatives of the incident flow variables. However this
flow is known analytically so the formulas of its derivatives can be directly obtained. These analytical terms have been
implemented and the results obtained by simulations including the two kinds of derivatives have been compared. As
shown in the numerical results on the left of figure 1 the differences between the two ways of calculating the derivatives
is sizeable and can reach 10 %. However the consequences on global quantities like the free surface profiles are almost
negligible (figure 1, on the right).
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Figure 1: Deep water wave diffracted by a circular cylinder at x=0.

Left : variation of %7U for theincident flow at t=12 s, solid : finite differences, dashed line : analytical derivative.
X

Right : Differencein percentages between the two free-surface elevations at x=0.2.

Figure 2 : Free-surface profile of deep water wave diffracted by a circular cylinder.
Dashed and solid lines correspond respectively to resultsfrom Euler and RANS assumption.

In the other approximation the incident wave flow was assuming to verify RANS Equations in order to simplify the
equation set (2) to (6). This was not strictly exact because the incident non-linear flow model of Rienecker & Fenton
(1981) used here is based on potential flow theory and verifies Euler equations only. That is why equations (2) to (6)



have been modified consequently. Figure 2 gives a comparison between two free-surface profiles corresponding to
results from Euler or RANS assumption for the incident flow and shows that profiles are very close.

Finally verification of volume conservation has been made: the variation is smaller than 1 % for simulations longer
than 40 s.

Results

A non-linear regular wave train is propagating above an immersed horizontal circular cylinder in deep water is
computed here following numerical study of Schgnberg & Chaplin (2001) and measurements by Chaplin (2001).
Parameters of computation are normalised by taking the cylinder radius ¢ and (c/g)? as length and time scales
respectively. Thus the cylinder submergence is d/c=1.5, the angular frequency kc=0.56 and the amplitude of the
fundamental frequency component a/c is 0.107. With these parameters, the K eulegan-Carpenter number is KC=0.15.
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Figure 3: details of the grid used in computations

For present computation under viscous flow theory a 300000 nodes grid has been used in order to compute properly
higher order harmonic components of the free surface elevation — about 40 points per wavelength for the third harmonic
to compare with 10 points in the same case for the potentia flow computations of Schanberg & Chaplin (2001) — A part
of thisgrid is shown on figure 3.
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Figure4 : Free-surface profile for d/c=1.5, kc=0.56 and a/c = 0.107.
Solid line : present computations; dotted line : computations from Schgnberg & Chaplin (2001)



On figure 4 instantaneous free-surface profiles are compared with potential flow computations made by Schanberg &
Chaplin (2001) with a quite good agreement. These profiles are plotted at the instant at which the undisturbed wave
filed would have a zero up-crossing at x=0.

1.5

|An+Bn|/a

o
o
LR LA

o
x / lambda

Figure5: Fourier components of the free surface elevation.
Symbols : measurements from Chaplin (2001); solid line : present computation.

Figure 5 shows the spatial variations of the first three harmonic components of the free surface elevation. For
several locations in the numerical wave tank these components have been computed using a Fourier decomposition of
the time history of free-surface elevation signal in a moving window of one wave period long. Present computations are
in good agreement with Chaplin's experiments for the first wave crest located behind the cylinder. For the following
crests, present results underestimate the amplitudes of the harmonics because the grid is stretched in this part of the
wave tank. Concerning reflections of the incident signal — they must be zero according to linear theory (Dean, 1948) or
second-order accuracy (Mc Iver & Mc lver) and cannot be measured with enough confidence experimentally (Chaplin,
1984; Grue, 1992)— present computations show a small spatial variation for the first harmonic component. This agrees
with recent measurements from Chaplin (2001) who attributes these results to reflection at the fundamental frequency :
according to him the corresponding reflection coefficient follows a' / a= (ka)® for large values of (ka)® and thus
reflection is not significant (Schanberg & Chaplin, 2001).

Conclusion

Diffraction of a non-linear regular wave train by an submerged circular cylinder has been studied with an original
approach combining viscous flow solver and explicit modelling of the incident waves. Instead of computing the whole
velocity, pressure and free surface fields, the diffracted flow only is computed solving SWENS Equations (RANS
Equations where variables have been decomposed in incident and diffracted variables).

First results are encouraging and other comparisons will be undertaken for this case (harmonic components of
hydrodynamic forces or free wave amplitudes at the lee side of the cylinder).
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DEVELOPMENT AND APPLICATION OF AN UNSTRUCTURED FINITE
VOLUME SOLVER FOR FREE SURFACE FLOWSIN 2D

Tommi Mikkola®
Ship Laboratory, Helsinki University of Technology

1 INTRODUCTION

Within the field of ship research, viscous free surface flows have commonly been solved using surface tracking
methods based on structured boundary fitted grids. Due to the use of structured grids, these methods are, however, not
very well suited for cases involving complex geometries and large deformations of the free surface. Unstructured methods,
having the capability to cope also with geometrical complexities, are therefore a more suitable choice for these kind of
cases. An equally important feature of unstructured grids is adaptivity, i.e. the possibility to regenerate the grid locally
during the solution process without affecting the rest of the grid.

The purpose of the on-going research at Helsinki University of Technology Shiplaboratory is the development
of an unstructured, finite volume flow solver for free surface flows with surface tracking, adaptive grid reconstruction.
The first part of the work was the development of a basic laminar 2D solver without free surface for triangles based on the
pressure correction method.[8] In this paper the solver is extended for free surface flows with emphasis on the coupling
of free surface solution and pressure correction method. Two approaches for the solution of the free surface deformation,
with partial coupling to the bulk flow solution, are presented. As the interest is on the free surface solution approach, only
Eulerian flow is considered. The surface tracking is implemented with a well known spring analogy model.

2 GOVERNING EQUATIONS

The flow is assumed to be incompressible, inviscid and isothermal in 2D. The governing equations for the flow
are the incompressible 2D continuity and momentum balance equations. In conservation form these are

/ puinidS =0  and / Py / pvivin;dS = — / pnidS @)
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respectively. Here p is the density, v; are the velocity components and n; are the components of the outer normal for
domain € respectively. The piezometric pressure p includes the effect of gravity and is given by

p=p""+ pgzs, )

where pt°t is the total physical pressure and gravity points in the negative x»-direction.

The bulk flow and free surface are connected through boundary conditions, which have to be satisfied on the
deforming surface. As a material interface, the free surface introduces two types of conditions on the flow quantities. The
first one of these is the kinematic boundary condition stating that there is no flow through the interface. This requires that

Oh
(Uz' — ’Ulfs) n; =0 s where Ulfs = —;9 (3)
ot
is the velocity of the surface parallel to the x5-axis. Wave height h is measured from some reference level parallel to the
x1-axis. Writing out Eq. (3) gives the kinematic boundary condition

—:U2+Ul—1. (4)
n

The second condition to be satisfied on the free surface is the dynamic boundary condition. This states, that
stresses have to be continous across the free surface. In this work, the inviscid approximation of this without surface
tension effects is used. Assuming zero atmospheric pressure and taking into account Eq. (2) leads to the dynamic boundary
condition

p = pgh (5)

for the piezometric pressure on the free surface.

1Ship Laboratory, Helsinki University of Technology, Otakaari 4, FIN-02015 Espoo, Finland — E-Mail: Tommi.Mikkola@hut.fi
This work has been carried out in *Ship Flows’ project funded by the Academy of Finland (project 49846)



3 NUMERICAL METHOD

The numerical method used in this work is based on the unstructured, triangle based, finite volume method and
the flow equations are solved using a SIMPLE-type [4], collocated pressure correction method.[8] Boundary conditions
are taken into account by setting appropriate values for the variables in ghost cells on the boundaries. \elocities and
pressures are defined at the centres of the control volumes and wave heights at the centres of the free surface faces.

The solution process is based on a velocity-pressure decoupling, in which the velocities and pressures are solved
separately in an iterative manner. In each iteration, the velocity field is first updated from momentum balance using the
current pressure field and corrected after this by altering the pressure according to the resulting mass balance error in the
continuity equation. This process is repeated until a steady state is reached. Each global iteration can be divided into three
parts: the velocity update, calculation of the mass balance error and the pressure correction stage.

A common approach to solve free surface problems is to decouple the bulk flow and free surface problems. In
that case, the solution of the flow consists of two independent steps iterated in turns until a converged solution is reached.
For each iteration, the bulk flow is updated first with boundary conditions according to the current free surface. This is
followed by the solution of the new free surface location based on the updated bulk flow and adjustment of the grid to
match the new boundary. Calculation of the new wave height can be based on either the kinematic or dynamic boundary
condition. The next bulk flow step is then based on boundary conditions on the updated free surface.

In the current method, the approach above is improved slightly by partially coupling the bulk flow and free
surface solutions through the pressure correction equation.

3.1 Kinematic free surface approach

In this approach the update of the wave height is based on the kinematic boundary condition. The grid is
assumed to be fixed and to coincide with the instantaneous free surface at the current time step. Velocity components
are updated from the momentum balance using dynamic boundary condition (5) for the pressure and either zeroth or first
order extrapolation for the velocities on the free surface.

Full decoupling of the bulk flow and free surface solutions would result into a constant pressure boundary con-
dition on the free surface, implying zero pressure correction on the free surface. On the other hand, the deformation of
the free surface combined with the dynamic boundary condition changes the pressure on the free surface. This incompat-
ibility of boundary conditions would lead to a jump in the pressure across the free surface during the iteration, affecting
the stability of the method. In order to avoid this complication, the deforming free surface is taken into account during the
pressure correction stage using the dynamic boundary condition as follows.

After the calculation of the mass balance error, the change of wave height is evaluated by integrating the kin-
ematic boundary condition (4) in time with the explicit Euler scheme. Pressure on the new free surface has to satisfy the
dynamic boundary condition, giving with the resulting change in wave height

P"™ = py <v2 + vlﬂ) At (6)
n2

which is used as a boundary condition for the pressure corrections on the free surface. Due to the relaxation of the pressure
corrections in SIMPLE method, wave heights have to be relaxed similarly with

R =A™ + a, AR (7
in order to get a free surface compatible with the corrected pressure field.

3.2 Dynamic free surface approach

In the second approach used in the current method, the calculation of the new wave height is based on the
dynamic boundary condition. Each iteration starts with the calculation of the current wave height from the pressure on
the surface: .

S

h=" (8)
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As with the kinematic approach, the grid is assumed fixed. Time integration of the momentum equations is done
assuming slip condition on the free surface. The pressures are thus extrapolated linearly into the ghost cells and velocity
vector is mirrored with respect to the surface, resulting into zero mass flux through the surface. This same condition is
used for the calculation of the mass balance error as well.

Test calculations showed, that full decoupling of the solutions would lead to large deformations on the free sur-
face, making the method very unstable, unless considerable under-relaxation of the pressures is applied after the solution
of the pressure correction equation. Heavy under-relaxation would, however, have a dramatic effect on the convergence
speed of the solution process.



In this approach, the partial coupling of the bulk flow and free surface solutions is in a form of under-relaxation
in the pressure correction stage based on the deforming free surface. As in the first method, the pressure correction on the
free surface and the change in wave height can be related through the dynamic boundary condition giving

p/fs
Ah=—. 9)
pg
If the grid is assumed fixed, this movement of the free surface results into a mass flux through the face of the fixed grid
given by the kinematic boundary condition as

s oxfs flp; +(1 7f1)
lm gAt

/
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Here [ is the computational cell with a face on the free surface and m the associated ghost cell. This mass flux is added to
the mass balance error in the pressure correction equation. By using zeroth order extrapolation for the pressure corrections
in Eq. (10), i.e. p},, = p; the contribution can be transfered to the diagonal of the pressure correction equation, giving for
the diagonal term

Sl'rn”Q,lm

o~ (11)

f;
o = ay +

3.3 Grid update

The wave heights are given at the centres of the faces on the free surface. Before the grid can be updated,
these values have to be transformed to the grid points on the surface. A centred scheme for the transformation leads
to decoupling of the neighbouring wave heights, when calculating normal vectors, and therefore an upwind scheme is
used instead. Assuming that the flow is from left to right, the wave height at the right hand end point of the face A" is
approximated by a third order scheme

2h* + 2h — h!
= 3 )
Here h* and h! are the weighted averages of neighbouring wave heights at the right and left hand ends of the face
respectively. An alternative to this scheme is zeroth order extrapolation of wave height, which can be used close to
boundaries to damp out transient waves.

The updating of the grid is based on the well known linear spring analogy model first presented by Batina [1],
in which the edges of the grid connecting the grid points are assumed to be linear springs. The grid points are moved by
searching for the equilibrium of the spring system knowing the displacements on the free surface.

h (12)

4 NUMERICAL TESTS

The free surface solution approaches described above have been tested with two test cases. These are a flow over
a bump on the bottom of an infinitely wide channel [3] and flow over a submerged hydofoil with an angle of attack [5].
Results are presented for three different free surface solution approaches. These are:

a. kinematic free surface approach with zero gradient condition for the velocity components
b. kinematic free surface approach with linear extrapolation for the velocity components
c. dynamic free surface approach

Local time stepping is used for the bulk flow and free surface solutions in order to accelerate the convergence
of the solution process. These are controlled separately through nondimensional CFL-numbers given by

2 . ) fs
CFL = Hlax Wz’lm—w CFLfS — UlAt (13)

m=1,3 VZ S’ng

for bulk flow and free surface time steps respectively.

4.1 Flow over abump

This case was chosen for the overall comparison of different approaches during the development of the free
surface solution method due to its simplicity and the prior experience [7] with the case. The bump on the floor of the
channel is of Gaussian bell shape with a height of 0.1 and the centre at z; = 10. In x1-direction the domain extends from
-20 to 50, with damping zones from -20 to 0 and from 30 to 50 on the free surface. Undisturbed water level is at z5 = 0.
The grid for the case was created with EasyMesh grid generator [9] and has 1533 nodes, 4123 sides and 2591 triangles.
The number of points on the free surface is 279. Cell size in the grid increases towards the inflow and outflow boundaries.



Testing has been performed with both a subcritical and supercritical cases, with Froude numbers based on depth
below and above unity respectively. The results presented below are for the subcritical case with Froude number of 0.567.
At low inflow velocity, both free surface approaches performed well in terms of convergence. The time step parameters
CFL and CFL' were 5.0 and 1.0 respectively for both approaches. Pressure corrections were under-relaxed slightly more
in the case of the dynamic approach, with relaxation factor 0.3 for the kinematic and 0.2 for the dynamic approach. With
these choices the residuals converged to machine accuracy after around 6000 iterations for the kinematic approach and
after around 8000 iterations for the dynamic approach, where the slower convergence of the latter is probably due to the
smaller pressure relaxation factor. For comparison, the case was tested also with fully decoupled approaches. In this case,
the dynamic approach was extremely unstable and, even with radical reduction of the pressure under-relaxation factor,
computations diverged. For the kinematic approach, the difference was more subtle. With fully decoupled approach, the
free surface CFL-number had to be limited to roughly 0.5. As the limiting factor with the above choice of parameters
seemed to be the free surface evolution, the reduction of the free surface time step resulted into roughly twice as slow
convergence of the total solution.

At higher velocities considerable difference emerged between the approaches. As the inflow velocity was in-
creased, the dynamic approach became highly unstable with large free surface deformations leading to the divergence of
the solution, unless the final pressure corrections were heavily under-relaxed. The kinematic approaches on the other hand
required very few changes to the input parameters.

Some differences can also be seen in the wave profiles compared in Fig. 1 with a result from a previous test
with FINFLO flow solver [7]. The damping with the dynamic approach is slightly stronger than with the kinematic
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Figure 1: Wave profiles for flow over a bump compared with results for FINFLO [7].

approach and linear extrapolation for the velocity components. For the kinematic approach with zero gradient condition,
the damping is considerably stronger than with cases b and c. The location and depth of the first through as well as the
location of the first peak for all cases agree well with the previous results for FINFLO. The strong damping of the wave
field in the FINFLO result is partially due to the rapid increase of the cell size towards the outflow boundary, and therefore
further away from the obstacle the results are not comparable.

Differences in the flow field are most easily seen from the contours of v5-velocity shown in Fig. 2 for cases
a and c. The results for cases b and ¢ were practically identical. Here the contours are drawn using the values at the
cell centres as well as the averaged values at the grid points. Cases b and ¢ give relatively smooth and almost identical
velocity distributions, whereas the velocity field from case a has some oscillations close to the free surface. It can be seen,
that because of the zero gradient condition the contours cross the free surface orthogonally for a large part, which clearly
should not be the case. Due to an incompatible boundary condition there is thus a jump in the gradient field close to the
free surface.

4.2 Flow over a submerged hydrofail

The accuracy of the free surface approaches was checked with a flow over a submerged NACA-0012 hydrofoil
with an angle of attack of 5 degrees. The Froude number based on the chord length is 0.567. Experimental results for this
case have been presented by Duncan [5]. It has also been extensively used for numerical testing, see e.g. [6] and [2].

The chord length of the hydrofoil is 1 and the leading edge is at (0,-0.99). The grid consists of 2996 points,
8699 sides and 5703 triangles. There are damping zones on the free surface from the inflow boundary to -7 and from 6.25
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Figure 2: Contours of vs-velocity for flow over a bump in cases a and c respectively. Contour interval is 0.02.

to the outflow boundary. The resolution of the grid is increased around the leading and trailing edges of the foil as well
as close to the free surface between x; = 0 and z; = 6.25. The number of points on the hydrofoil and on the free surface
are 128 and 115 respectively.

The CFL-numbers for the bulk flow and free surface solutions were set to 1.0 and 0.5 respectively. For pressure
correction factor 0.2 machine accuracy for the residuals was reached after 4000 to 5000 iterations in all cases, with slightly
more iterations required for the dynamic approach.
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Figure 3: Wave profiles for flow over a submerged hydrofoil compared with measurements by Duncan [5] and numerical
reference data by Hino et al. [6].

Wave profiles for different approaches are compared with experimental and numerical references in Fig. 3. Good
agreement with the numerical and experimental results can be seen with similar damping to the first test case. Compared
to the experiment, the depth of the first through is however under-estimated. This may be due to an insufficient resolution
of the grid in front of the through, where the cell size can be seen to increase quite rapidly. There is also a small difference
in the wave length between the computations and the measurement.

Comparison of the contours of velocities and pressure showed again, that cases b and ¢ give practically identical
results, while the contours in case a oscillate slightly close to the free surface. Despite the differences close to the free
surface, discrepancies close to the hydrofoil are negligible. Pressure contours for case b are shown in Fig. 4.

5 CONCLUSIONS

Unstructured pressure correction solver based on triangle meshes has been extended for free surface flows. Two
kind of approaches for free surface solution with partial coupling to the pressure correction method have been studied.
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Figure 4: Contours of pressure for flow over a submerged hydrofoil in case b. Contour interval is 100.

In the kinematic approach the updating of the wave field is based on the kinematic boundary condition, whereas in the
dynamic approach the new wave height is evaluated from the dynamic boundary condition. Additionally, the kinematic
approach has been tested with two different velocity boundary conditions.

Comparison with the fully decoupled approaches showed, that at low inflow velocity the stability of the dynamic
approach was greatly improved by the partial coupling of the solutions. Some improvement was also shown for the
kinematic approach. Both approaches performed roughly equally well in terms of convergence speed. At higher velocities
partial coupling was effective only in the case of kinematic approach.

Wave profiles agreed well with experimental and numerical reference data. Numerical damping of the wave field
was marginally stronger in the dynamic approach, as long as linear extrapolation was used for the velocity components
on the free surface with the kinematic approach. Zeroth order extrapolation resulted into considerably stronger damping
of the wave field.

The next phase of the research will concentrate on the development of the adaptive, surface tracking grid recon-
struction. The proposed approach consists of two parts. The first part is the identification of the areas requiring updating
and regridding of these areas, while the second one is the initialization of the solution in the updated parts of the grid.
Because the intended approach is very similar to more common forms of adaptivity, it should be possible to make good
use of existing research on adaptive methods.
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Introduction

Structural analysis of ships and floating structures using finite elements requires accurate
seakeeping computations concerning the local wave pressure distribution in addition to the
calculation of total hydrodynamic forces and ship motions. In this paper we present a
numerical method for seakeeping estimation of ships, which take into account the influence
of the steady wave field through body and free surface boundary conditions. The method is
applied to a blunt ship and to a slender ship. The numerical results are carefully compared
with experimental data and other computational methods in a wide frequency range
(including 7<0.25).

A hybrid method is proposed for extending the Rankine panel method to the low frequency
range. For the prediction of the unsteady wave field is necessary an accurate estimation of the
steady wave field; this is done by using a fully nonlinear Rankine panel code for the steady
problem.

Mathematical Formulation

Considering a ship advancing with constant forward speed U in regular waves encountered at
angle ¥, we adopt the coordinate system presented in Fig. 1. The linear theory is employed
for the problem assuming incompressible, inviscid and irrotational fluid. The wave field is
decomposed into a near field and a far field. The near field is constituted by a closed region
bounded by ship surface S, , free surface S, and artificial surface S.. The far field is an open

region bounded only by the artificial surface S and the free surface S F*. We apply the RPM

(Rankine Panel Method) in the near field and GFM (Green Function Method) in the far field
and connect both solutions on the artificial surface S, .
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Fig. 1 Coordinate system Fig. 2 Computational grids for Series-60



The total potential is decomposed into steady velocity potential @ and unsteady velocity
potential ¢ :

Y(x,y,z;t) =UD(x, y,2) + D, (x, y,z;t) =UD(x, y,z) + R[P(x, y, z)e' ] (1)
For the near field, the boundary conditions to be satisfied by the unsteady potentials
¢, (j=1~7) are given in [1]. For the far field, according to the Green function method, the

unsteady potentials ¢j* can be expressed as:
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G" (P,0Q) denotes the Green function which satisfies the following linearized free-surface
condition and the radiation condition at infinity:
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Due to continuity of the fluid between the near field and the far field, the conditions
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must be satisfied on the artificial surface S, .

Numerical Method

The discretization of the boundary surfaces §,, and S, is made in accordance with RPM

discretizations for the Series-60 presented in [2]. After pilot computations, which analyzed
the flow over a source pulsating with 7=0.2 at depthd =0.2m , moving with constant
speedU =1.0m/s, it was found that the appropriate shape of the artificial surface S, is semi-

cylindrical. The computational grid used in the proposed hybrid method for Series-60 hull
forms is shown in Fig. 2. The number of elements used for the computations are presented in
the Table 1.

Table 1. Number of elements on boundary surfaces

NH NF NC NT
onS, |onS, |onS. | Total
Series-60, C, =0.6 | 1320 | 1919 | 480 | 3719
Series-60, C, =0.8 1320 | 1717 | 480 | 3517

For the near field, the unsteady potentials ¢, (j=1~7) are expressed by source distributions on

Hull Form

the body surface S, , the free surface S, and the artificial surface S, .

9;(P)=~ fG S(Q)G(P,0)dS )

Sy+Sp+Sc

where G(P,0)=1/47\/(x—x')’ +(y=y)* +(z—2')* , P=(x,.2), O =(x',¥'.2")



Hydrodynamic forces

The importance of the steady wave field on hydrodynamic forces is demonstrated through
numerical results for the added mass, damping coefficients and the wave exciting forces. This
method is able to estimate in good accuracy the unsteady waves for high and low frequency
range.

Fig. 3 and Fig. 4 present a comparison between the results of strip method, hybrid methods
(based on a double-body formulation and based on fully nonlinear steady wave field) and the
experiment. Continuous arrow and dashed arrow show 7=0.25 and7=0.5, respectively.
The results for the hybrid methods are noted with (DBF) for double-body formulation and
(FNL) for fully nonlinear formulation. It is known that desingularized Rankine panel method
gives good results only for the range 7 >0.5. For the low frequency region, the hybrid
methods predict fairly the experimental values for the added mass and damping coefficients.
Especially for pitch added mass (Fig. 3), the results of hybrid method forecast the
experimental jumps in the low frequency region. Also for the coupled damping coefficient
between pitch and heave we can remark the reasonable numerical results in the range of
7<0.5 (Fig. 4).

Fig. 5 presents surge and heave exciting forces and pitch exciting moment for Series-60
(C»=0.6). For surge and heave exciting forces there are no significant differences between
computations. All computations appear to predict quite accurate the experimental values.
Distinction between computations appears for pitch exciting moment where for the values
A/L>1.5 (7<0.57) we can observe a small difference between the hybrid methods.
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Fig. 3 Added mass and damping coefficients for pitch for Series-60 (C,=0.6) at F,,=0.2
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Fig. 4 Coupled added mass and damping coefficients between pitch and heave for Series-60
(Cp=0.6) at F,,=0.2
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Fig. 5 Wave exciting forces and moment for Series-60 (C;=0.6) at F,=0.2 in regular head
waves

Unsteady Wave Field

In order to validate the newly developed hybrid method, we proceed with analysis of the
unsteady wave field. Low frequency range (7 <0.25) is selected for investigation of the
unsteady wave field. In this range we used heave radiation wave for validating the numerical
results of hybrid method. Fig. 6 presents wave contour plots of heave radiation wave for
7 =0.23 for Series-60 (C,=0.8). This frequency was selected because the side wall effect
does not contaminate the k; wave system which propagates from downstream toward the ship
and has only minimal influence on the k, wave system which propagates from the ship
toward upstream region.

For this case of a blunt model we can observe the two wave crests near ship side as for the
slender model and also a new wave crest near the ship’s bow. This local wave is captured
only by hybrid method taking into account the fully nonlinear steady wave field. Along the
ship side, the waves are overall better estimated by hybrid method (FNL).

Conclusions

The presented hybrid method was applied to Series-60 hull forms, blunt and slender model
and the numerical results were compared with experiments taking into account the side wall
effect of the towing tank. Through this study the following conclusions can be reached:
= The developed hybrid method is able to predict the hydrodynamic forces in good
accuracy. The numerical results of the hybrid method cover the whole frequency
range, combining the advantages of RPM for high frequency range and the GFM for
the low frequency range. The influence of the steady wave field on hydrodynamic
forces seems not so remarkable and can be detected in the numerical results of the
pitch exciting moment.
= The hybrid method is able to estimate in good accuracy the unsteady waves for high
and low frequency range. For the sensitive range of 7 < 0.25, fully nonlinear approach
of the method gives better results than linear approach for the k> wave system and for
the local wave system along ship side.



For improving unsteady wave estimation in the low frequency range, for the case of
blunt ship’s forms, it is necessary to evaluate more carefully the steady wave in the
downstream region of the computational domain.
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Fig. 6 Contour plot of heave radiation wave for Series-60 (C»=0.8)
at F,=0.2, KL=1.32, 7=0.23
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Introduction

Theoretical prediction of the behavior of ships and offshore structures in time-harmonic ambient
waves is one of the most important core issues in free-surface hydrodynamics. For offshore structures,
robust and highly-efficient panel methods have been developed, and are routinely used, to solve the
canonical wave diffraction-radiation problems associated with the definition of added-mass and wave-
damping coefficients, and wave-exciting forces and moments. These potential-flow methods are based on
numerical solution of a boundary-integral equation formulated using the Green function that satisfies the
linear free-surface boundary condition for diffraction-radiation of time-harmonic waves without forward
speed. Application of this classical approach, often identified as the free-surface Green-function method,
to wave diffraction-radiation by ships (i.e. with forward speed) has also led to useful methods—see e.g.
Diebold (2003), Boin et al. (2002,2000), Chen et al. (2000), Guilbaud et al. (2000), Fang (2000), Wang
et al. (1999), Du et al. (2000,1999), Iwashita and Ito (1998), Iwashita (1997)—although not to a
comparable degree of practicality because forward speed introduces major difficulties (not present for
wave diffraction-radiation at zero forward speed). A fundamental difficulty, considered in the present
study, of the forward-speed wave diffraction-radiation problem is that the Green function that satisfies
the linear free-surface boundary condition for diffraction-radiation of time-harmonic waves (frequency
w) with forward speed I is much more complicated than the Green functions corresponding to the
special cases Y = 0 or w = 0, which can be evaluated simply and efficiently, at least in deep water; see
e.g. Ponizy et al. (1994).

The Green function G( E ; @) for wave diffraction-radiation with forward speed, which represents the
velocity potential of the flow created at a field point Z = (&,7n,¢) by a moving pulsating source located
at a singular point # = (z,y,z), vanishes in the farfield limit ||€ — #|| — oo and satisfies the Poisson
equation

Geg +Gnn+Gee =0(E—2)(n—y)6(C—2) (1a)

and the Michell linear free-surface boundary condition
Ge+ F?Gee — fPG+i27Ge —e (FGe +ifG) =0 (1b)

at ¢ = 0; see e.g. Noblesse (2001). Here, 0<e <1, F=U/+\/gL is the Froude number, f=w+/L/g
is the nondimensional wave frequency and 7 = Ff = Uw/g, where g is the acceleration of gravity,
U is the ship speed, w is the frequency of the waves encountered by the ship, and L is a reference
length (typically the ship length). The coordinates £ and # are nondimensional in terms of the reference
length L. The Green function G is nondimensional with respect to a reference potential UL , where the
reference velocity U may be chosen as /gL ; two alternative choices for U are w L and the ship speed
U . The flow is observed from a Cartesian system of coordinates that moves with speed U along the
path of the ship. The z-axis is chosen along the ship path and points toward the ship bow. The z-axis
is vertical and points upward, and the mean free surface is taken as the plane z=0.

A number of free-surface Green functions, based on alternative mathematical representations, have
been proposed and used in the literature on wave diffraction-radiation with forward speed. Briefly,
two main types of free-surface Green functions have been used. (i) Green functions defined by single
Fourier integrals that involve relatively complicated special functions (related to the complex exponential
integral) of a complex argument, and (ii) Green functions expressed as single Fourier integrals along a
steepest-descent integration-path (that must be determined numerically) in the complex Fourier plane
(Bessho’s method). These free-surface Green functions, and related singularity distributions over flat
rectangular or triangular panels, have been considered in numerous studies, and relatively efficient
numerical-evaluation methods have been developed; see e.g. Maury (2000), Chen (1999), Boin et al.
(1999), Brument and Delhommeau (1997), Ba and Guilbaud (1995), Iwashita and Ohkusu (1992),
Bougis and Coudray (1991), Jankowski (1990), Hoff (1990), Wu and Eatock Taylor (1987), Guevel



and Bougis (1982), Inglis and Price (1982), Kobayashi (1981), Bessho (1977). Nevertheless, Green
functions that satisfy the free-surface boundary condition for wave diffraction-radiation with forward
speed are relatively complicated building blocks that may not necessarily be best suited for practical
applications.

These free-surface Green functions are commonly expressed in the form
drG=-1/r+ R+ W+ L (2)

where 1/r is the fundamental free-space Green function, R is defined in terms of elementary Rankine
sources, and the components W and L account for free-surface effects. The component W, dominant in
the farfield, accounts for the waves included in the Green function G, and is defined by one-dimensional
Fourier superpositions of elementary waves (i.e. single Fourier integrals). The component L in (2)
accounts for nearfield free-surface effects and is defined by a singular double Fourier integral, which can
be expressed in terms of single Fourier integrals involving the complex exponential integral or related
special functions. Alternative mathematical expressions for the wave component W and the local-flow
component L in (2) are given in the literature; e.g. see the studies of free-surface Green functions listed
in the previous paragraph, Noblesse and Yang (1996), Noblesse (1981). The most complicated of the
three components in the decomposition (2) is the local-flow component L .

The Green function (2) satisfies the Michell linear free-surface boundary condition (1b) everywhere,
i.e. in both the farfield (where the linearized free-surface condition is valid) and the nearfield (where
the linear free-surface condition is only an approximation, due to nearfield effects). Thus, a natural
alternative to the Green function (2) is a Green function that satisfies the Michell linear free-surface
boundary condition accurately in the farfield, but only approximately in the nearfield. Such a Green
function cannot be obtained by merely ignoring the local-flow component L in the alternative mathe-
matical representations (2) given in the literature, as can be seen—for instance—from the representation
of the Green function for steady flows given in Noblesse (1981). Specifically, the wave component W
and the local component L in this representation of the steady-flow Green function G( _é ; Z) involve the
sign function sign(§ —z) and the absolute value |£—z|, respectively. Thus, the wave component W
and the local component L do not satisfy the Laplace equation (although the sum W+ L does), and
expression (2) with L = 0 therefore does not yield a satisfactory Green function.

Simple Green function for wave diffraction-radiation with forward speed

A Green function that satisfies the Poisson equation (1a), the radiation condition, and the Michell
free-surface boundary condition (1b) in the farfield, and approximately in the near field, is obtained
in Noblesse and Yang (2003) by extending the analysis of generic Green functions given in Noblesse
(2001). This Green function can be expressed as

ArG = =1/r+1/n=2/rF+2/rfT+i(WH-W—-W") (3)
where 7,7, ,rF, vl are defined as
(X =¢—2 r=vh?+ 22 )
Y=n-y =02+ (Z.)?
1z=(-- RN ERv RS S @
Ze=C(+z vl = /B2 ¥ (Z.—1]f?)?
| h=VX24Y2 el = /R ¥ (Z.—F2=1]f%)? |
and W* and W stand for wave components that are given by one-dimensional Fourier superpositions of

elementary waves. These wave components—defined below—depend on the coordinates X,Y, Z, given
by (4), and involve a function © that is defined as
sinh(2®/0) + i sin(2V/o) Z k

O = @0 Fos2Vo) B V= Tz R o) )

and ® = Xa +Y; furthermore, o and C < 27/33/* ~ 2.756 are positive real numbers that may be
chosen as ¢ = 2.5 and C' = 2.



Wave component W+
The wave component W in (3) is defined as
1+\/1+4T/ (1-©)|t|eZk-i®
4F2 1+t2 1/4 /1—|—t2—a2

where the wavenumber k and the function ® are given by

wt=

k= k1t 2 q>=ko+(Xa+(signt)Y 1+t2—a2)

with the function a and the reference wavenumber k7 defined as

_ay WL T 1/2) R
V1/4+T1+1/2 ’

The function © is given by (5) with (6b).

Wave component W~ for 7 < 1/4
If < 1/4, the wave component W~ in (3) is defined as

1+4/1—47 °2t (1+0)|t]|eZ-k-i®
4F*? o (L+82)1/4/1+ 12 — a?

where the wavenumber k and the function ® are given by

W=

k =k V1t 12 <1>=k;(—Xa+(signt)Y 1+t2—a2)

with the function a and the reference wavenumber k& defined as

2\1/4 _ )
+% ko_:(\/]./4—7'+1/2)2/F2

The function © is given by (5) with (7b).

Wave component W~ for 1/4 < 7
If 1/4 < 7, the wave component W~ in (3) is defined as

_ f/ (1+0)|t]e” k—i®
(1+ )41+ 8 —a?

where the wavenumber k and the function ® are given by
k=4f2/1+ 2 <I>:4f2(—Xa+(signt)Y\/1+t2—a2)

with the function a defined as

a=[2(1+t*)4-1]/(4r)
The function © is given by (5) with (8b).
Wave component Wi for 1/4 < 7
If 1/4 < 7, the wave component W in (3) is defined as
v T)4 — »k—i
i IIF N ¢ )] L

1+t 4T o arvimaior (4241482 — a2

where the wavenumber k and the function ® are given by

k= k1t 2 & =k} (Xa+ (signt) YV1+ 7= a? )

(7b)



with the function a and the reference wavenumber k] defined as

2\1/4 _
azl_—\illz +)T—1;2 kf = 72/(V1/A+71+1/2) (9¢)

The function © is given by (5) with (9b).

Wave component Wi for 7 < 1/4
If 7 < 1/4, the wave component W in (3) is defined as

. Kr+K- ™ (1- ] Zik—i®
Wi= f2 7 + [ /dt ( G)) | sin? | € (103)
2 — 1—a?/(1-Ta)*
where the wavenumber k and the function ® are given by

k=f*(1- 7a)? ®=f2 <Xa + (signt) Y+/(1— 1a)* — a2 ) (10b)

Furthermore, the function a in (10b) and K= in (10a) are defined as

Kf-K; K/ +K; K 1/(/1/4 1/2)?
a=—* 4+ i tH cost { ’_}:{/( /+T+/)2} (10c)
2 2 K; 1/(v/1/4 —1+1/2)

The function © is given by (5) with (10b).

Simple Green function for special case w =0

For steady free-surface flow about a ship advancing in calm water, the Green function (3) becomes
4rG = —1/r+1/r —2/rF+ W° (11a)

where 7,7, ,rf" are given by (4), and the wave component W° is defined as
1 © VT+1 —
W°:—/ dt——i_eZ*kIm(l—G))e“I> (11b)
F2j_ T
Here, Tm stands for the imaginary part, and the wavenumber k and the function ® are given by
k=T/F? ® = (X+ (signt) Y\/T—l) VT/F? with T =1+ (11c)
The function © is the complex conjugate of the function © defined by (5) with (11c).

Simple Green function for special case U/ =0

For diffraction-radiation without forward speed, the Green function (3) becomes
dnG=—1)r —1/r+2/r] — i W? (12a)

where 7,7, .7 are given by (4), and the wave component W is defined by

Wi=jf?[dt(1—0)e”F~i® (12b)

Here, the wavenumber k£ and the function ® are given by
k=f? ® = f*(Xcost+Ysint) (12¢)

The function O is given by (5) with (12c).



Conclusion

The Green function (3) satisfies the Poisson equation (1a), the radiation condition, and the Michell
linear free-surface boundary condition (1b) in the farfield. Unlike usual free-surface Green functions,
which satisfy the free-surface condition (1b) exactly everywhere, the Green function (3) only satisfies the
free-surface boundary condition (1b) approximately in the nearfield. Although the linear free-surface
boundary condition (1b) is valid far away from a ship advancing in regular waves (i.e. in the farfield),
this boundary condition can only be regarded as an approximation in the vicinity of the ship (i.e. in
the nearfield) due to nearfield effects. Thus, it is not evident that a Green function that satisfies the
Michell condition (1b) everywhere is necessarily superior to a Green function that only approximately
satisfies the Michell boundary condition in the nearfield.

The Green function (3) is expressed as the sum of four elementary Rankine sources, defined by (4),
and the three wave components W* and W, defined by (5)—(10) in terms of one-dimensional Fourier
superpositions of elementary waves. The Green functions (11) and (12), which correspond to the special
cases f = 0 and F' = 0, are expressed in terms of three elementary Rankine sources and a single wave
component. The Rankine components in (3), (11a) and (12a) account for the leading terms in both the
nearfield and farfield asymptotic approximations to the nonoscillatory local-flow components associated
with the boundary condition (1b) and the related conditions for the special cases f = 0 and F = 0,
which thus are satisfied approximately in the nearfield and accurately in the farfield. The integrands
of the Fourier integrals that define the wave components W* and Wt in (3), W° in (11), and W? in
(12) are continuous and only involve trigonometric and hyperbolic functions of real arguments, and the
limits of integration in these Fourier integrals are independent of the coordinates X,Y, Z,. Thus, the
Green functions (3)—(10), (11) and (12) are remarkably simple.

The Green function (3) is considerably simpler than the free-surface Green functions that have been
used in the literature. The frequency-domain Green function (3) is no more complicated than the
Green function associated with a time-domain analysis, which requires a time-history convolution. The
frequency-domain Green function (3) is more complicated, but includes considerably more physics, than
the elementary Rankine source 1/r used as Green function in Rankine-source panel methods, which
require appropriate numerical-differentiation schemes to enforce the radiation condition (an unsolved
nontrivial problem for wave diffraction-radiation in a regime approximately defined by 7 < 0.5) and
truncation of an unbounded free-surface distribution of singularities; see e.g. Bertram and Yasukawa
(1996) and Bertram (2000).

No distribution of singularities over the free surface is required to compute diffraction-radiation of
time-harmonic waves by a ship within the linear approximation associated with the Michell free-surface
boundary condition if a usual free-surface Green function is employed (although free-surface distribution
of singularities are required to account for nearfield free-surface effects; e.g. if free-surface linearization
about the zero-Froude-number double-body flow is used). However, use of a simple Green function like
(3) requires a distribution of singularities over a nearfield portion of the free surface in the vicinity of
the ship waterline. An important property of the free-surface distribution of singularities associated
with the use of such a simple Green function is that it rapidly vanishes in the farfield (in practice, at a
small distance from the ship) because the linearized free-surface boundary condition becomes exact in
the farfield. This property is a significant difference with panel methods based on Rankine sources.

The analysis used in Noblesse and Yang (2003) to obtain the Green functions (3)—(10), (11), (12)
for deep water can be extended to the more general case of uniform finite water depth. This extension
will be given elsewhere. Numerical comparisons of the simple Green functions (3)—(10), (11), (12) with
the corresponding usual Green functions, which satisfy the linearized free-surface boundary condition
everywhere, will also be reported elsewhere.
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1.Introduction

In recent years, various podded propulsors with an electrical propulsion system are being developed
aiming at better hydrodynamic performance. Among them, a system with electric motors inside a
pod is considered to be most promising. For the optimized design of ships with a podded propulsion
system, methods for predicting hydrodynamic performances of a ship with a podded propulsor are
required. CFD(Computational Fluid Dynamics) methods with an unstructured grid approach are
expected to be the most powerful tool for this purpose, since it can analyze turbulent viscous flows
around a complex geometry. For the analysis of self propulsion condition by CFD methods, propeller
effects should be taken into account in a Navier-Stokes solver. It can be achieved by the use of a body
force distribution representing propeller effects. This approach has been applied to analysis of ship
flows with a conventional propeller and generally showed good agreements with measured data[l].

In this paper, a Navier-Stokes solver with an unstructured grid method is applied to the prediction
of the performances of a ship with a podded propulsor. The numerical results are shown and compared
with measured results. Also, the discussions are made for the performances of the two ways of podded
propulsor arrangement, a pusher type and a tractor type. Through these applications, capability of
the numerical method is demonstrated

2.Numerical Method

Since a basic numerical procedure for the Navier-Stokes equations are described in references|2][3],
only the brief outline is given here.

Spatial discretization is based on a cell-centered finite-volume method. A computational domain is
divided into unstructured polyhedral cells and flow variables (pressure, velocity and eddy viscosity)
are stored in the center of each cell. Cells whose shape are hexahedra, tetrahedra, prisms or pyramids
can be used and the combinations of these cells give greater flexibility for handling complex geometry.

For the inviscid fluxes (convection terms and pressure gradient terms), the second order upwind
scheme based on the flux-differencing splitting of Roe with the MUSCL approach is employed. The
viscous fluxes are evaluated by the second order central scheme. Thus, the overall accuracy in space
is the second order.

The backward Fuler scheme is used for the time integration. Local time stepping method is used,
in which time increment is determined for each cell in such a way that the CFL number is globally
constant. The linear equations derived from the time linearization of the fluxes are solved by the
Gauss-Seidel iteration.

The propeller effects are represented using the body force distributions which are calculated by a
simplified propeller theory[4].

3.Results and Discussions

Table 1 shows the principal particulars of the ship model used.



Table 1 Principal Particulars of Ship Model
Model  Ship

Lpp(m) 6.6667 78.00
B(m)  0.9966 13.00
d(m) 02492 461

Cb 0.682

A ship type is a coastal cargo ship and its design speed is 12.0 kt. In the numerical simulation,
the Reynolds number is set 4.096 x10° and free surface effect is not considered for simplicity. As a
turbulence model, Spalart-Allmaras model is adopted.

All the measurement, which include resistance and self propulson tests and wake measurement, were
conducted at the NMRI.

3.1 Towing Condition

In towing condition, the solution domain is set for the left half side due to flow symmetry. Its size
is,

—-1.0<2<3.0,-20<y,2<0.0

which are nondimensionalized by L,, and the origin of the coordinate is set FP.
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Figure 1 Computational grids

The computational grids consist of 0.8 million cells (0.3 million prisms and 0.5 million tetrahedra)
and 0.3 million vertices (Figure 1). The grids are hybrid, that is, prisms are used in the region near
the hull surface and tetrahedra are used in the far field. Minimum spacing adjacent to the hull surface
is set as 1.0x 106

The computed result of pressure distributions on the hull surface are shown in Figure 2. The
pressure distributions of pusher and tractor types are almost same on the hull and the strut surface.
On the pod surface, on the other hand, low pressure area are observed at the discontinuity of the pod
surface and pusher and tractor types show quite different pressure patterns.

Comparison of the nominal wake distributions are shown in Figure 3. The wake measurement was
performed only for the pusher type. The computed result shows a agreement with the measured
result. The wake shape can be considered as the superposition of the wakes of a ship hull and a pod
and also a strut.
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Figure 2 Pressure distributions on the hull surface(A p=0.1)
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Figure 3 Nominal wake distribution at propeller plane(A u=0.1)

Table 2 shows the computed and measured results of the form factor 1+K and the nominal wake
coefficient 1-w,. The computed form factor is larger than the measured results. Nominal wake
coefficients show good agreement with the measured result and exhibit the same tendency that 1-w,,
of the tractor type is lower than that of the pusher type. As shown in Figure 3, in case of a tractor
type, a propeller plane is closer to the hull surface than in case of a pusher type, thus, the nominal

wake coefficient becomes lower.

Table 2 Comparisons of form factor and nominal wake coefficient
Measured Computed
Pusher Tractor Pusher Tractor

1+K 1.13 1.14 1.28 1.24
l-w,  0.880 — 0.885 0.863

3.2 Self-propulsion Condition

For the self propulsion condition, the Reynolds number is set to be the same as the towing condition.
The computational grids are made from the grids of towing condition, that is, the grids of towing
condition are mirrored on the y-plane. Thus the computational grids of self propulsion condition
consist of 1.6 million cells( 0.6 million are prisms and 1.0 million are tetrahedra ). The solution
domain is as follows:

-10<2<30,-20<y<20,-20<2<0.0



The computation of a self propulsion condition starts from the convergence results of a towing
condition. Propeller revolution number is changed automatically to match the propeller thrust to
ship drug at the ship point. Iterations are performed until the propeller revolution and the flow field
converge. Self propulsion factors are computed by the thrust identity method.

Table 3 shows the principal particulars of propeller model. Propeller open test result are depicted in
Figure 4 together with the prediction with the simplified propeller theory. The result of the simplified
propeller theory shows good agreement with the measured result.

Table 3 Principal Particulars of M.P.No.300 |
Diameter(m) 0.1965
Boss ratio 0.1665 . 1
. . POT(Computed)
Pitch rat10(0.7R) 0.6800 0 POT(Measured)
Blade width ratio  0.3423 I |
Number of blades 4 oa o ]
Direction of turning  Right 10K
Blade section NACA r K 1
0 0.4 ‘ 0.6 ]

Figure 4 Propeller open test result

Figure 5 depicts the pressure distributions on the hull surface. Surface pressure distributions on the
ship hull show little difference between in pusher and tractor types. In case of a pusher type, surface
pressure distributions of pod are lower than the towing condition due to the propeller suction. Also
pressure distributions in port and starboard sides of a pod surface are almost same. On the other
hand, surface pressure distributions of a tractor type are quite different between port and starboard
sides. Because a propeller slipstream hits the strut, lower pressure arises in starboard side. While
high pressure area arises in port side. These asymmetric forces cause problems in manoeuvrability.
In such a case, a fin is attached under the pod casing for the force balance. Also, informations of the
pressure distributions are important for the self propulsion performance and a propeller design.

The wake distributions behind the propeller slipstream(x=1.03) are shown in Figure 6. In case of a
pusher type, swirling velocities are kept in a propeller slipstream. On the contrary, in case of a tractor
type, they are deformed due to interaction with the strut.

Finally, comparison of self propulsion factors are shown in Table 4. The computed results are
compared with the measured results on the lowest Froude number Fn=0.18.

The computed results show the same tendency with the measured results, thus, all self propulsion
factors of a pusher type are larger than those of a tractor type. The thrust deduction coefficients of a
tractor type become lower than those of a pusher type due to drag increase of a pod in the propeller
slipstream. The effective wake coefficients of a tractor type is also smaller than those of a pusher
type. This is because the thrust of a tractor type is larger due to the displacement effect of a strut
and a pod, and also because a wake gain of a tractor type is larger than a pusher type. In the present
computation, the difference between a pusher and tractor types is very small in total efficiency.
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Figure 5 Pressure distributions on the hull surface(A p=0.1)
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Figure 6 Wake distributions at propeller race(x=1.03, A u=0.1)

Table 4 Comparisons of self propulsion factor
Measured(Fn=0.18) Computed
Pusher Tractor Pusher Tractor

1-t 0.933 0.894 0.904 0.889
1-w;  0.930 0.856 0.904 0.867
Ny 1.011 1.001 1.029 1.010
Mo 0.595 0.580 0.578 0.573

4.Conclusion

Flow computations of a ship with a podded propulsor have been performed. The performances of
the two ways of podded propulsor arrangement, i.e., a pusher type and a tractor type, are compared.
The informations of flow fields and self propulsion factors are useful for a ship hull design.
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FREE SURFACE FLOW COMPUTATIONS
FOR COMPLEX HULL SHAPES

Anders Ostman, CFD norway, Norway
E-mail: anders.ostman@cfdnorway.no

INTRODUCTION

The flow field around realistic hull types might generate a very complex wave pattern. The
transom stern may be partly wetted, a bulbous bow generates a complex bow wave, and the
physical bow wave tends to break in the high Froude number range. All this presents
challenges from the numerical simulation point of view. When computing flow fields where
the physical bow wave breaks, it is necessary to add additional numerical diffusion locally in
the vicinity of the breaking wave. In the present paper this is done by means of two of
schemes from the LED-family. These models are thereafter used to compute the flow field
around the DTMB 5415 test case.

GOVERNING EQUATIONS

Conservation of mass and momentum of a inviscid, incompressible fluid flow with a
gravitational acceleration in the z-direction can be written on dimensionless form as

du;
—
" ()
du, du, oy
+u, =—
ot Jan ox.

1

where Re is the Reynolds number, y is a variable for the pressure, containing both the static
and the hydrostatic component of the pressure,

1
l//=p+ﬁx3 (2)

where Fr is the Froude number, Fr=U/4/gL .
The Froude number now enters explicitly in the boundary condition for y instead of in the
governing equations.

The physical requirement that there can be no mass flux through the free surface gives a
kinematic boundary condition that has to be fulfilled at the surface. The condition states that
the boundary has to move as a material surface, and is written as

A, 9,080

=w 3)
dt ot ox dy

where f(x,y,t) is the location of the free surface. An additional dynamic condition has to be

fulfilled at the surface. In case of large values of the surface curvature, the surface tension can

be neglected, and the dynamic condition at the free surface becomes p = pam. The

corresponding boundary condition for y; Eq.(2) becomes

1
= Daim + 4
V= pamt+— 3P )




Viscous effects are neglected on the free surface, a consequence of this assumption is that
there can be no velocity gradients normal to the free surface yielding a Neumann boundary
conditions for the velocities,

Ju dv ow
on on on )
NUMERICAL METHOD

The method used for the solution of the incompressible Euler equations is a finite-volume
method based on central differences in space co-ordinates and an explicit Runge-Kutta
method for the integration in time. This method is marching in time from an initial field until
a stationary condition is reached and the conservation equations for mass and momentum are
satisfied.

The flow solver facilitates multi-block grids with a general and flexible specification of
boundary conditions. The cell-centred finite-volume discretisation stems from the integral
form of the Euler equations. On a finite control volume € this reads

0
— dQ -ndS=0,
atJ-U +f£F n

Q
U’ =[p/cz,u,v,w]

where p is static pressure and c is an artificial speed of sound. The variables u, v, and w are
the Cartesian velocity components in x -, -, and z-direction respectively. The variables are
assumed averaged over each control volume. In Eq. (7) F refers to the common flux vector
containing the convective flux terms while the vector n is the outward unit normal of the
surface with area S. At each cell face the characteristic variables are obtained using a 3™-
order accurate upwind-biased interpolation stencil. After a transformation back to primitive
variables the fluxes are assembled.

(7)

Solution of the Free Surface Kinetic Boundary Condition

The iterations of the bulk flow equations and the free surface equation are done in two
independent loops. They are not coupled in a way that would prevent flux to go through the
surface in every intermediate time step. However, as the solution converges, the flux through
the surface will go to zero, the velocity at the boundary will become parallel to the surface,
and the surface will behave as a material surface. This approach follows the method presented
in [1]. The equation for the free surface is solved in the same way as the equations for bulk
flow, i.e. by a three stage Runge-Kutta algorithm.

Numerical diffusion at the free surface

For flow fields around realistic hull shapes, designed for high speeds, the physical bow wave
tends to break in the higher range of speed. For computations of such flows it is necessary to
add additional diffusion in the wave breaking area. This can be done in a number of ways. As
an example, Mascio et al. [3], achieved excellent results using ENO-type schemes. In the
present method two types of local extremum diminishing, LED [2], schemes are implemented



and applied on the free surface. The implemented schemes are ELED (essentially local
extremum diminishing) and USLIP (upstream limited positive) some details of these schemes
will now be described; the reader is referred to [2] for further details.

A diffusive flux through a cell face located at i+1/2 can be written,

1
di,=04,,(Ah,,, _E(Ahm/z +Ah,_, ), where Ah;,, , = Bi+1,j - Bi,j (8)

This scheme gives the well known fourth order dissipation. The scheme is frequently used to
eliminate spurious oscillations of smooth flows. As mentioned above, additional diffusion has
to be added locally for flows with extreme gradients, such as breaking waves or shock waves
in super sonic flows. A family of diffusive flux limited schemes with the possibility of
increasing the diffusion at local extremum can be written in the form,

di+1/2 = (x’i+1/2 (Ahi+1/2 - L(Ahi+3/2 ’Ahi—l/z )) (9)
where L(p,q) is a limited average with the natural properties of an average.
In addition, L(p,q) has a special property needed for the scheme to be LED, namely, L(p,q)=0

if p and q have opposite signs. This property is essential for the scheme to be LED (and
TVD). It is convenient to rewrite L(p,q) is the following form,

Lp.@) = D(p.a)(p + a) (10)

where D(p,q) is a function introduced to deflate the arithmetic mean, and become zero if p
and q have opposite signs. In ELED and USLIP schemes the function D(p,q) is defined as,

S

D) = 1| p=d
PV el + g ey

(11)

The term €Ax" is introduced to activate a threshold in the limited average. The values for the
parameters in function are chosen as, €=1.0, r=1.5 and s=2.

In the USLIP-scheme, the diffusive flux is evaluated from the upstream side of the cell face.
We then get the following scheme,

di+1/2 = (X’i+l/2(Ahi+l/2 - L(Ahi+l/2’Ahi—l/2))

ifu,,>0or (12)
diyi/n =00y 0 (Ahy , —L(ADy, 5, Aby5)0)

ifu,,,<0

It can be shown that the LED-type schemes satisfy the TVD-property, while the opposite is
not necessarily true. By increasing s, a sequence of limited averages is generated. If s=1 we
get the minmod limiter, while s=2 is equivalent to Van Leer’s limiter. Furthermore, it can be
shown that the numerical diffusion from ELED-type schemes is of order Ax’ at smooth
extremum.
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Figure 1 a) Interpolation stencil from the bulk flow mesh (BFM) to the free surface mesh (FSM).

b) Interpolation stencil from the FSM to the BFM

Free surface discretisation

The free surface kinetic boundary condition, KFSBC, is discretised by means of a finite-
difference method. A new two-dimensional free surface mesh, FSM, is introduced beside the
original finite-volume bulk-flow mesh, BFM. The node points in the FSM are constructed to
be located in the centres of the BFM free surface cell face, Figure 1. At the beginning of each
iteration the location of the node point, C, is found as an average of its surrounding bulk flow
vertex points.

1
FSM __ BFB BFB BFB BFB
Ze _Z(ZNW +ZNE +ZSW +ZSE ) (13)

Each free-surface iteration gives a new location of the FSM, and the vertex points on the free
surface of the BFM can thereafter be updated. This is done by interpolating the deflection of
the FSM to the vertex points of the bulk flow mesh,

BFM BFM 1 FSM FSM FSM FSM
(z2™) = (2! )i+Z(ABS + AR + AR + ABEY) (14)

NW NE SW SE

The bulk flow mesh can now be redistributed. The mesh is forced to move along the grid
lines of an underlying grid.

RESULTS

The computations are performed on a two block grid, with 187*63*61 node points in the
main block and 35*%29*61 nodes in the block behind the transom stern. The computed wave
profile at the hull is compared with INSEAN experimental data in Figure 2. The
computations gives a bow wave that is located just ahead of the bow wave found in the
experiments. Downstream the bow wave is the wave profile below the data along the entire
hull. This is however in line with the results computed by many others, se the proceeding
from the Gothenburg Workshop [4]. The USLIP and ELED schemes give nearly the same
results, although the USLIP-scheme gives a slightly higher peak in the bow wave. The results
along a cut at y/L=0.172 is shown in Figure 2. The computations under predicts the wave
crest at x/L=0.5, again this is a problem encountered at the Gothenburg Workshop. There is a
small shift in phase between the USLIP and ELED results at the local extremum, this is
probably due to the fact that the ELED scheme is symmetric, while the USLIP is asymmetric.



Wave profile on hull, DTMB5415, Fn=0.28

Wave cut at y/L=0.172, DTMB 5415, Fn=0.28
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Figure 2 a) Wave profile along the hull. b) Wave profile at a cut at y/L.=0.172

Figure 3

a) Overall wave pattern. b) Wave pattern at the bow. . ¢) Wave pattern
behind the stern. Computations are in the upper half and experimental
results in the lower half in all the figures.

The wave pattern is shown in Figure 3. The overall pattern is in reasonable agreement with
the experimental results, although the computed results are more diffusive further away from
the hull. It is difficult to interpret the experimental results in the bow area, but it seams that
the computed bow wave is in good agreement with the experiments. In the stern area there are
reasonably good agreement between computations and experiments.

CONCLUSIONS

The free surface flow around the DTMB 5415 test case has been computed using a finite
volume flow solver with a surface tracking method at the free surface. Two LED-type
numerical diffusion schemes for the free surface boundary condition have been tested. Both
schemes are capable of handling the breaking bow wave, and there are small differences in
the computed wave profile between the two schemes.
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Hydrodynamic Design Optimization
using the Navier-Stokes Equations!

Daniele Peri, Emilio F. Campana, INSEAN, d.peri@insean.it

The use of high fidelity, CPU time expensive solvers is now quite common in the trial-and-error ship design
process. Their use in simulation-based design is however still limited by the large amount of computational
effort needed in the optimization cycles [2] and only few examples are available in optimal ship design
literature [3, 5]. Research is moving toward the use of Variable Fidelity modelling techniques to reduce the
CPU time needed [1].

The aim of this kind of global approximation, is to maximize the use of low-fidelity, cheap models, less
accurate but also less expensive than high-fidelity models. With the use of some consistency conditions, the
response of the low-fidelity models can be corrected during the optimization cycles, approximating the high
fidelity predictions up to first order.

A first example is regarding a containership (KRISO KCS) in which the uniformity of the axial flow at
the propeller at Fr = 0.26 has been assumed as objective function, by partially modifying the shaft log only,
as shown in Fig. 1. The objective function is evaluated by using a high fidelity RANSE code. Being the code
a multigrid one, the two finest grid levels are adopted as high and low fidelity models, allowing a CPU time
reduction of about 75%. An example of the obtained results is reported in Fig.2, where the axial velocity of
the original and optimzed models are compared. Here the variance of the axial velocity at the propeller disk
is lowered of about 13%, obtaining a much more uniform flow at the propeller: this gives an improvement
of the propulsive qualities without a dramatic change of the hull form.

A Multidisciplinary Design Optimization (MDO) problem for a surface ship is solved considering five
objective functions and three different PDE are solved numerically, including a high-fidelity RANSE code
for the prediction of the free-surface flow past the ship.

The description of the ship MDO problem is the following. The goal is the minimization of five objective
functions at service speed (20 knots). Function Fj, computed by using a non-linear potential solver for
steady free surface flows, is connected with the drag reduction. Functions F, and F3, estimated applying a
3D panel code in the frequency domain, represent the seakeeping performances of the vessel (i.e. the response
of the ship in waves) and define the operativity of a ship. To compute functions Fy and F5, a RANSE solver
for steady free surface flows has been used. F} is related to the minimization of the so called ”sonar dome
vortices”, produced at the junction of the sonar dome with the hull, while F5 is an index of the quality of
the flow and it is the parameter normally considered in the design of the propeller. 15 design variables have
been used for the optimization of the shape.

The key point of the algorithm is the use of Response Surfaces as low fidelity models, whose degree of
accuracy is improved at each optimization cycle. The kernel of method adopted here is the combined use
of variable fidelity models, in which the low fidelity models, computationally inexpensive, evolve during the
optimization cycles.

As a preliminary result, Fig.3 shows a typical sub-optimal solution. Modifications in the fore region are
related with the geometry of the sonar dome. Large modifications can be observed after the midship and
particularly where hull converges toward the stern. An evident reduction in the iso-vorticity levels can be seen

in Fig.3 and a strong reduction of the intensity of the sonar dome vortices is hence obtained (AFy; = —4.3%).
Fig.4 also show a more uniform flow at the propeller disk (AF5 = —1.1%). This sub-obtimal configuration
also shows a reduction on vertical motions (AF, = —5.2%, AF; = —2.7%) while only the wave resistance is

slightly increased (AF; = +1.1%). For details, a complete description is reported in [6].
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Fig.2: Wake at the propeller plane for the original (right) and optimized ship (left)

Fig.3: Different views of the original (black) and optimized (green/grey) ship






A RANS Based Prediction Method of the Ship Roll Damping with Forward Speed

Kumar B. Salui, Vladimir Shigunov, Dracos Vassalos
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Introduction

Several techniques have been applied to predict roll damping moment or its components with the
presence of forward speed, including theoretical, experimental and empirical methods. One of the
oldest empirical formulae is Hishida’s method [2] where roll damping moment acting on a rolling
ellipsoid moving at a constant velocity was predicted. His method enables prediction of damping
moment due to the wave making, but not of the other components [3]. Hanaoka [4] formulated another
theory for the flow field around a ship at a constant speed in an asymmetric motion such as roll, yaw
and sway under the assumptions of thin and low draft to length-ratio ship. The assumptions of this
theory are self-explanatory for it’s limitations. Probably the most promising empirical method is
Ikeda’s prediction method [5]. However, the limitation of this prediction method is that it needs an
adjustment for different forms of ship hull. In the case of a ship hull with appendages, the damping is
calculated separately for the bare hull and appendages, and thus it cannot predict vortices at the
junctions of a hull with appendages. This is another drawback of Tkeda’s method.

Rapid development of computer hardware enables application of field-discretisation based methods
such as finite difference or finite volume methods to solve practical problems such as ship motions in
seaway. A useful literature survey of these methods can be found in [6] and [7].

The present paper demonstrates application of a RANS based technique for the simulation of flow
past a rolling high-speed hard chine craft with skeg in a range of forward speeds from zero to high
(F,=0.6). For this study, an existing commercial solver based on an unstructured finite volume,
collocated grid approach is used. The numerical results are compared well with experiments by Ikeda
etal. [1].

Description of the Model
A scale model of a hard-chine craft with skeg was studied here. The description of the hull is shown in
figures 1 and 2 from [1]. The fin and the bilge keel shown in figure 1 are not used in the present study.

Harmonic oscillations of the rolling hull are given by € =@, sinar, where 8, t and 8, are the

instantaneous heel angle, time and the roll amplitude, respectively. The roll axis is fixed with respect
to the hull as shown in figure 1. The running trim and sinkage were defined experimentally depending
on the Froude number in towing tests without rolling and fixed in rolling tests to respective values
shown in figure 4. The same fixed values of the trim and sinkage were used in the present calculations.

The flow simulations have been done for rolling amplitude 10° at Froude number F from 0 to 0.6 in

the range of non-dimensional frequency (@ = @,/B/2g , where @ is the frequency of rolling and
B is the beam of the ship) from 0.2 to 0.7.

Mathematical Formulation

A commercial solver used for the study is based on unstructured finite volume discretisation with
collocated arrangement of flow variables. A variation of SIMPLE algorithm is used for the pressure
correction. Free surface motion is modeled by a description of the water-air system as a single
effective fluid with variable physical properties as density and viscosity, but with continuous velocity
field. High-Resolution Interface-Capturing (HRIC) technique [8] is used for the discretisation of the
equation for the volume fraction of the water. A standard k-& model is employed for turbulence
modeling. A brief description with relevant equations is available in [7]. Only grid generation and
boundary conditions are described below.

" 48 North Portland Street, Glasgow, G1 1XN, United Kingdom, email: kumar.salui@na-me.ac.uk



Principal particulars of the model:

moment lever
0,255m

L rall aans

length between perpendiculars 1.84 m
beam by water line 0.428 m

total draft 0.158 m

draft at midship 0.0735 m

draft at forward perpendicular 0.0437 m
draft at aft perpendicular 0.1032 m

Bilge huel arean0.0132n’ displacement with skeg (V) 0.0432 m’

-
“roll axis

Figurel: Schematic view of model (left) and the
model particulars (right)

fin areas=0.0132a"

Preliminary numerical tests have shown that numerical results are sensitive to the grid quality and
besides, grid resolution in the boundary layer. Numerical grid was generated in two parts. The first one
is an internal circular cylindrical block with the longitudinal axis coinciding with the roll axis. This
cylinder is allowed to rotate with the body while the second, external block, which is a rectangular
parallelepiped in shape, is fixed. The rotating cylindrical block is submerged into the fixed block using
the sliding mesh technique. Grid at the bow of the hull is shown in figure 3. Grid consists of 480080
and 736000 cells in the moving and fixed parts, respectively.

=

Figure 2: Body plan of the mode Figure 3: Grid at the bow of the model

A solution domain of one and half ship length ahead of the ship and four ship lengths at the aft of
the ship is considered. The domain is 32 m wide with the model placed at the centre. The depth of
water is 12 m.

The following boundary conditions are used. On the hull surface a no-slip boundary condition is
applied. Hydrostatic pressure boundary condition is applied at the aft boundary of the solution domain.
All other boundaries of the solution domain are considered as the inlet boundary, where the velocity
prescribed is the same in magnitude as the ship speed but opposite in direction.

Calculation of the Damping Moment



The output of the solver is the total pressures and shear stresses at each of the cell faces on the hull
surface. Hydrodynamic pressures ( p,) in each control volume are computed by subtracting the

hydrostatic part (which is calculated with respect to the initial undisturbed free surface) from the total
pressure. Finally hydrodynamic moment with respect to a point on the roll axis is evaluated using the
following relationship:

M(?) =—jpdf><ﬁds+j7xfds,

where 7, 7 and 7 are position vector of the centre of an elemental surface with respect to the roll
centre, shear stress and outward normal to the surface, respectively, and ds is the area of the elemental
surface. As the second term (moment due to shear stress) of the equation is very small compared to the
first term (moment due to hydrodynamic pressure), it was neglected. Projection of the above equation
on the roll axis gives the value of the moment in the roll motion as

M (1) =J.pd(nyz—nzy)ds,

where n,, n_ are the direction cosines of the normal and y, z correspond to the y- and z-

z

components of the position vector 7 .

The component of this moment proportional to the angular roll velocity (linear component), is
evaluated by extracting the Fourier coefficient of the fundamental frequency by the analysis of the
time history of the instantaneous hydrodynamic moment obtained from the above formula. This
coefficient can be written as

1 t+7/2
B, =—o J.Mw(t)cos(a)t)dt.
”ao t-T/2

This coefficient is non-dimensionalised in the following way:

n B B
B44 — iz —_—,
pVB-\2g
where V and B represent the immersed volume and beam of the ship, respectively.

Results and Discussions

In any numerical simulation it is important to quantify the uncertainty brought by grid density and the
size of the solution domain. In the present calculations, grid density and domain size independency
studies were carried out for all test cases. The results are free from grid or domain size effects.

Variations of damping moment coefficients with the non-dimensional frequency at constant Froude
number are shown in figure 5. From this comparison, it can be seen that at the lower Froude numbers,
the accuracy of the calculated results is very good. However, there is a large deviation of the
calculated results from the tests at higher Froude numbers and higher frequencies. Maximum deviation
is approximately 14%.

At the zero forward speed, the non-linear nature of the damping coefficients is purely dependent on
the vortex shedding, therefore the non-linear eddy component of the damping plays the most
significant role. As the Froude number increases, the eddy component decreases rapidly [2]. In the
absence of fins or bilge keels, at higher speeds the lift damping becomes the major component of the
total damping moment, and this component is not much affected by the change of roll frequency.
However, as it can be seen from figure 5, the damping moment coefficient for the hull with skeg is
still non linear at the higher Froude numbers. At the high speed, it has been found that the increment
of the damping moment is high with increasing frequency due to the presence of the skeg, while for
the low speed the influence of appendages is much smaller.

In figure 6, the variations of roll damping coefficient are plotted against the Froude number for
several constant frequencies. From these plots, it can be seen that the damping moment coefficient is
increasing at a faster rate for the Froude numbers more than approximately 0.4. Up to this Froude
number, the lift component increases linearly, while for greater Froude numbers it increases more
rapidly in a non-linear manner. Due to this reason the total damping moment at a constant frequency is
increasing at a faster rate when the Froude number is more than 0.4.



From the comparison of the numerical and experimental results in figures 5 and 6, it can be seen
that the prediction by the present numerical analysis is in general good. However, at the high Froude
numbers and high frequency, the deviation of the computed results from the experiments is on average
larger. Improvement of grid quality can decrease this discrepancy. Here, the grid was generated using
multi-block grid generation procedures, and to avoid non-matching interfaces at block boundaries,
paving [8] was used. Some other type of grid topology may give better results. Besides, hydrostatic
pressure boundary condition was prescribed at the aft boundary of the solution domain in the present
study. Although the domain is sufficiently long, the hydrostatic boundary condition is not accurate
definition especially for higher Froude numbers. Some other boundary conditions may help to
compute more accurate results. Nevertheless, the method can produce quantitatively reasonable results
and therefore can be used up to a certain frequency and Froude number to obtain reliable results for
this type of hulls. Although the total computing time is not very small for these three-dimensional
simulations, the method is still useful as it is less expensive than experiments.
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L INTRODUCTION

In recent years numerous attempts have been made to
develop computational methods for viscous flows around a
ship and many designers become to use CFD for designing
hull forms. Moreover, it is getting feasible to simulate a
flow around a ship with complex appendages.

To solve a flow around a complex body, several methods
have been proposed. They include a multi block method, a
Chimera overlapping grid method or an unstructured grid
method. In terms of grid generation, a multi block method
needs many efforts and it is difficult for general users. A
Chimera overlapping grid method is inaccurate in the
conservation property and costs CPU time for interpolation
between grids. An unstructured grid method is expected to
be the most general approach.

CFD is also requested to solve a flow around a moving
complex body, for example a flow around a rotating
propeller, a rudder and other appendages.

The objective of this study is to develop an unsteady flow
simulation method around a moving body using an
unstructured grid. As the first step of validation, two-
dimensional simulations are conducted and compared with
experimental data.

The flapping foil experiment[1][2] was carried out by the
Marine Hydrodynamics Laboratory at Massachusetts
Institute of Technology (MIT). The purpose of the
experiment was to determine the response of a two-
dimensional hydrofoil subject to wvertical gusts at high
reduced frequency. A large stationary hydrofoil is mounted
in the test section on the centerline of the tunnel. In the
upstream, there are two small hydrofoils (NACA0025)
symmetrically offset from the centerline that are driven to
pitch in phase (Figure 1). Because the upstream foils flap in
phase, their vortex sheets create a vertical or transverse
sinusoidal gust along the centerline. Experimental data was
measured near the stationary foil and on the foil itself. This
experiment data is occasionally used for a validation of
CFD [3][4].

A three-dimensional unsteady incompressible Navier-
Stokes algorithm based on artificial compressibility was

used to simulate this flapping foil problem. A comparison
with the measured data for the pressures and velocities on
the bounding box and the surface of the stationary foil are
presented for the steady case. In addition time histories and
a harmonic analysis at the same locations are examined for
the unsteady case.

};{ 0.167 1.100
Inflow Test hydrofoil
—
== 1.000
NACA0025

Figure 1: Experimental setup

IL. NUMERICAL METHOD

In this section, we briefly summarize a numerical method
used. A finite-volume method with an unstructured grid for
three-dimensional Navier-Stokes equations, SURF[5], is
employed.

In order to calculate a flow around flapping foils, a
moving grid system is employed.

The governing equations are three-dimensional
incompressible Navier-Stokes equations. In case of two-
dimensional flapping foil simulation, two-dimensional
analysis is sufficient. However, the objective of this study is
to validate three-dimensional Navier-Stokes solver,
therefore the three-dimensional Navier-Stokes equations are
employed.

Spatial discretization is based on a finite-volume method.
A solution domain is divided into cells. A cell shape is
polyhedron: tetrahedron, hexahedron, prism or pyramid.
The cell-centered layout is adopted, in which the flow
variables (p,u,v,w)are defined at a center of each cell. The

control volume for each cell is a cell itself.

The artificial compressibility approach proposed by
Chorin [6] is employed in the present scheme to couple the
velocity and pressure fields. Usually, in this approach the



term %% is added to the continuity equation, where f is
a parameter of artificial compressibility. With this
modification, however, the system of equations recovers
incompressibility only at the steady state limit and transient
solution does not necessarily satisfy the continuity
condition. This problem can be overcome by using the dual
time frames, one for physical time ¢ and the other for pseudo
time 7 and the artificial compressibility is introduced in the
latter frame. At each physical time step, the pseudo time
integration is used to get the pressure and velocity field
which satisfies the divergence free condition for velocity.
The equations to be solved have the form as follows:
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v, is a cell volume, s s s are area vector of each
direction. (ug,vg,wg) are (x, y,z) -components of the grid

velocity which is the velocity of grid movement. £ and E”
are inviscid and viscous flux, respectively. Re(E UL/V) is

the Reynolds number where v is the kinematic viscosity, U
and L are the reference velocity and length, respectively. v,

is the non-dimensional kinematic eddy viscosity which is
determined by the Spalart-Allmaras one equation model[7].

The inviscid fluxes are evaluated by an upwind scheme
based on the flux-difference splitting of Roe [8]. The
viscous fluxes are discretized by second order centered
differencing [9].

Time marching of Eq. (1) is made separately for the
physical time ¢ and for the pseudo time 7. The first order
accurate Euler implicit scheme is used for 7. On the other
hand, three level backward differencing is used for physical

time marching in order to maintain second order accuracy in
time. Thus, the equation to be solved can be expressed as
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where the superscript " denotes the time step for physical

time marching and " for the pseudo time marching. Ar and
At are the physical and pseudo time increment,
respectively.

At each time step, only pseudo time marches until the
solutions are converged in pseudo time, i.e.
g "t = 4" ' or the continuity equation is satisfied.

I1I. SIMULATIONS

A. Steady State Simulations

In case of steady-state computations, the foils were fixed.
Hereafter the reference length is set as chord length of the
test hydrofoil. Reynolds number is 3.78x10° (based on the
test hydrofoil chord). The turbulence trip points are set at
5% chord downstream from leading edge of each foil.

Computational grids and number of cells are shown in
Figure 2 and Table 1. The position of x=0.0 is at the test-
hydrofoil leading edge. The grid is composed of the
combination of an unstructured grids and structured grids.
The C-type structured grids are generated around the foils
and the remaining area is tessellated with unstructured grid.

Three grids of different densities are used to evaluate grid
dependence. The number of the fine-grid cells is four times
larger than that of the medium-grid cells. The number of the
medium-grid cells is also four times larger than that of the
coarse-grid cells.

Table 1: Computational grids.

Fine Medium  Coarse
Minimum grid spacing” 5.0% 107 1.0x10° 50x107°
Total number of cells 72,812 19,048 5,283
Hexahedron cells 52,480 12,960 3,200
Prism cells 20,332 6,088 2,083
* Spacing in the direction of boundary layer
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Figure 2: Computational grid. The fine grid is above,
the medium grid is in the middle and the coarse grid is
below.

A comparison of measured and computed surface
pressure distributions of the test hydrofoil is shown in
Figure 3. They agree well with one another and there is
only slight grid dependence on computed results.

Velocity profiles on three sections of the test hydrofoil
are shown in Figure 4. Measured data and computed results
do not agree well in case of the suction side of x/c=0.972
and 1.000. Flow separation observed in the measurement is
underestimated in the computations. It is presumed that the
turbulence model is the cause of this disagreement. In all
case of Figure 4, the fine grid solutions are better than
coarse grid solutions. In the section of x/c=0.388 and other
pressure side, the fine grid solution agrees reasonably well
with the measured profile.

Velocity profiles and static pressure profiles on upstream
and downstream sections are shown in Figure 5 and Figure
6. The upstream section is 0.259 chord length in front of the
leading edge and the downstream section is 0.108 chord
length downstream from the trailing edge. The measured
and computed velocity profiles agree well including the test
hydrofoil wake zone.

10
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0.0 0.2 04 x/c 06 0.8 10

Figure 3: Steady state Cp distribution on the test
hydrofoil. Hereafter, squares are measured data. Bold
lines solid lines and broken lines are the results of the
fine grid, medium grid and the coarse grid, respectively.
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B.  Unsteady simulations

In case of unsteady simulations, the flapping foils move
in pitch at a reduced frequency of 3.62 based on the half-
chord of the test hydrofoil. Reynolds number is 3.78x10°
based on the stationary foil chord.

A nondimensional time step is set 8.73x107, which
corresponds to 1/100 of the period of flapping motion. In
each time step, 50 times of Newton iterations are
performed.

A moving grid method is employed to simulate the
flapping motion (Figure 7). The amplitude of the flapping
angle is 6 degrees. Only the structured grids around the
flapping foils are deformed in accordance with the flapping
foil movement and the unstructured grids keep stationary.
The medium grid and the coarse grid in Figure 2 are used
for computation.

A comparison of measured and computed mean surface
pressure distributions is shown in Figure 8. They agree well
each other. Slight grid dependence is found in computed
results, like steady state simulation. Figures 9 and 10 show
the first-harmonic amplitude and the phase of pressure

distribution on the suction side and the pressure side,
respectively. The measured and computed amplitude on
both sides agree reasonably well, while those of phase agree
only in global trend.

The mean velocity profiles, the first-harmonic amplitude
and phase on two sections of the test hydrofoil are shown in
Figures 11 and 12. Similarly to the steady state simulations,
the measured and computed mean velocity profiles agree
well on the pressure side and suction side of x/c=0.388. In
all cases, the measured and computed phases agree in the
region far from the wall.

The mean static pressure profiles on the upstream and
downstream sections are shown in Figure 13. The
discrepancy between the measured and the computed results
is nearly the same quantity as steady state cases.

A snapshot of the magnitude of velocity distribution is
shown in Figure 14. The fluctuation of velocity propagates
to downstream through the unstructured grid.

Figure 7: A moving grid method. These figures are in
the case of medium grid at +6 degrees flapping angle.
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Figure 8: The mean Cp distribution on the test
hydrofoil. Hereafter, squares are measured data. Solid
lines and broken lines are the results of the medium grid
and the coarse grid, respectively.
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1V. CONCLUSIONS

An unsteady incompressible Navier-Stokes equation
solver based on the artificial compressibility hypothesis has
been developed. Moving grid method is employed to
simulate the flapping motion.

In steady state simulation, three grids of different
densities are used to evaluate the grid dependence and the
finest grid gives the best results.

In unsteady simulation, two grids of different densities,
medium and coarse grids, are used. Computed mean
velocity and first-harmonic amplitude agree well with the
measured results. The disagreement of the phase is open as
the future study.
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1 Introduction

Prediction of ship-motions is important to improve
seakeeping and maneuvering abilities. State of the
art in simulation of ship motions are strip-methods
based on potential theory with empirical corrections
for the viscous effects. In the last years results of
RANS computations for seakeeping and maneuver-
ing were presented by various authors. One approach
presented e.g. by Cura uses a static grid which is
moved with the body. Special grids which had to
be fine in a wide area of possible free-surface (FS)
positions, Fig.1, are required. This yields too large
cell numbers and large computational effort. An al-
ternative approach is the moving grid technique [3],
where the grid is warped according to the motion of
the body, Fig.2. For large motions, the cells possibly
deform strongly which may causes large discretiza-
tion errors. A relatively new approach is the overlap-
ping grid technique. Here a foreground-grid which is
fine near the body and a background-grid which is
fine in the area of the FS are used. The foreground-
grid moves with the body and the background-grid
is fixed, Fig.4. In the overlapping area the values
are interpolated from one grid to the other and back.
This technique seems to be promising, even though
the conservation of mass is not trivial. But again,
a lot of cells are wasted in the area of possible free-
surface positions. Other approaches use sliding inter-
face technique, Fig.3, [3]. To allow rotation the inner
grid has to be a cylinder in 2d and a sphere in 3d.
Thus grid generation is difficult.

We outline here another approach which attempts
to avoid these problems. We use a Cartesian grid
method (CGM) with immersed boundaries. The rel-
atively coarse initial grid will be automatically refined
near the floating body to resolve boundary-layer ef-
fects sufficiently and near the free surface to keep nu-
merical diffusion of the two phases low. The grid will
be adapted automatically as follows: When the body
and the FS move during the computation the grid will
be refined in regions where the body and the FS move
to, and “coarsened again” in areas where the higher

resolution is no longer required. The advantage of
this procedure is, that in every time-step during the
computation the grid is fine just where it is needed
(Fig.5). This keeps the number of cells low and saves
computation time.

Figure 1: Example for static grid technique
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Figure 2: Example for moving grid technique



Figure 3: Example for sliding interface technique

Figure 4: Example for overlapping grid technique

2 Cartesian grid methods

In literature a lot of different Cartesian grid methods
were presented. In aeronautical context CGM’s were
developed and successfully used in the last decade,
[1],[6].- These methods are often optimized for com-
pressible flows and do not treat free surfaces.

Dommermuth, [2], and Sussmann, [4], presented
different CGM computations with free surface for
ships with breaking bow waves. They used a so-called
body-force technique to model the body boundary-
condition. First results show good agreement in the
bow-region, but some numerical problems were re-
ported.

Here the approach presented by Ye et al. [7],
is pursued. Ye developed an algorithm which uses
trapezoidal cells near the body. The basic principle
is simple. Cells cut by the body were treated as fol-
lows: if the cell-center is outside the body, the part
inside the body is discarded, Fig.6a. If the cell cen-
ter lies inside the body the cell is absorbed by the

Figure 5: Principle of transient adaptive CGM

neighbor (Fig.6b). Very small cells requiring small
time-steps can be avoided that way.

Fig.6c shows a special case. Cell no.3 is cut and
the east neighbor is absorbed by the cell no.1. In this
case the cell no.1 has two west neighbors (no.2 and
no.3). This configuration leads to an unstructured
grid. Thus an appropriate data structure is required
(see below).

Nevertheless approximations in these cases are dif-
ficult. Ye reports that he could achieve second-order
approximation by using a polynomial interpolation
for the trapezoidal cells near the body. This is de-
sirable because important features of the flow occur
especially in this region.

Fig. 7 shows a cut-cell configuration for the a sim-
ple geometry.

3 Transient adaptive grid tech-
nique

Generally, adaptive grid technique means that the
solver automatically makes local refinements depend-
ing on some refinement criteria (e.g. truncation er-
ror). For steady computations, this is relatively sim-
ple and presented by many authors. For transient
computations the flow field is changing and there ap-
pear regions where the grid resolution is higher than
necessary. To avoid waste of computation time the
grid should be “coarsened” there. Thus a special
coarsening procedure is necessary.
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Figure 7: Cut-cell-configuration for bottom bump

4 Data structure

This approach leads to unstructured grids. Some au-
thors propose a quad-tree or oct-tree structure. The
advantage of this data structure is a lower memory
consumption. The disadvantage is the higher compu-
tational effort. Every time the neighbor is demanded
it has to be searched by a more or less costly proce-
dure.

Here a data structure where every cell has pointers
indicating the neighbor cells is chosen. This requires
more memory but saves computation time. We be-
lieve this is a good choice because for time depending
problems memory is often not the bottle neck, but
computation time limits the possible resolution.

5 Numerical techniques

We use a finite-volume discretization with co-located
arrangement to solve the Reynolds-Averaged Navier-
Stokes Equations (RANS). The Midpoint rule for vol-
ume and surface integrals is a natural choice. Face
center values are approximated by a blending of up-
wind and central differencing scheme using deferred
correction. For trapezoidal cells a special treatment is

used. Mass and momentum equation are coupled by
the SIMPLE algorithm. The Implicit Euler scheme is
used for time integration. The free surface is treated
by the Volume-of-Fluid technique.

Local refinement and the cut-cell algorithm lead
to unstructured grids. This requires a special
data-structure and appropriate solvers. Conjugate-
Gradient algorithms are well proven for unstructured
grids. A CG for pressure correction and an Bi-CG-
stabilized for the other equations is used here.

The k-e-turbulence model is implemented.

All methods used here are described more detailed
in [5].

6 First results

A classic test case for free-surface flows is the dam-
break. Fig.8 shows the computation of the breaking
dam problem with an adaptive CGM with refinement
and coarsening. Here the cells near the free surface
were refined. Other refinement criteria such as the
truncation error are possible.

Fig.9 shows a computation for a bottom bump with
the cut-cell algorithm. Pressure and velocity vectors

are plotted. Pressure distribution and velocity field
seem to be realistic.

7 Next steps

After intensive testing and improving the cut-cell-
algorithm the next steps could be as follows:

e couple cut-cell-algorithm with VoF method
e compute forces on floating bodies

e implement equations of motion

e validation

e testing and optimizing

e implement multi grid technique

o if results are promising: upgrade to 3D ...



Figure 8: Dam break computed with transient adap-
tive CGM

Figure 9: Bottom-bump with cut-cell-algorithm
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Viscous-Flow Computations at Full-Scale Ship Reynolds
Numbers Using the RANS Solver FINFLO

Juha Schweighofer!

Ship Laboratory, Helsinki University of Technology, Espoo, Finland

1 Introduction

Numerical investigations of turbulent free-surface flows are usually carried out at the Reynolds number
of a model-scale ship. The results obtained must be scaled to full scale, which might cause errors in the
case of new vessel types where the scaling mechanisms are not known. Computations of full-scale ships
are attractive as no scaling is necessary, and the allowances may be reduced. The shape of the hull
and the propeller may be optimized with respect to the proper flow around the ship. Additionally,
computations of full-scale ships will serve as supplement to model testing as more insight in the
flow field and the scaling mechanisms is obtained. Existing extrapolation techniques regarding the
evaluation of the final power of a ship, e.g. the ITTC-57 or the ITTC-78 extrapolation methods, and
novel ones may be investigated with respect to novel ship types.

Computations of turbulent flows solving the RaNS equations at full-scale ship Reynolds numbers
are presented in the following references: Ju and Patel (1991,199/4), Tzabiras (1992,1993), Ishikawa
(1994), Schmitt (1997), Eca and Hoekstra (1997,2000), Schweighofer (1997,2002,2003a,2003b), Dol-
phin (1997), 6 from Larsson et al. (2000), Chen et al. (2001), Starke (2001), Chao (2001).

Recently, at full-scale ship Reynolds numbers, turbulent free-surface flows have been computed
using the moving grid-technique without the use of wall functions by Schweighofer (2002,2003a,2003b).

Based on the given references, it may be concluded that, nowadays, full-scale computations of
turbulent ship flows are possible to a certain degree. Full-scale RaNS computations of ship flows
taking into account the entire physics around a ship, e.g. the hull roughness, the entire boundary
layer, the free surface, the propeller and appendages, and sinkage and trim have not been presented
yet. Nevertheless, a big step forward is done in order to reach this final goal. In the European-Union
project, EFFORT, Verkuyl and Raven (2003), several existing ships are being computed at model-
and full-scale ship Reynolds numbers. Features as the turbulent boundary layer, the free surface,
the propeller-hull interaction, appendages and complex geometries are taken into account. A very
sorrowful verification and validation of the computed results is made possible by the model- and
full-scale measurements conducted within this project.

The recent publications and the results presented in this abstract indicate that numerical difficulties
in association with full-scale computations of ships may be overcome. With respect to numerical
difficulties, full-scale computations of ships may be carried out with confidence. Nevertheless, the
validation of the obtained results remains still a problem. Experimental results for such high Reynolds
numbers are very rare or difficult to obtain, and the validation issues are often a combination of several
pyhsical phenomena demanding also several models. E.g. at model scale the validation of the resistance
is relatively simple as one has to take into account only the proper modelling of the turbulence and the
free surface. At full scale, the resistance cannot be measured. Either the thrust or the power of a ship
is known. When evaluating the thrust numerically, the results are affected by the used turbulence
model, the free-surface model, the hull roughness, and the propeller. Due to the larger amount of

LCorrespondence to: Ship Laboratory, Helsinki University of Technology, Tietotie 1A,
FIN 02015 Espoo, Finland, e-mail: juhaschw@unefer.hut.fi, phone: +358 9 451 3503, fax:
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models needed at full scale, it is more difficult to evaluate which one is working properly and which
one is causing errors.

2 Numerical Method

The computations used the RANSE solver FINFLO. The Reynolds-averaged Navier-Stokes (RANS)
equations are iteratively solved by a cell-centered finite-volume method until the steady state is
reached. An upwind-type spatial discretization of third-order accuracy without flux limitation is
applied to the approximation of the convective terms. The viscous fluxes are evaluated according to a
thin-layer approximation being activated in all coordinate directions exept in the case of the flat plate
where it is activated only in the cross direction of the flow. The central differencing scheme is used
for the calculation of the velocities at the cell surfaces needed for the evaluation of the viscous fluxes.
The solution of the discretized equations is obtained using a diagonally dominant alternating direction
implicit (DDADI) time integration method with time stepping adjusted depending on a parameter
based on local velocities and cell sizes. No wall functions are used. The boundary layer is resolved till
the wall. The free surface is evaluated by a moving-grid technique.

3 Results
Flat Plate

A comprehensive list of references and description of the respective investigation and is given in
Schweighofer (1997).

The computations are carried out using the FINFLO version, FINF2D, for compressible, two-
dimensional turbulent flows, Hoffreri and Siikonen (1992). The convective fluxes are evaluated by
Roe’s method.

The Reynolds number of the computations is Ry, = Us * Lpp/v = 1.296 x 109, U, = 66.948 m/s
is the free stream velocity, Ly, = 129.6 m is the reference length, and v is the free-stream kinematic
viscosity. The Mach number is 0.2. The free-stream turbulence level and the free-stream turbulent
viscosity referred to the molecular viscosity are 0.005. The applied turbulence models are the Cebeci-
Smith, the Baldwin-Lomax, Menter’s k-w SST, and Chien’s low Reynolds number k-e turbulence
models. The nondimensional distance of the first node from the wall, ™, is between 0.45 and 1.7.

The best overall performance is obtained with Menter’s SST turbulence model. With respect to
the skin friction, Menter’s SST, the Cebeci-Smith and the Baldwin-Lomax models give a very good
accuracy of about two percent (Table 1) compared with the semi-empirical Engineering Scienes Data
(ESD), which are based on measurements over a large range of Reynolds numbers, Royal Aeronautical
Society (1968). With respect to the evaluation of the skin friction, Chien’s turbulence model gives a
little poorer result with an accuracy of about 7 percent.

Two-Dimensional Transom Waves

Two-dimensional transom waves behind the model, Ile, (Fig. 1, left), are evaluated in Schweighofer
(2003 a).

The computations are carried out using the FINFLO version, FINFLO SHIP, for incompressible,
three-dimensional turbulent flows. A comprehensive list of references is given in Schweighofer (2003
a). Incompressibility of the flow is considered by an artificial compressibility approach. The convective
fluxes are evaluated by incompressible flux-difference splitting. The computations are performed using
Chien’s low Reynolds number k-¢ turbulence model.

The model is assumed to be infinitely wide in the y-direction (Fig. 1, left). The shape of the bow
is a circle segment with radius R and the bottom is flat. The transom is located at the origin of the
global Cartesian coordinate system. At the bow, the formation of the bow wave is suppressed. At the



transom, the wave height of the free surface is set equal to the draught 7. Behind the transom, the
free surface may be deformed arbitrarily. The geometrical dimensions of the investigated model are
the length overall, L = 80.00 m, the length between the perpendiculars, Lp, = 61.16 m, R = 58.00 m,
and T = 4.00 m. The scale is 1:40.

The computations are carried out at Fj,r = Uso/(v/9T) = 2.8, and R,, = 3.732x10° and 9.442 x 108.
g = 9.81 m/s? is the gravitational constant. At model scale, the initial values of the turbulence level
and the nondimensional turbulence coefficient are set to 0.02 and 10.00 in the computational domain
and to 0.001 and 0.01 at the outer boundaries (sides 1 and 6). At full scale, the same values are applied
but the nondimensional turbulence coefficient is set to 16.5 at the outer boundaries. The turbulence
coefficients are made nondimensional with the free-stream molecular viscosity. At model scale, almost
everywhere at the wall, y* ~ 0.7. At full scale, y™ ~

Using solutions with different free-surface boundary conditions and solutions of the Euler equations,
it may be concluded that the wave profiles at model and full scale should be almost the same for this
case. This phenomena is reproduced very well in Fig. 2, left. Therefore, the free surface is computed
successfully at full scale with the moving grid technique. At full scale, the total resistance coefficient
is compared with the one obtained from the computed value at model scale by extrapolation with
the ITTC-78 method (Table 1). The pressure resistance coefficient remains almost constant. The
form factor is obtained from the computed skin friction resistance coeflicient and the ITTC-57 model-
ship correlation line at model scale. At full scale, the deviation of the resistance coefficient from the
expected value is less than two percent. Therefore, the scaling is reproduced very well. The comparison
of the computed turbulent viscosity with the one within the boundary layer of a respective flat plate
gives similar magnitudes.

Series 60

The computations are carried out using the FINFLO version, FINFLO SHIP, for incompressible,
three-dimensional turbulent flows with Chien’s low Reynolds number k-¢ turbulence model. The free
surface is evaluated using the inviscid mirror free-surface boundary conditions, Schweighofer (2003a,).

The geometry of the ship is given in Fig. 1, right. The length between the perpendiculars,
Lpyp =121.92 m. F,, = Us/(v/9Lpp) = 0.316, and R,, = 1.170 x 10°. The initial and free-stream
values of the turbulence level and the nondimensional turbulence coefficient are set to 0.000158 and
0.01, respectively. The nondimensional distance of the first node from the wall, y T, is about 2.2.

In Fig. 2, right, the computed wave profile is compared with the model-scale measurements of
Toda and Longo, Gao (2002), and the potential flow computation of Wyatt (2002). Due to the high
Froude number, viscosity effects on the wave profile are assumed to be of minor significance. This is
confirmed by the result of Wyatt, which agrees very well with the measurements. Therefore, at full
scale, the wave profile is expected to be very close to the measurements and the potential-flow result,
particularly in the foreship region. The computed wave profile (FINFLO SHIP) is reproduced very
well. Only at the stern, it is higher and steeper than the measured ones, and it deviates clearly from
the potential flow result as consequence of the influence of the viscosity.

In Table 1, the computed total resistance coefficient is compared with the measurement of Kim and
Jenkins (1981) extrapolated to full scale using the ITTC-57 method. The agreement of the computed
result with the extrapolated experimental one is very good. The deviation of the computed result from
the extrapolated one is less than 4 percent. The measured value of Kim and Jenkins is 4.6 x 103 for the
Reynolds number R, = 1.619 x 107. The ITTC-57 extrapolation method is based on ships of similar
form as the one of the Series 60 ship. The respective correlation allowance is 0.4 x 1073, Guldhammer
and Harvald (1974). The respective value for a rough flat plate is approximately the same, Schlichting
(1979). Therefore, no scaling effects are included in the correlation allowance, and the measured total
resistance coefficient extrapolated to full scale by the ITTC-57 extrapolation method may be assumed
as the resistance of the smooth full-scale ship.

With respect to the computation of turbulent free-surface flows around ships at full-scale ship
Reynolds numbers using the moving-grid technique and no wall-functions, the presented results are



very encouraging.
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Fig.1: Computed cases at full-scale ship Reynolds numbers. Left: Two-dimensional transom waves
of the model, Ile. R,, = 3.732x10% and 9.442 x 10%. Right: Series 60 ship. R, = 1.170 x 10°.
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Fig.2: Computed wave profiles at full-scale ship Reynolds numbers. Left: Two-dimensional transom
waves of the model, Ile. R, = 3.732x10° (MSC) and 9.442 x 10® (FSC). F,,; = 2.8. Right: Series 60
ship. R, = 1.170 x 10°. F,,, = 0.316.

Table 1: Computed total resistance cofficients compared with experiment (ESD), extrapolation with
the ITTC-78 method, and extrapolation of the measurement of Kim and Jenkins (1981) with the
ITTC-57 method for full-scale ship Reynolds numbers.

Case | Cr x10° || ACr [%] |
Flat plate, Cebeci-Smith 1.465 -2.3
Flat plate, Baldwin-Lomax 1.473 -1.8
Flat plate, k-w SST 1.479 -14
Flat plate, k-¢, Chien 1.606 7.1
2-D transom waves 8.192 -1.5
Extrap. ITTC-78 8.317

Series 60 3.463 3.9
Kim and Jenkins (1981), extrap. ITTC-57 3.331
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Mohammad S. Seif, Hamid Saddathosseini, Maysam Mousaviraad
Mechanical Engineering Department, Sharif University of Technology
Tehran, Iran, P.O. Box: 11365-9567, seif(@sharif.edu

Introduction

A moving hydrofoil close to the water surface creates waves. These waves may have steady or un-
steady forms, resulting in steady or unsteady forces on the hydrofoil. In the unsteady case, waves
grow to the point of wave breaking in certain conditions. There is not any analytical solution for this
case and numerical modeling is the only tool (besides model tests) to investigate the hydrofoil per-
formance.

For the steady case, Viadimirov (1937) presented a method based on potential flow. Then Kotchin
(1951), Wadlin et al. (1955) and Ducane (1972) added the image technique to the method and ana-
lyzed steady motion of hydrofoil. Sutherland (1951) and Payne (1996) used concept of added mass to
discuss the effects of free surface on hydrofoil performance. For the unsteady case, Duncan (1983)
investigated wave breaking due to a moving hydrofoil close to free surface. Azcueta et al. (2000)
studied the issue using CFD modeling. They pointed out that the wave breaking changes the lift force
of hydrofoil considerably.

We modeled the flow using the commercial RANSE solver Fluent, including the effects of surface
tension, turbulence, and free-surface deformation. We simulated both cases with and without wave
breaking. The free surface is determined using a surface capturing technique, namely a volume of fluid
(VoF) approach. Very fine grids are necessary in free surface region to get acceptable results for free
surface position. We used 200,000 cells in our 2-d simulations. The time steps of 0.0001 seconds re-
sulted in typical CPU times of 50 hours.

Approximate Formulas

In steady motion of a hydrofoil, low pressure on the upper face and high pressure on the mower face
are created resulting in a lift force. Near the free surface, the waves are created and the pressure distri-
bution changes, reducing the lift force (compared to the infinite depth case). Different formulas have
been developed to estimate lift force near the free surface. Several parameters influence hydrofoil per-
formance in this condition: hydrofoil geometry, cavitation, viscosity, angle of attack a, depth to chord
ratio i/c (h is the height of the leading edge of the foil from calm surface; ¢ the chord length), etc.
These formulas assume generally some simplifications. The fluid is usually considered inviscid and
incompressible, neglecting cavitation. C; is the lift coefficient near the free surface, Cy,,,, the lift coef-
ficient for infinite submergence depth at given angle of attack, C;, the lift coefficient for infinite sub-
mergence and ot=0°. The Wadlin formula, Wadlin et al. (1955), estimates the lift force as follows:

2
c 16(}1) +1
—L:k Wlth k:c—2 CLmax :27Z-a+CL
CLmax h 0
' 16 — | +2
C

k<1 always, thus the lift coefficient close to free surface is less than for the infinite-depth case. The
Wadlin formula cannot be employed for high speeds or low %/c values, because wave breaking will
occur and the flow will be unsteady. In these cases, numerical modeling is necessary.



Numerical Results

The simulation solves the two-phase flow in water and air in a grid covering both domains, Fig.1. The
grid is unstructured with triangular cells near the foil and quadrilateral cells in the remaining area. To
investigate the accuracy of the model, we simulated a NACA0012 foil for with a=5° and ¢=203mm.
The results agree well with experimental data of Viadimirov (1937) for /=210mm, Fig.2. In this con-
dition, surface waves are regular (steady) with very small amplitude. The CFD results predict the k&
values more accurately than the Wadlin formula, Fig.3. CFD considers also the actual geometry which
is not possible in the Wadlin formula. Fig.4 shows CFD results for different hydrofoils sections dem-
onstrating how results depend on section type. In general, & is not estimated well for unsymmetrical
sections, but well for symmetric sections. Fig.5 shows the effect of changes in attack angle. For small
attack angles, £ is estimated with good accuracy. For higher angles, the accuracy decreases.

Fig.1: Grid around foil covering water and air

.28
0.0z 1,1 4 —o— Wadlin
045 4 1 4
001 ) 0.9 -
- T £ ——CFD
E E CFO E o8-
= & o
T E -n-.uu.zj 1 N — o g’; ] —&— Experiment[1]
R ’
0.02 0,5
T : : 0 1 2
4. HmYy 15 hic

[

i

Fig.2: Water surface deformation for steady case | Fig.3: Comparison of different methods

11 - 1,1 +

1 4

0,9 4

< —o0— NACA0012 g ——
E . —O— NACA0015 : —t—oca
s —A— NACA4412 & ot
07 - —@— NACA4415 3] —O—a=8
06 - —%—WADLIN —X—WADLIN

0,5

Fig.4: Effect of section geometry Fig.5: Effect of angle of attack




For higher angles of attack or higher speeds, the flow may become unsteady. A simulation was carried
out for this case: NACAO0012 section at a=5°, h/c=0.5 (¢c=203mm), speed of 5.1m/s. The flow be-
comes unsteady due to the wave breaking. Fig.6 shows how the variation of the free surface causes
considerable changes in the lift coefficient. Fig.7 shows that the code is capable to reproduce complex
breaking waves in this case.
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Fig.6: Lift coefficient variations for case involving wave breaking
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RANS CFD for Marine Propulsors: A Rolls-Royce Perspective

Gregory J. Seil — Rolls-Royce Plc, gregory.seil@rolls-royce.com

1.0  Introduction

Over the last ten years, tremendous progress has
been made in the development and application of
RANS CFD technology to marine propulsors.
During the author’s PhD studies in waterjet inlet
hydrodynamics, which he commenced in early
1994, he used a commercially-available single-
block structured CFD code to solve the flow on
meshes produced by his own mesh generation
program written in Fortran for parameterized rapid
meshing [1]. “Large” meshes (see Fig. 1) of
between 100000-250000 cells were used in a
typical analysis which was run on a single
processor Unix workstation. Contrast this with
today, where complex multi-million cell meshes,
generated from CAD geometry using sophisticated
and yet user-friendly meshing tools, are run in
parallel on Linux clusters using unstructured
solvers and the evolution of the technology
becomes evident.

Grid in Physical Space
A ¢
Grid in Computational Space

Fig. 1 Mesh of waterjet inlet, mid-1990s [1]

Over the last five years RANS CFD has become an
integral part of marine propulsor development at
Rolls-Royce. RANS CFD has been applied to the
study of waterjet components, high-skew propellers
and podded propulsors. Studies to date have
focused on the development and experimental
validation of CFD methods as the basis for
developing CFD capability within the company, as
well as contributing to product development. The
challenge for a company like Rolls-Royce is to
consider how, not only to use CFD to create the
greatest impact on the company at present, but also
to anticipate the potential of the technology and
plan accordingly, in order to use the technology
strategically in the future.

An overview of the some of the highlights of the
RANS CFD work carried out at Rolls-Royce
during the last 5 years is presented in Chapter 2
including: the calculation of free-surface flows in
waterjet steering and reversing units, open-water
calculations of a high-skew propeller and
calculations of an electric pod unit. In Chapter 3
the future of RANS CFD development for marine
propulsor applications at Rolls-Royce is discussed.

2.0 Examples of the Application of RANS
CFD at Rolls-Royce

2.1  Waterjet Steering and Reversing Unit

In 2000, CFD methods for calculating the single-
phase and two-phase (water and air) flow in a
waterjet steering and reversing unit (SRU) were
developed during the course of the development of
anew SRU for the Kamewa Size 200 waterjet. The
Kamewa Waterjets Size 200 waterjet pump and
SRU is shown in Fig. 2. At Kamewa, the “size” of
the waterjet is a measure of the pump inlet diameter
in centimeters.

Fig. 2 Kamewa Waterjets Size 200 steringI and ‘
reversing unit

The key motivation behind the development of the
new SRU was weight and size minimization,
relative to the standard design. Structural loading
and required actuator forces were therefore key
design issues. A model of the Size 200 SRU shown
in Fig. 3 was therefore built and comprehensively
tested at the Rolls-Royce Hydrodynamic Research
Centre (RRHRC) in Kristinehamn, Sweden, using
the waterjet test unit (WTU) described by
Aartojérvi and Héger [2]. The WTU contains a
complete waterjet geometry including the inlet
duct, a Size 20 waterjet pump and the possibility of
mounting an SRU. The waterjet pump is driven by



electric motors through a flywheel and shaft line.
The WTU was mounted in the T31 free-surface
cavitation tunnel at the RRHRC.

The model SRU was instrumented with the

following:

e A six component dynamometer measuring the
total forces and moments acting on the SRU.

e Force transducers measuring the forces at
hinge points.

e  Strain gauges measuring the elastic strain in
the linkage arm between the steering nozzle
and the lower reversing bucket, allowing
forces to be determined.

e Static pressure tappings for measuring the
static pressure distribution over the surface of
the steering nozzle and reversing bucket.

Sl | ; !
~ \en,
e 3 ~4 9
{KY :
Guide vanes - Lower reversing
(stator blades) bucket
Steering nozzle
Pump Impeller Waterjet nozzle
Fig. 3 Model steering and reversing unit mounted
on WTU

Both single-phase and two-phase (water and air)
volume of fluid (VOF) calculations were made for
a number of SRU operating configurations and
conditions using Fluent 5.3. The RANS equations
were solved, with Standard k-¢ modeling and wall
functions on hybrid meshes of tetrahedral,
hexahedral and pyramid cells. The CFD results
were found to be in good agreement with the
experimentally-measured pressure and force data.
For the VOF calculations the interface between the
phases was tracked using Fluent’s “implicit”
interface tracking scheme. More details of the
single-phase validation work can be found in [3].

Fig. 4 shows the development of the free-surface
on the centreplane of the SRU for full reverse, with
a steering angle of 0°. Note that in the CFD model,
the water exhausts into an air-filled volume as the
geometry of the experimental configuration has not
been modeled. In the computational model, only
the geometry of the waterjet nozzle and SRU was
modelled. Significant smearing of the interface
between the water and air phases is evident from
Fig. 4, particularly on the jet emerging from the
lower reversing bucket. This may be attributed to

numerical diffusion associated with relatively large
cells in the vicinity of the interface. The calculation
was started with an initial mesh of 1335897 cells
and with solution adaption the final mesh size was
2324199 cells. Clearly further solution adaption
would be needed for improved interface resolution.

V.F.H,0

0.0 01 020

X'/D=0.00

p -
g .
Fig. 4 Example of calculated free-surface flow on
centreplane of SRU for full reverse

2.2 High-Skew Propeller

In early 2001, Rolls-Royce embarked on a
relatively comprehensive combined CFD and
experimental study of Propeller 734-b, a propeller
from the Kamewa high-skew series. The objectives
of the study were:

e Development of a set of in-house experimental
reference data for validating CFD methods.

e  Experimental validation of calculated propeller
curves over the complete range of advance
numbers tested.

e  Laser-Doppler Anemometry (LDA)
measurements of the propeller slipstream at
several axial locations downstream of the
propeller for one advance number.

e Comparison of RANS CFD results with the
results of in-house potential flow codes.

e  Enhanced understanding of flow physics.

Propeller diameter 250 mm
Hub diameter 75 mm
Number of blades 4
Expanded blade area ratio 0.603
Design pitch ratio at 0.7R 1.2
Projected skew angle 48°

Table 1: Propeller data for 734-b at model-scale




Details of the propeller geometry are given above
in Table 1.

A structured mesh of 2075275 hexahedral cells was
generated using the commercially-available mesh
generation software Gridgen by Pointwise Inc..
This mesh size is clearly large and may be
attributed to the following:

e Modelling of the hub geometry.

e The need to resolve the downstream slipstream
and keep cell aspect ratios within reasonable
values.

e The radial extents of the flow domain,
including resolution of boundary layers on the
cylindrical representation of the tunnel walls.

The basic mesh topology is of an H-type with
conformal periodic boundaries (axially and radially
matching nodes on opposite periodic boundaries).
The surface mesh on the propeller blade, hub and
shaft fairing can be seen from Fig. 5. Extensive use
was made of Gridgen’s elliptic solver capability in
order to reduce cell skewness both on the blade and
in the volume mesh. Even with elliptic smoothing
of the mesh, there was still significant cell
skewness present in the volume mesh, due to the
relatively low pitch angles near the blade tip.

Fluent 6.0, was used to solve the RANS equations
using RNG k-¢ turbulence modeling with swirl
modification and Two-layer Nonequilibrium wall

functions. The QUICK scheme was used for
convective differencing.
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Fig. 5 RANS surface mesh of propeller 734-b

The calculated propeller curves (Ky, 10Kq, m),
under open-water conditions, are compared with
experimental measurements in Fig. 6. Also
compared are the results from the potential flow
codes MPUF 3a v2.0 (Vortex Lattice Method) and
PropCav v2.0 (Boundary Element Method).
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Fig. 6 Comparison of calculated and measured propeller diagram




Fig. 6 clearly shows that the RANS calculations
yield results in closest agreement with
experimental data for thrust and torque. The
agreement between the measured thrust and torque
and the values calculated by the three numerical
methods deteriorates at both high and low J values.
This deterioration is most marked for the Boundary
Element Method (BEM) and Vortex Lattice
methods (VLM), with the RANS results still
remaining in relatively good agreement with the
experimental measurements

The RANS and the BEM results consistently
follow the curve of measured open-water efficiency
over the range of J examined. Although the results
yielded by the BEM and RANS methods are close,
the BEM produces closer agreement with the
experimental data except at the highest and lowest
values of J calculated.

Extensive LDA measurements (using a Dantec 300
mW FVA differential Doppler backward scatter
system) were made for an advance number of 0.77
at five axial locations, one upstream (0.20D) and
four downstream of the propeller (-0.12D, -0.20D, -
0.58D and -0.95D). At each axial location, axial,
radial and circumferential velocity measurements
were made at one degree intervals over several
radii in the range of 0.5R to 1.1R, where R is the
propeller radius. At each of the measurement
locations downstream of the propeller, the
slipstream calculated using CFD was validated
against experimental measurements, as shown for
example in Fig. 7. From this figure, the calculated
slipstream can be seen to be in good agreement
with the experimental measurements, although
evidence of damping and phase shift of slipstream
peaks and troughs is evident. More details of the
work can be found in [4].
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Fig.7 Slipstream validation, x/D=-0.12, r/D=0.7,
J=0.77

2.3  Electric Pod Propulsor

In 2001, work commenced on a RANS CFD
methods development programme with the
objective of developing the capability to perform
accurate quasi-steady and sliding mesh calculations
of electric pod units. Previous work at Rolls-Royce
had focused on using an actuator disc approach to
model the effect of the propeller on the flow around
the pod body and was therefore limited in its
capability.

Structured meshes of close to 3 million cells have
been generated using Gridgen for the purposes of
analysis. The surface mesh on an electric pod unit
is shown in Fig. 7.
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Fig. 7 Surface mesh of pod unit

Fig. 8 Example of calculated pressure distribution
on pod unit

Fluent 6.0 and Fluent 6.1 have both been used to
solve the RANS equations using the RNG k-¢



turbulenceb modeling with swirl modification and
Two-layer Nonequilibrium wall functions. The
QUICK scheme was wused for convective
differencing. An example of the calculated pressure
distribution on the surface of the pod is shown in
Fig. 8.

3.0 The Future of RANS CFD for Marine
Propulsor Applications at Rolls-Royce

There are two primary sets of challenges that lie
ahead for us at Rolls-Royce. The first is the
continued development of a world-class network of
hydrodynamicists, CFD specialists and engineers
both within the company and externally via
University Technology Centres, consultants and
hardware and software partners. This helps us to
keep abreast of the Ilatest developments in
hydrodynamics, computer hardware, software,
RANS CFD applications and of course what our
competitors are doing. This is one of the reasons
why we seek to actively participate in conferences
and symposia — in order to keep up to date with
technology and to build relationships. Another
reason we like conferences is that they are
generally fun and interesting!

The second challenge is to exploit the continuing
rapid growth in computing power for: 1) a
reduction of existing CFD analysis cycle times, 2) a
greater integration of CFD into the product
development process, 3) more detailed and
complex modeling, such as CFD analysis of
integrated  propulsor/hull  configurations and
cavitation and 4) multidisciplinary analysis and
optimization

3.1 Reduction of CFD Analysis Cycle Time

As computing power continues to increase and the
cost of computing continues to decrease, larger
meshes can be solved in a given time. The
challenge is to therefore to make use of large
unstructured meshes that can be generated rapidly
in order to significantly shorten the CFD analysis
cycle. For parametric studies of simple geometries,
where large numbers of calculations are required,
the CFD analysis cycle time may be reduced
through the semi-automation or full automation of
the meshing process. Waterjet pump blading is an
excellent example of this. The meshing of blade
rows in waterjet pumps has been automated via the
use of the PADRAM (Parametric Design and Rapid
Meshing) code developed by Civil Aeroapace [5].
This allows a mesh to be generated by the user in
minutes, or fully automatically as part of an
optimization code.
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Fig. 9 Mesh of waterjet impeller mesh produced
by PADRAM [5]

3.2 Greater Integration of CFD into the
Product Development Process

In order to realize the full potential of CFD, it is
necessary to integrate CFD more closely into the
product development cycle, so that information
flows smoothly and efficiently from CAD, to CFD
and then to FEM, or between CFD and FEM (for
fluid structural simulations). While this is obvious,
the challenge also lies in effective project
management of CFD within a company, whether
by virtue of projects related to integration of CFD
into the product development process, or by
management of CFD on existing projects. The
latter is only straightforward if a particular generic
configuration has been studied before, for example
quasi-steady blading calculations, where meshing,
calculation and postprocessing times are known
from previous experience.

Ideally, the study of new configurations should be
undertaken as part of “methods development” and
is more of a research-related activity, rather than
part of product development. If for some reason
methods development is undertaken as part of a
product development project, it should be
considered as a peripheral activity, and not as task
on which the ultimate success of the project, in
terms of timeframe depends; that is it should not be
a task lying on the critical path of the project.
Proper methods development will include an
experimental validation component, allowing an
assessment to be made of the reliability of the CFD
model and the lessons learnt can be used as the



basis for incorporating CFD into the product
development cycle.

For CFD projects that are outsourced, a company
must act as an “intelligent buyer” of services and
this requires appropriately trained in-house staff
who have knowledge of both project management
and a the technology itself.

For a medium-sized company of several hundred
employees covering a wide range of different
products, a CFD group of three people represents,
in the author’s view, a critical-mass for effective
operation. In terms of value-added to the business
this will depend on an intelligent and well-thought
out portfolio of projects.

3.3 CFD Analysis of Integrated
Propulsor/Hull Integration

The challenge for Rolls-Royce is to move beyond
RANS CFD analysis of isolated propulsors and
consider integrated propulsor/hull configurations as
part of the product development process. This
includes not only propeller/hull, but also
waterjet/hull and pod/hull configurations. In other
words, to move forward by extending the
complexity or our analysis and look for synergies
in designing the hull and propulsor together in an
integrated manner. This includes examining design,
off-design and manoeuvring conditions in line with
the operating spectrum of the vessel and weighting
the relative importance of each condition to a
successful overall design. These analyses will
inevitably be computationally demanding since
they will include the full geometry of the hull and
the propulsor(s), calculated in a time-dependent
manner.

3.4  Multidisciplinary Analysis and
Optimisation

Another challenge for realizing the full potential of
CFD in a company is to integrate CFD
hydrodynamic analysis into a multidisciplinary
environment incorporating structural, thermal and
acoustic analysis during the product development
process; in other words, to develop the analysis
model in an integrated and multidisciplinary
manner. This demands an engineer with not only a
thorough knowledge of hydrodynamics and CFD
but also with a broader knowledge and grasp of
other areas such as structural mechanics, acoustics
and project management. For large companies the
danger in this regard is over-specialisation of skills
and lack of a broader understanding or knowledge
of key engineering disciplines. For a smaller
company the reverse may be the case: good general

technical knowledge, but lack of technical depth in
key areas.

Rolls-Royce Civil Aerospace has successfully
incorporated CFD into optimization routines for the
optimization of blading and endwall components
for gas turbine engines. The challenge is to do the
same for marine components, initially for single
and multi-objective hydrodynamic optimization
and then for multi-objective and multidisciplinary
optimization. The power of such methods does not
of itself lie in the finding the “optimum” design,
but in understanding what an improved component
design may look like and the underlying reasons
why.
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Calculation of Fire Development and Smoke Propagation in Ship
Compartments

Vladimir Shigunov, Universities of Strathclyde and Glasgow'

Abstract. A numerical method is proposed for calculation of fire development and transport of
combustion products and heat in ship compartments. The method is based on numerical integration
in time of differential equations stating conservation of mass, energy and chemical species and includes
convective mass and heat transfer, radiative energy exchange and heat conduction through walls. The
method is validated against model tests and applied to a vehicle deck of a roro ship.

Introduction

The method of investigation is based on numerical simulation in time of the development of fire and
transport of heat and combustion products in connected compartments. Aiming at computationally
cheap solutions, the method uses coarse numerical grid in space (one control volume for one room)
and time (time steps about 1s). Such approaches (see for instance [1] and [2]) are referred to as zonal
models. Compared to existing codes, the treatment of walls is improved here.

Description of the Method

Governing Equations. Gas in a compartment is assumed to consist of two layers with a horizontal
interface between them. The upper layer is fed by fires with combustion products and heat. Addition-
ally, fire plumes pump gas from the lower into the upper layer. This method produces two distinctly
separated gas volumes, the upper hot gas volume, containing combustion products, and colder lower
layer with ambient (if mixing is neglected) contents. Although simplified, the model reflects well
experimental evidence about temperature and species distribution in compartments.

For each gas layer, a set of ordinary differential equations is written following from the conservation
of mass and energy. Numerical integration of the differential equations provides time histories of
temperature, volume, density, composition of the gas etc. in each gas layer in each room.

Mass Conservation. Mass conservation equation is solved for each gas layer v (7 = u or [ for upper
or lower gas layer, respectively) in the form

dm.,/dt = 1, (1)

where the left-hand side will be integrated in time ¢, and 772, represents sources of mass including

- for the upper gas layer: products of combustion from fire, mass entrained in the fire plume from the
lower layer and mass fluxes through vents such as windows, doors, ducts and fans, and

- for the lower gas layer: mass loss due to the entrainment in the fire plume (equal and opposite to
the term for the upper layer) and mass transfer through vents.

Momentum Transport. The velocities on the solid boundaries of a control volume are zero; if the
vents are small compared to the room size, the average velocity in the control volume is small and
momentum transport inside a compartment can be neglected as it was done here.

Energy Transfer. The energy conservation equation is solved in the form
dU, /dt + podV, /dt = h., (2)

where U, = ¢,m,T, is the internal energy of the gas layer v, V, is its volume, py is a characteristic
pressure in the compartment, and h, represents all heat sources. Energy is transferred through
convection, conduction and radiation.

!Colville Building, 48 North Portland str., Glasgow, G1 1XN, United Kingdom; vladimir.shigunov@strath.ac.uk



Convective Transport. Convective transport of energy includes terms similar to mass sources:
convective part of the heat of combustion from fires (for the upper layer), heat pumped by the fire
plume from the lower into the upper layer and heat flux through vents.

An additional term arises due to the convective heat exchange between the gas and adjacent solid
walls of the enclosure.

Heat Conduction. Walls between adjacent rooms or between a room and the ambient atmosphere are
subdivided into an arbitrary number of segments. For each wall segment, the normal heat conduction
through wall is calculated by finite-difference discretisation of a heat conduction equation.

The heat flux from the wall segment into the two adjacent compartments, including radiative and
convective parts, serves as boundary conditions for the heat conduction problem; the solution of the
latter, namely the temperatures of the two segment surfaces, serves as boundary conditions for the
calculation of convective and radiative heat transfer.

Walls included in the model so far encounter a single material wall, a double wall (two plates with
air between; the air transfers convective and radiative heat) and a triple-layer wall (e. g. two plates
with insulation between); the layers of materials can be treated as either thermally thin (uniform
temperature throughout the layer) or thermally thick.

To enable easy keeping of and referencing to the wall segments, an arrangement similar to the sell-
face based connectivity structure used in unstructured grids in numerical fluid dynamics is employed.

Radiative Heat Transfer. Surfaces of wall segments are considered as surface panels in the calcu-
lations of the radiative heat exchange. Radiative heat transfer is considered between different surface
panels, between surface panels and gas layers and between gas layers. If there are fires in the com-
partment, additional radiative heat fluxes from the fires are added to surface panels and gas layers.

Species Transport. The following species are considered:

- fuel components, i. e. the species contained in the pyrolisate such as carbon, hydrogen and oxygen
- ambient air components such as oxygen, carbon dyoxide, water and inert species (nitrogen)

- combustion products such as unburned fuel, carbon di- and monoxide, water, soot, hydrogen cyanide
and hydrogen chloride

A total of eight conservation equations of species are solved, for oxygen, carbon dioxide, carbon
monoxide, soot, unburned fuel, hydrogen cyanide, hydrogen chloride and water; conservation of inert
species follows from mass conservation. Species are transported by convective fluxes similarly to the
mass transport, by vents and fire plumes, and are produced or consumed in combustion.

Fire. The burning rate is prescribed as the heat release rate from a fire under free burning conditions,
i. e. under unlimited oxygen supply. This heat release rate can be defined experimentally and found
in textbooks for standard items of furniture, linings, pools of fuel etc.

Actual burning rate is calculated considering the actual ventilation conditions and fire geome-
try. This heat release rate is separated into the radiation and convection parts according to a user-
prescribed percentage. It is assumed that the radiative part is transferred uniformly in all directions,
while the convective part contributes only to the upper gas layer through the fire plume.

The fuel composition is specified by mass ratios of components such as hydrogen and oxygen to
carbon of the fuel. Such products of combustion as hydrogen chloride and hydrogen cyanide are also
specified as components of the fuel by respective mass ratios.

The production properties of fires are described again as branching ratios for carbon monoxide and
soot, depending on the fuel type, fire geometry and ventilation conditions. These branching ratios can
be either prescribed or calculated using empirical correlations.

Vent Flows. Mass flow rates through vents are calculated by integration over the vent area of



Bernoulli’s equation for a streamline, taking into account hydrostatic pressure distribution in the
adjacent gas layers. The calculated mass, heat and species fluxes through the vent are redistributed
between the gas layers of the adjacent compartments, assuming that the mass flux originating in the
lower or upper layer must terminate in the lower or upper layer, respectively, of another compartment
due to buoyancy; mixing effects at the interfaces of the fluxes have been neglected so far.

If a fan is placed inside a vent such as a duct, an additional head from the fan is included.

One of the issues defining the overall efficiency of the method is the calculation of the characteristic
pressures pg in connected compartments. Rise of the pressure in one of the compartments due to a fire
gives rise to mass and heat outflow, and in turn to decrease of the pressure. The characteristic time of
equalizing pressures in connected compartments is very small, therefore pressure solution procedure
needs some care. In the present method, pressures were found from a system of equations similar
to a discretised Poisson’s equation in incompressible flow solvers. The matrix of coefficients on the
left-hand side of the system was calculated approximately, using complex differencing.

Calculations

One of the main sources of fire hazard onboard roro ferries is a vehicle deck. The fire load due to
burning of a vehicle or a pool of fuel may be very high, but if the access of oxygen is limited, the fire
may self-extinguish in a short time. On the other hand, under good ventilation conditions (e. g. open
loading gate) the fire can develop and propagate to other vehicles. It is therefore important to be able
to predict the influence of different ventilation conditions on possible fire development.

Validation. Experiments were performed at the Swedish National Testing and Research Institute [3]
with two scale models of a vehicle deck to study the influence of ventilation conditions and water spray
fire-damping system on fire development; only the tests with a small scale model without sprinklers
are considered in the calculations in this paper. The model was fitted with a ventilation fan, exhaust
ventilation shaft, loading gate, two windows and scuppers for drainage of the water from the spray
system.

A wood crib was used as a fire source. The measured free-burning heat release rate for fully
developed fire was about 400 kW, which corresponds to about 70 MW in full scale.

In the present work, calculations were done for the cases 4 (ventilation shaft and scuppers open),
5 (ventilation fan on, ventilation shaft and scuppers open), 6 (two windows open) and 9 (loading gate
and scuppers open); numbers correspond to numbers of tests in [3].

Prescribed Heat Release Rate. Firstly, a common approach was used, where the time histories
of heat release rate were prescribed according to the measurements. The prescribed experimental
heat release rate time histories are shown on the right-hand plots in Fig. 3. Results of calculations
are shown on the left-hand plots in Figures 1 (the temperature of the upper gas layer) and 2 (mass
fraction of oxygen in the upper layer). Measured temperature at the point 0.475m above the floor
and 3m from fire and oxygen concentration (0.475 and 5.4 m, respectively) are shown for comparison
on the right-hand plots in these figures.
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Figure 1: Temperature of the upper gas layer for calculations with prescribed heat release rate
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Figure 2: Oxygen mass fraction in the upper layer for calculations with prescribed heat release rate

Calculated Heat Release Rate. With the approach used in the previous paragraph, the heat
release rate under different burning and ventilation conditions must be prescribed. It would be more
useful to use only the heat release rate under free-burning conditions with appropriate corrections. In
the next set of results, the heat release rate from unlimited fire (taken from test 9) was prescribed. It
was resricted by the available oxygen and besides, the finite height of the fire source was taken into
account, so that its part in the upper, contaminated gas layer was excluded from the burning region,
and the position of the fire (varying in time) was taken at the middle of the burning height.

Calculated heat release rate is compared with measurements in Fig. 3. The left-hand plot shows
calculated results, the right measurements. Calculated temperatures and oxygen mass fractions for
the upper gas layer are shown in figures 4 and 5, respectively.
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Figure 3: Comparison of calculated (left plot) and measured (right) heat release rate from fire
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Application. Full-scale calculations for a generic vehicle deck of a roro ship were performed. Fig. 6
shows a plan view of the deck. The vehicle deck is a box of dimensions 200 by 30 by 6 m (length,
breadth and height, respectively) with double sides, a central casing and a forepeak space. The double
sides and the central casing are considered as double steel plates with 3 m thickness air layer between
them (d in Fig. 6); all other walls, as well as the floor and ceiling are single steel plates (s). The
loading gate is considered to be the entire stern wall.



In the calculations, the deck is subdivided into three “rooms” A, B and C corresponding through
vents shown with dashed lines (v). The fire placed in part A produces free burning heat release rate
shown on the upper right-hand plot in Fig. 7, with maximum of 70 MW? for fully developed fire.

Two cases were considered, one with closed compartment and another with open loading gate. In
Fig. 7, the upper plots show time histories of heat release rate from fire, the middle temperatures and
the lower mass fraction of oxygen in the upper gas layer, separately for “rooms” A, B and C.
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Figure 6: Plan view of a full-scale vehicle deck
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Figure 7: Results of calculations of the heat release rate (upper plots), temperature (middle) and
mass fraction of oxygen (lower) for the upper gas layer, for closed deck (left plots) and deck with open
loading gate (right), separately for “rooms” A (solid lines), B (dashed) and C (dash-dotted); for the
vehicle deck shown in Fig. 6

Computational Time. Computing time grows with increasing number of rooms and depends signif-
icantly on the stiffness of the pressure solution problem. The minimum computing time corresponds
to concealed compartments; slightly more for compartments with large vents. The largest computing

2 According to [3] and references therein, a standard car burns with a heat release rate of up to 5 MW, a small truck
up to 15 MW and large heavy vehicles 45 to 120 MW under good ventilation conditions



time is needed for compartments with small orifices. In the examples considered in the present paper,
computing time was 0.1 to 0.4 seconds on a Pentium II computer for one real-time second.

Conclusion

The calculation method presented provides results of acceptable accuracy for fire safety assessment
and is cheap regarding computational time required, which is essential for parametric studies in ship
design. Especially useful the method would be when combined with evacuation simulation.

The underlying idea of using very coarse grids does not allow the investigation of scenarios with
strong influence of diffusion (diffusion-driven mass exchange) or mixing (multiphase applications, e. g.
for fire damping systems) where the method must use empirical correlations derived from tests or
calculations with much finer grids.

Even remaining on the present level of approximation, there are some questions for further explo-
ration, for example

- Is the simulation of the normal heat conduction through walls enough for ship design applications or
the longitudinal heat transfer along plates, beams etc. must also be included. To be able to include
longitudinal heat conduction, the structure of the code must be more complex.

- For high compartments such as staircases, the assumption of uniform density of the lower gas layer,
neglecting the stratification due to the gravity, may lead to wrong results. If the buoyancy of
the combustion products is not sufficient to reach the ceiling, the hot gas layer will form at some
intermediate height. This problem can be solved by subdivision of the height of the compartment
into more than two gas layers.

- For rooms with large horizontal dimensions such as cargo decks and corridors, the assumption of hor-
izontal interface between gas layers over-estimates the speed of propagation of convective heat and
combustion products from fire. Accuracy can be improved by further subdivision of such compart-
ments by vertical vents into smaller, but still large control volumes. Since such “rooms” are no more
restricted by solid boundaries from all sides, the average flow velocities inside the control volumes
cannot be neglected, which requires the incorporation of momentum transport into the model.
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1 Introduction

The prediction of cavitation at propellers and rudders
is of great importance because noise and vibrations
and often also erosion damages occur at modern pro-
pellers, partly due to the increasing loads of recent
propeller designs.

Model tests are carried out for a great number of
ships, but are quite expensive, particularly when sev-
eral versions are investigated. For numerical simu-
lations vortex-lattice- and panel-methods are being
used. They are fast but often limited to some kinds
of cavitation, for example it is impossible to simulate
tip and hub vortex cavitation. Over the last few years
it is possible to simulate cavitation with RANSE-
methods. This paper presents RANSE-calculations
of propellers in a cavitating flow.

X
=

For the simulations of the cavitating flow the
RANSE-code COMET has been used. A cavitation
module has been developed for this software follow-
ing the PhD-thesis of J. Sauer [1]. The modelling of
the cavitation consists of three steps:

1. Seed distribution
2. convection of vapour bubbles

3. description of bubble growths and collapse

In a real fluid a distribution of cavitation seeds exists,
which can be particles or small vapour bubbles. In
the model these are simplified to a single seed type
‘micro-bubble’ with an average radius and an average
number.

Cavitation is modelled as a two phase flow, con-
taining the phases water and vapour. The transport
of vapour can be treated with Volume of Fluid (VoF)
methods, using the vapour fraction C'y .

Vapour volume Vi

Cy

(1)

An additional transport equation for the vapour frac-
tion is solved.

dcy . a0y )
T"‘CVV'V— ot + V- (CyV)

- Standard volume V'

(2)
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Compared to standard-VoF applications it is ex-
tended by a source term for the creation and destruc-
tion of vapour volume. According to bubble dynam-
ics, growth and collapse of vapour bubbles can be
described by the Rayleigh-Plesset-Equation.

2R 3 (dR\?
RW*i( )-

dt
sat (T') — Poo 27, (T d
pi mR mR dt

R Bubble radius
Psat  Pressure of saturation
Pl Density of liquid
To(T)  Surface tension
W Viscosity of liquid

The influences of inertia, viscosity and surface tension
are neglected. This leads to the equation of Rayleigh.

rsar  roo (4)

The Rayleigh equation is used in the method because
its numerical solution is much simpler.

3 Calculations in an homoge-
nous flow

Two propellers have been investigated: The propeller
of a recent RoRo-ship and the older Propeller of the
container-vessel ‘Sydney-Express’. A cylindrical sec-
tion of the former has been investigated at first in a
two-dimensional calculation.

3.1 Two-dimensional calculation

A section of one blade at 80 % of the propeller ra-
dius is investigated. The profile used in the sim-
ulation is not exactly equivalent to the section of
the propeller blade but geometrically distorted so as
to reach the same pressure distribution as in three-
dimensional case at the same radius, calculated with
a panel method.

There are no model tests available of this propeller
in an homogenous flow, but the form and extent of
the calculated cavity seem realistic.



Figure 1: Vapour volume fraction in two-dimensional calculation, J = 24, = 0.8, 0 =
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Figure 2: Left: Model test result (source: [4]), middle / right: Calculated Cavity at the propeller of the RoRo-

vessel, visualised by iso-surface of vapour volume fraction Cy of 0.5 resp. 0.05. J = 0.8, 0, =
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Figure 3: Propeller of ‘Sydney-Express’. Left: Coarse grid, middle: Partially refined grid, right: Refined

grid. Dark gray: Cavitation, Iso-surface at Cy = 0.5. o, =

3.2 Three-dimensional investigations

The propeller of the RoRo-vessel is investigated in
an homogenous flow. The grid of one blade con-
sists of approximately 117000 cells, the influence of
the other three blades is taken into consideration by
cyclic boundaries. Rotation is realized by a rotating
coordinate system. The inflow and rotational veloc-
ities are chosen similar to the local velocities in the
ship’s wake at a position of 200 degrees.

Figure 2 shows the results of the calculation com-
pared to a result of a model test in the cavitation
tunnel HYKAT of HSVA behind the ship model. Ve-
locities in this position should be similar to the con-

% = 0.185, Thrust coefficient kr = 0.243.

5 (m

ditions in the simulation. For the representation of
the cavity two criteria have been chosen: vapour vol-
ume fractions (Cy ) of 0.5 and 0.05. The simulation
results in a stationary cavity with tip vortex. With
a vapour volume fraction of 0.5 the cavitation at the
trailing edge, including the tip vortex, is represented
quite well. At the leading edge there is less cavita-
tion than observed in the model test. This area is
represented better with a criterion of Cy = 0.5.



kr = 0.269

Cy =0.5

kr =0.215

Cy =0.05

Figure 4: Comparison of simulation and experiment, grid of approx. 100000 cells. Sketch: Observation from
experiment, dark gray: Cavity according to Calculation, iso-surface of C'y = 0.5 resp. 0.05. 0, = 0.185

3.3 Simulations with the propeller of
the ‘Sydney-Express’

No model test results in homogenous flow are avail-
able of the Propeller of the RoRo-ship. For this rea-
son investigations are continued using the propeller of
the container-vessel ‘Sydney-Express’. This propeller
could be used for model test in the large cavitation
tunnel of HSVA. No wire mesh has been used for the
generation of a wake field. Three different loads have

been investigated.

For the simulation, three different grids have been
prepared, of 36000, 100000 and 650000 cells. Figure
3 shows the different grids and the simulation results.
It is visible, that the cavity is calculated too small us-
ing the coarser grids. Nevertheless the medium grid
is used for further calculations, because the calcula-
tion time was 38 hours using the medium grid, while
it was twelve days using the fine grid.

Figure 4 shows the calculation results for the three
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Figure 5: Propeller cavitation in axial wake field. Left: Simulation, right: experiment (source: [5]). kr =

0.179, Cy = 0.5, o, = 0.185.

different loads, compared with the results of the
model test. In all cases calculation and model test
showed a stationary cavity, consisting of sheet cavi-
tation on the outer radii and a cavitating tip vortex.
As above, two criteria for the representation of the
cavity are plotted. The form and extended is gen-
erally well met, but using the criterion of Cy = 0.5
the cavity is too small near the leading edge. With
Cy = 0.05 it is too large near the trailing edge. For
the lowest load the simulation shows a smaller cavity
than the model test.

4 Simulation in axial ship’s

wake field

Another simulation with the propeller of the 'Sydney-
Express’ has been examined, using the axial wake
field of the ship as inflow boundary condition. The
tangential component of the wake has been neglected.
In this calculation the whole propeller must be mod-
elled.

Figure 5 shows the calculation results compared to
results of model tests carried out in the medium sized
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from calculated pressure development. o,, = 0.185

cavitation tunnel of HSVA. For the generation of the
wake in the tunnel a wire mesh has been employed,
so that there is no tangential velocity component as
in the calculation.

The extent and form of the simulated cavity is very
similar to the one observed in the model test. At the
position of 170°the calculated cavity reaches further
to the hub. The development of the cavity is a little
late compared to the model tests. This delay may be
explained by the fact that the wake is given at the
inlet boundary 20% of the propeller radius in front of
the propeller and not in the position of the propeller.

During the numerical simulation of the propeller
in the ship’s wake, the pressure fluctuations above
the propeller have been recorded. Figure 6 shows the
pressure at the monitoring location approximately 45
% of the radius outside the propeller disc. For com-
parison the pressure from a calculation without cavi-
tation is also plotted. The third graph shows the total
vapour volume. There are strong peaks visible at the
moments when the cavity collapses. The normalised
pressure fluctuation amplitudes are shown in the fig-
ure to the right. The value of 0.041 for the blade fre-
quency is of the same order as values received from
model tests as well as full scale measurements. An
exact comparison is not possible because of different
tunnel geometries between model tests and numerical
simulation.

5 Criteria for the graphical rep-
resentation of the calculated
cavity

In figures 2, 3, 4 and 5 the cavity is represented by an
iso-surface for the vapour volume fraction. As a first
attempt a criterion of Cy = 0.5 as in free surface
calculations is used. As visible above this leads to
cavities which are too small near the leading edge.

One possible explanation is, that the cavity is still
very thin here and the grid is too coarse for a correct
resolution of this thin sheet.

Another possibility would be to use another crite-
rion. The vapour volume fraction Cy is analytically
connected to the bubble radius R:

4 _p3
no - TR
Cy=—-3"" _ 5
v 1 + no - %ﬂ'R?’ ( )
R bubble radius

Number of cavitation seeds
Standard Volume

ng =

A vapour volume fraction of 0.5 corresponds to a bub-
ble radius of 1.34 mm, based on a number of seeds of
ng = 105, while a Cy = 0.05 corresponds to R = 0.5
mm. A closer look at model tests is necessary to
find out which size is taken into account in the model
tests. Lindenau [2, 3] suggests using different criteria
for different kinds of cavitation.

6 Conclusions

The cavitating flow around two propellers in an ho-
mogenous velocity field has successfully been simu-
lated using RANSE-methods. The results, in general,
show a good correspondence to model tests. Also, a
calculation in a ship’s wake field shows similar cavi-
tation behaviour as observed in a model test.

Due to the necessarily small time step, calculation
times were quite large. Parallel computing, which
was not possible when these calculations were carried
out, but is now available, will be a great advantage.

Further investigations are necessary to find a reli-
able iso-surface criterion for the graphical represen-
tation of the cavity.

Also, the correspondence of the fluid quality (gas
content, seed distribution), and the initial conditions



of the numerical model (concentration and radius of
cavitation seeds) has to be subject of further investi-
gations.
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Abstract

The first steps toward the implementation of an
adaptive multigrid (AMG) method for the flow code
Chapman are described. The recursive adaptation
procedure creates a set of aligned refined grids of
several refinement levels. A velocity gradient adap-
tation criteria is used to locate the under-resolved
areas. The AMG method is applied to a 2D lami-
nar test case and evaluated using a grid convergence
study. The adapted grid is shown to be more effi-
cient in terms of grid points and computational time
compared to a uniform grid.

1 Introduction

The new flow solver Chapman is currently under
development by Flowtech International AB and
Chalmers University of Technology. Chapman is a
structured multigrid solver intended to run large
simulations of ship hulls on ordinary work sta-
tions. In order to manage that task with a satis-
factory accuracy an adaptive mesh refinement pro-
cedure compatible with the multigrid solver needs
be implemented. The present paper describes the
first attempts to develop this adapted multigrid
(AMG) technique for Chapman.

The refinement criterion investigated here is a ve-
locity gradient based criterion based on the Theory
of Smallest Length Scale [3][4]. In regions where
the criterion is fulfilled new refined subgrids are
created. Together with the existing grids they
form a grid hierarchy of several refinement levels.
This approach enables us to benefit from the multi-
grid algorithm already implemented in Chapman.
The AMG method is evaluated using a formal grid
convergence study of the adapted grid structure for
a simple 2D test case. The goal is to verify that
the solution on the adapted grid approaches the
same values as a uniform grid by using less grid
points and computational time.

2 Flow code

2.1 Solver

The incompressible RANS equations are solved
on structured overlapping grids in a coupled sys-
tem using a finite volume discretization. The vis-
cous fluxes are discretized with a central differ-
encing scheme, while an upwind scheme based on
Roe flux splitting [6] is used for the non-viscous
fluxes. This discretization is formally first order.
A minmod-limited flux correction increases the ac-
curacy to second order. The second order correc-
tion is not used for the calculations in the present
work. Pseudo-time stepping with Euler backward
differencing is used to reach a steady state solu-
tion.

The discretized and linearized equations are solved
with a Non-Aligned Multigrid method using the
Full Approximation Storage technique. A V-cycle
starts at the finest level, smoothings are carried
out and defect corrections are calculated for the
next level until the coarsest grid is reached. At
this level the equations are solved to machine ac-
curacy. Instead of prolongating the coarse grid
solution directly back to the fine grid a sweep is
made through all levels, whereby a coarse grid cor-
rection is computed at each level. The smoothing
is carried out using the block Jacobi method.

2.2 Grid structure

The flow domain outside the ship surface is rep-
resented by a number of overlapping base grids.
The base grids are either Cartesian (background
grid) or curvilinear (bodyfitted grids). Each base
grid contains a hierarchy of refined subgrids tak-
ing part in the multigrid algorithm. A subgrid is
always aligned and shares the mapping function
with its base grid.



3 Adaptation technique

3.1 Development strategy

The goal of the present efforts is to develop an
adaptation procedure for the grid structure de-
scribed above. Since the target geometry is fairly
simple, a suitable division of the domain into base
grids can be done manually based on experience;
there are no reasons to automate this process. The
purpose of the automatic adaptation procedure is
to find suitable grid densities of the grids within
the prescribed base grids. Hence, the adaptation
procedure needs only to consider one base grid at
a time. The work toward a satisfactory adaptation
techniques can therefore be carried out on a single
mapping test case.

3.2 Adaptive grid structure

Our AMG approach is based on the nested
grid scheme first described by Berger and Oliger
[2]. The adaptation procedure produces a set of
aligned grids of increasing refinement levels. The
coarsest grids cover the whole domain while sub-
grids of larger grid density are placed over regions
that require higher resolution. By forcing the sub-
grids to be aligned with the underlying base grid, a
inexpensive interpolation scheme can be employed
for the grid-to-grid communication. Each level in
the grid hierarchy represents a refinement ratio in-
crement of 1 compared to the level below. The in-
crement can be in one or several directions. Each
subgrid is completely embedded within its parent
grid. For reasons related to the multigrid proce-
dure, one subgrid is not permitted to overlap other
grids on the same refinement level.

The grid points that are covered by finer grids are
not omitted from the calculations. This gives a
double coverage of some areas, which may seem
not to be the best way to economize with grid
points. However, by taking part in the multigrid
algorithm, the coarser grids efficiently take care
of the long wave length errors which speeds up the
over-all convergence. This advantage would be lost
if grid points were omitted from the low level grids.

3.3 Refinement criterion

Several refinement criteria are planned to be tested
for the AMG procedure of Chapman. The present
work treats a velocity gradient type of criterion
based on the Theory of the Smallest Length Scale
by Reyna et.al. [3]. According to this theory,

the discretized Navier-Stokes equations are accu-
rately resolved if the cell size is smaller than the
square root of the viscosity divided by the largest
local velocity gradient. The theory is developed
using Fourier analysis for the purpose of investi-
gating the numerical stability of Navier-Stokes so-
lutions. Since the smallest length scale defines the
smallest features of the flow and marks the limit
between resolved and under-resolved flow, Reyna
et.at. suggest that it may be used as a refinement
criterion, even though it is not applied as such in
their own work.
In the test case presented here the grid is refined
if "
3
Y > 1,

where h; is the cell size in the direction ¢ and

(1)

(2)

This is equivalent to a viscosity dependent toler-
ance in a velocity gradient type of adaptation cri-
terion.

For a turbulent flow, this refinement criterion
corresponds to resolving the Kolmogorov scales,
which will require grid densities far too high for
practical applications. Future investigations will
examine whether the Smallest Length Scale crite-
rion can be combined with the turbulence models
used in Chapman to obtain a suitable criterion for
the turbulent flow. The possibility of detecting
under-resolved turbulent flow by using the effec-
tive viscosity in the expression 2 has been studied

in [7].

3.4 Adaptation procedure

The adaptation cycle starts by advancing the solu-
tion a number of multigrid cycles on two or more
levels of coarse base grids, each covering the whole
domain. The adaptation criterion is calculated in
each cell of the finest base grid. Every cell that
satisfies the refinement criteria in both the x- and
y-directions is flagged and the flagged cells are
grouped in suitable rectangular areas. The same
thing is done for the cells that fulfill the criteria
in x but not in y, and the other way around. New
refined subgrids are created in the obtained areas,
and data from the parent grid are interpolated to
the subgrids. The adaptation criterion is calcu-
lated on the new subgrids based on the interpo-
lated data, and the refinement process continues



recursively with the new subgrids as parent grids.
Several parameters control the process, e.g. mini-
mum size of a subgrid, ratio of unflagged/flagged
cells to be tolerated without trying to divide an
area into two areas etc.

The multigrid solver can now be applied to the new
grid structure. After a number of multigrid cycles
the adaptation criterion is evaluated again, and if
necessary, the adaptation cycle is re-started. The
new subgrids will then copy data from old subgrids
of the same level if possible, and otherwise from
levels below, after which the old subgrids will be
deleted. In this way, there is no need for a coarsen-
ing algorithm. If a region of high active flow moves
or changes its shape, the old out of date subgrids
will be replaced by new updated subgrids.

4 Test case

Figure 1: Part of the x-velocity field. Plate shown
in black.

Figure 2: Part of the adapted grid structure. Plate
shown in black.

Our first test case considers the laminar flow
past a 2D flat plate, including the entrance effect
and the wake. This test case is simple enough
to allow a large number of simulations with mod-
est resources. Large velocity gradients in both the
x- and y-directions make the flow field complex
enough for serving as a suitable test of the AMG
method.

The adaptation is applied to a uniform Cartesian

grid. For the current test case it would be rea-
sonable to use a stretched base grid. However, for
the purpose of developing the AMG technique the
uniform base grid is sufficient as a first attempt.
Later work will deal with adaptation of stretched
base grids.

We define a computational coordinate system with
the origin at the plate leading edge and the x-axis
in the direction of the inflow. The computational
domain reaches from 1.5 plate lengths upstream of
the leading edge to 2.5 plate lengths downstream
of the trailing edge. The domain height is two
plate lengths, about 8 times the boundary layer
thickness. The inflow profile is a uniform veloc-
ity profile of magnitude 1 in the x-direction. The
slip condition is applied on all edges parallel to the
plate except from at the plate surface, where the
no-slip condition is used. A homogeneous Neu-
mann condition for the velocity and a Dirichlet
condition for the pressure are used at the outflow
plane.

The solution on the adapted grid is compared to
the original solution using one local and one inte-
grated parameter, namely the x-velocity at a fixed
point in the boundary layer (%, %) and the total
skin friction coefficient C'y. The point velocity is
found by a fourth order polynomial interpolation
between cell centers. The skin friction coeflicient
Cy is calculated by

L
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(3)
where the integration is approximated using the
trapezoidal rule and the velocity gradient at the
wall by a first order upwind scheme.

Figure 1 shows the x-velocity field at Reynolds
number 400, which is the flow case used for all cal-
culations presented in the following sections. For
this Reynolds number, the pressure is not constant
with y in the boundary layer at any x-position.
Also, the free stream velocity above the plate ex-
ceeds the inflow velocity due to the finite domain
height. For those reasons, the flow field cannot be
regarded as a Blasius boundary layer and there-
fore, analytical values cannot be used as a refer-
ence.

The base grid consists of one 20x40 and one 40x80
grid that both cover the whole domain. The so-
lution is advanced one multigrid cycle on the base
grids before the adaptation procedure is applied.
(Tests have shown that one multigrid cycle is suffi-
cient for establishing converged values of the adap-



Nioc* h Cf p u(%a 4L_0) p
1455 4 0,03412 - 0,3075 -
5788 2 0,03438 - 0,2980 -
13047 | 1,33 | 0,03436 nan | 0,2958 1,62
23152 1 0,03435 0,96 | 0,2951 2,036
o0 0 0,03432 0.2941
*)Number of cells on the locally finest level
Table 1: Result of adapted grid and its re-
fined /coarsened clones.
Nioc h C1f p u(%, 4L_()) p
800 16 | 0,03656 - -
3200 8 0,03607 - 0,3484 -
7200 | 5,33 | 0,03567 mnan | 0,3253 -
12800 4 0,03541 0,24 | 0,3145 1,16
51200 2 0,03492 0,52 | 0,3011 1,43
204800 1 0,03462 0,70
o0 0 0,03414 0.2933

Table 2: Grid convergence of uniform grid

tation criterion. Advancing the base grids further
will result in exactly the same adapted grid struc-
ture.) The simulation continues with repeated
multigrid cycles on the adapted grid structure un-
til convergence is reached. For this simple test
case there is no need to re-run the adaptation cy-
cle. A part of the adapted grid structure is shown
in Figure 2.

5 Evaluation of the adaptive method

5.1 Accuracy and storage efficiency

The importance of formal convergence studies for
verification of CFD results has been expressed by
several authors, for example in the ITTC Guide-
lines [1]. We believe that this is also important
for adapted grids, especially in the development
phase. We will in the following use the verifica-
tion method due to Eca and Hoekstra [5] to in-
vestigate the adapted grid from the test case de-
scribed above. A set of geometrically similar grids
is obtained by refining or coarsening the adapted
grid hierarchy with a refinement factor of r, while
keeping the relative size, placement and order of
the subgrids fixed. Two refined and one coarsened
clone of the adapted grid are created. Solutions
are obtained on the refined grid hierarchies with
multigrid cycles until convergence is reached. The
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Figure 3: Frictional resistance coefficient versus
the inverse square root of the number of cells
on the locally finest level, normalized against the
finest grid

0,35
. @ Adapred

B Uniform
¥ Clones of adapted

X Richardson Extrapo-
lation

0,344

0,33

0,321

WL, Li40)

0,314

031 ] /
b 4

0 1 2 3 4 5 6 7 8 g 10 1 12 13
1/sqri(N_loc) normalized with finest grid

Figure 4: x-velocity at %, % versus the inverse
square root of the number of cells on the locally
finest level, normalized against the finest grid

result is given in Table 1, where the order of ac-
curacy p and the extrapolated zero cell size solu-
tions are calculated using the curve fit approach
[5] applied to 3 grids at a time (equivalent to the
Richardson Extrapolation.) The reference cell size
h in the tables represents the inverted refinement
factor with respect to the finest grid in each se-
ries. For comparison, a grid convergence study of
a uniform grid is presented in Table 2.

Figure 3 and 4 compare the results of the two grid
series with respect to the cost of grid points. The
solutions are plotted against the inverse square
root of Nj,., the number of cells on the locally
finest level, normalized against the finest grid. The
coarser cells hidden under the fine layers are not
counted since their purpose is to speed up the
multigrid convergence, they will not contribute to



the accuracy of the solution.

These tables and graphs show that the solutions on
the adapted grid tend toward the same solution as
on the uniformly refined grid. Furthermore, they
show that for the same amount of grid points, the
adaptive grid solution is closer to the extrapolated
zero cell size solution.

In spite of the fact that the solver is formally first
order for the current calculations, the order of ac-
curacy p is as high as 2 for the point velocity val-
ues. This can be explained by the fact that the
viscous terms are discretized by a second order
scheme. For the current low Reynolds number test
case, the viscous terms dominate the convective
terms, discretized by a first order scheme, and this
increases the order of accuracy.

For the Cy values, however, the order of accuracy
is only approaching 1, and for the uniform grid p
is considerably lower then 1. The suspicion that
this is due to the numerical integration did not
prove to hold. Employing a second order Simp-
son integration did not change the result notice-
ably. The cause of the low accuracy is probably
the linear approximation of the velocity derivative
at the wall, though this has not yet been verified
numerically. The reason why the values of C are
far from the asymptotic range (p far from 1) for
the uniform grid is probably that the flow close to
the wall is so under-resolved that the derivative is
taken in the non-linear part of the velocity profile.
This points out the secondary effect of the adap-
tation. Refining the grid where the velocity gra-
dients are large will increase the accuracy of the
post-processing calculations, i.e. approximations
of derivatives and integrals.

5.2 Computational time

In the previous section we investigated how the
solution error depends and the number of grid
points on the locally finest level. Of the same
importance is the dependency of the computa-
tional time. Figure 5 shows the error, relative
to the extrapolated zero cell size solution, as a
function of computational time. The uniform
grid series in this plot is obtained by repeatably
adding refined multigrid levels to a uniform base
grids. Hence, those grids contain enough levels
to ensure a fast convergence. Still, the adapted
grid displays a faster convergence for a given error.

209 v E(Cf) Uniform
181", + E(CY) Adapted
s = E(u) Uniform

= E(u) Adapted

Error (%]

2 TR e

20000 30000 40000

Computational time [s]

0 10000

Figure 5: Error % relative to extrapolated solution
versus computational time.

5.3 Tuning the adaptation parameters
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Figure 6: Comparing adaptation criteria

The verification technique illustrated above can
be used in the development phase of the AMG
method, for example when tuning the magnitude
of the criterion and the parameters that govern
the process, or when comparing alternative types
of adaptation criteria. With a verification study
we can not only find out which alternative is close
enough to “the right” solution with least effort,
we can also verify that this solution is approached
with a certain order of accuracy, which should in-
crease the confidence in the result.

As an example Figure 6 compares the adaptation
criterion A used above with the criterion set to 2,
where the latter is clearly inferior.



6 Conclusions

The first efforts of developing an adaptive multi-
grid (AMG) technique for the flow code Chapman
are described. The goal of this work is to reach the
same accuracy as a uniform grid using fewer grid
points and less computational time. The AMG
technique is applied to a 2D test case consisting
of the laminar boundary layer of a flat plate. The
result is evaluated using formal grid convergence
studies of the original and the adapted grid struc-
ture. The work results in the following conclu-
sions:

e The solutions on the two grid types approach
the same extrapolated zero cell size values.
The adapted grid solutions are closer to this
value for the same amount of cells on the lo-
cally finest level. Hence, the adaptation is
successful in terms of grid points savings.

e The error relative to the extrapolated solution
is smaller for the adapted grid than for the
uniform for the same computational time.

e The Theory of the Smallest Length Scale has
been applied as refinement criterion. For the
present laminar test case, this criterion gives
reasonable grids. Whether this theory can be
useful for turbulent cases still needs to be in-
vestigated.

e Applied to adapted grids, formal verification
methods can be used for evaluating the suc-
cess of an adaptive method and for tuning the
technique.

7 Further work

The work described here comprises the first steps
toward a well functioning AMR for Chapman.
The next phase in the development will include
investigations of different types of adaptation
criteria suitable for turbulent flow. Moreover, a
great deal of work remains to make the AMR pro-
cedure applicable to 3D, stretched and curvilinear
grids.
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Towards accurate wake predictions of twin-screw ships with an open-shaft stern
configuration.
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Nomenclature

U, . Axial free stream velocity.

/4 : Transverse velocity at the wall.
u,v,w : Cartesian velocity components.

p : Pressure.

1. Introduction

Many twin-screw ships have a so-called open-shaft stern
configuration. While in most cases the hull has a
geometrically simple shape, the protruding shafts, bossing
and supporting struts make the over-all geometry complex.
This geometrical complexity and possibly the shaft rotation
cause the behaviour of the flow near the shafts and brackets
to be complicated as well, and it is a challenge to be able to
make reliable numerical flow predictions.

As a first step in establishing this capability at MARIN,
using the PARNASSOS code (see [1]), we have considered
the calculation of the viscous flow around an inclined non-
rotating cylinder protruding from a flat plate. In 1997,
Pinard [2] investigated this kind of flow experimentally. In
2001, Hally [3] predicted the flow using a viscous flow
solver and compared the calculations with the experiments;
the agreement between numerical and experimental data
was found to be good. As a second step we studied the
same case but now with the cylinder rotating about its axis.
Finding serious difficulties, we reduced the complexity of
the case by considering the flow along a rotating (around its
axis) cylinder aligned with the main flow. The flow along
the rotating cylinder was investigated experimentally by
Lohmann [4] in 1976 and investigated numerically in 1982

[5].

The inclined cylinder test case is used to investigate the
possibility to incorporate the shaft in real ship calculations
when applying the same kind of grid topology, i.e. an O-H
type, that is usually being applied at MARIN. The flow
around the flow aligned rotating cylinder is used to test the
implementation of the new boundary condition in the
PARNASSOS code, to investigate the necessary grid
density in case of rotation and to reveal imperfections of
turbulence modelling.

2. Test cases

2.1 Inclined cylinder protruding from a flat plate
Numerical set-up

The experiments by Pinard have been performed in a
circulating water tunnel. The roof of the tunnel test section
represented the flat plate. The cylinder protruded from the
tunnel wall and was fixed to the bottom of the test section

X,y,z : Cartesian co-ordinates.

/N4

: Curvilinear co-ordinates.

: Cylinder or shaft diameter.

: Node on cylinder.

: Direction vector cylinder centreline.
: Node on cylinder centreline.

SRR

further downstream. Three different cylinder inclination
angles (5, 8 and 12-degrees) have been used and three
different incident boundary layer thicknesses have been
imposed. This gives a total of nine experimental
configurations.

In the numerical simulations we focus on only one
experimental set-up, viz. the cylinder protruding from the
flat plate at an inclination angle of 8 degrees, with an
incident boundary layer thickness at plane P1 roughly equal
to 3.2D. Figure 1 gives an impression of the set-up as used
in the calculations.

T

Figure 1: Numerical set-up and measurement planes.

P3 P4

The planes P1 to P4 represent the measurement planes. The
cylinder protrudes from the plate and is extended beyond
the last measurement station P4 where the cylinder
diameter is gradually reduced until it vanishes.

Grid topology

While Hally adopted an O-type grid around the cylinder,
which was highly sheared because it was fitted to the plate
as well, we operate with a grid topology similar to what we
presumably would use for a real ship case, i.e. an O-H type
grid. The single-block grid can be described by curvilinear
co-ordinates, f , 17 and ¢ running roughly in streamwise,

wall-normal and girthwise direction respectively. In
principle this grid topology is capable of capturing the
geometry of the ship including the shaft, although the grid
does not fit to the cylinder as nicely as in Hally's grid.
Important to realise is that the diameter of the shaft is quite
small compared to the ship’s main dimensions. So, a very
fine grid may be needed to resolve the flow phenomena
close to the shaft. To investigate the influence of the grid
resolution and to get experience with grid generation for
typical hull+shaft geometries, we decided to calculate the
flow around the inclined cylinder on three grids of varying
density.

The computational domain is defined as follows: the width
of the flat plate is equal to half the width of the tunnel roof;
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Figure 2: O-grid around cylinder and flat plate.

the total width of the domain is approximately 30 cylinder
diameters; the inlet of the computational domain is located
at plane P1, at which the incident boundary layer was
measured; behind the cylinder the computational domain is
extended in downstream direction over approximately 50
cylinder diameters. The 77 =0 plane models the flat plate,

symmetry plane and cylinder. Hence an O-grid is created
running around the cylinder and along the flat plate. In
streamwise direction an H-grid topology is applied. A
representative & =constant plane is plotted in Figure 2.

Close to the flat plate, the geometry of the
cylinder is slightly modified. It was
impossible to use an O-type grid near the
junction of the flat plate and the "trailing
edge" of the cylinder because of
unacceptable local grid properties. The
figure at the right shows several sections
of the cylinder-plate configuration close
to the junction.

The finest grid is generated by elliptic grid generation
methods. From this grid two coarser grids are extracted
(each 2" or 4 grid node is used in all three directions)
which will be denoted as medium and coarse. The grids
consist of 145x161x113, 73x81x57 and 37x41x29 nodes,
with 20, 10 and 5 cells on half the cylinder circumference
respectively.

Boundary conditions

Inlet plane: fixed velocity components u, v and w, i.e. a
boundary layer profile with boundary layer thickness equal
to 3.2D in conformance with the measurements. Outlet
plane: first &-derivative of pressure equal to zero. Cylinder

and flat plate: no-slip condition a%n:o and

u=v=w=0 or W, /U_fixed. The transverse velocity

vector at node X can be written
as:
X—V)X7r . o rix-z
e DL WA NG TR WU C i)
O(x—-v)xrl rir

Outer boundary: fixed pressure and tangential velocity
components (from potential flow solution). At the
remaining boundaries symmetry conditions are imposed.

The size of the computational domain is deliberately
chosen to be rather large. Therefore the influence of the
size of the domain on the computational results is not

considered in this paper.

2.2 Flow aligned rotating cylinder
Numerical set-up

The experiments of Lohmann consisted of measurements of
the boundary layer along a circular cylinder in an external
flow parallel to its axis and with a rotating segment of the
cylinder downstream. The incident boundary layer
thickness, x/D =-0.0474 wupstream of the rotating
section, is approximately 15% of the cylinder radius.
Initially a two-dimensional boundary layer develops along
the cylinder. At the rotating section the boundary layer
becomes three-dimensional due to the transverse shear
forces. Three different values of the surface-to-free-stream

velocity ratio W, /U_ =0, 1.45 and 2.2 have been

investigated. The experiments without surface rotation are
performed to measure the reference boundary layer
thickness. All of the measurements were obtained at a free

stream velocity U_ =16.8 m/s at Re=2.9x10’ based
on the free stream velocity and cylinder diameter.

The calculations are performed with and without surface
rotation, W /U, =145 With  this

simulation we investigate discretisation errors due to for
example grid topology. The flow has to be axi-symmetric
so any deviation from symmetry will be due to an
asymmetric grid topology or discretisation. Moreover the
simulation is used to investigate the necessary grid density
and to reveal imperfections of turbulence modelling.

however only.

Grid topology

At first we used a grid topology nearly similar to the
inclined cylinder case. However because no flat plate is
present, this means a C-grid around the cylinder and along
the vertical symmetry plane. With this kind of topology
two blocks model the computational domain only.

The computational domain is defined as follows: the
cylinder is placed 2.5 cylinder diameters below the
horizontal symmetry plane to avoid influence of the
symmetry conditions on the flow close to the cylinder; the

inlet and outlet planes are located at x/D =—-0.568 and

x/ D =2.5 from the upstream end of the rotating section
respectively; the outer boundary is located at approximately
5 cylinder diameters from the cylinder axis.

The grid node distribution in main stream direction is
equidistant with 28 nodes on the rotating part and 49 nodes
in total. In wall normal and girthwise direction 81 and 24
nodes are used respectively. 11 nodes are used on half the
cylinder circumference. A second grid is generated with a
different grid node distribution in girthwise direction. Grid
nodes are highly clustered at the top section of the cylinder:
121 grid nodes are used with 61 nodes on half the cylinder
circumference.

Driven by the numerical results obtained with this kind of
grids, which will be discussed later on, a second grid
topology is applied. An O-grid around the cylinder is



11

LT

Figure 3: O-grid embedded in C-grid.

embedded in the C-grid as plotted in Figure 3. Because the
grid is symmetric only three blocks have been plotted. With
this kind of topology six blocks model the computational
domain. The O-grid around the cylinder contains 21 nodes
on half the cylinder circumference, 61 nodes in wall normal
direction and 49 nodes in main stream direction, i.e. a
49x61x21 grid. To examine the grid dependency several
other grids have been generated: 25x61x21, 97x61x21,
49x61x11 and 49x121x21.

Boundary conditions

Inlet plane: fixed velocity components u, v and w. The
boundary layer thickness is such that at x/ D =—-0.0474
the boundary layer thickness (defined by 99% of the free
stream velocity) is equal to the measurements. Outlet plane:
first E-derivative of pressure equal to zero. Cylinder wall:

no-slip conditions B%ﬂ =0 and u=v=w=0 or

W_/U,_ fixed. Outer boundary: p=0, u/U_=1 and

W /U_,=0. At the remaining boundaries symmetry
conditions are imposed.

3. Results

3.1 Inclined cylinder protruding from a flat plate

The coarse, medium and fine grid are used now to simulate
the flow around the cylinder. Menter's one equation
turbulence model, including the Dacles-Mariani correction
(cyo=4, see [1] and [6]), is used to calculate the turbulent
viscosity. The governing equations are integrated down to
the wall (no wall functions used). The Reynolds number,
based on the cylinder diameter (D=0.033 m) is equal to 1.8
x 10°. The incident boundary layer thickness is equal to
3.2D.

The maximum y~ value for the medium and fine grid is
below 1.0. For the coarse grid the maximum y* value is
below 1.5. All solutions are converged until changes in the
pressure coefficient and in the velocity components are
below 5.0 x 107 Scaled residuals have been reduced by
seven orders of magnitude. The maximum change in the
turbulent viscosity is below 1.0 x 107 times the laminar
viscosity. This means that iterative errors are far below grid
convergence errors.

The discussion of the results will be focused on the
following aspects:

Pressure on the cylinder

Limiting streamlines on the cylinder
Three-dimensional streamlines of the flow

Axial and transverse velocity fields at 3 planes in
space

Pressure on the cylinder

The calculated pressure coefficient on the cylinder for the
coarse, medium and fine grid show that the solution is
clearly grid dependent, especially close to the flat plate.
This is mainly due to the fact that there is no grid line at the
junction of the flat plate at the “trailing edge” of the
cylinder. This means that the position of the trailing edge
changes, hence the coarse grid geometry is quite different
from the medium grid geometry. Further away from the
plate, where the flow tends to become independent of the
co-ordinate running along the cylinder, the differences
between the medium and fine grid solution are quite small.
Still, the minimum pressure on the side of the cylinder and
the pressure recovery at the "trailing edge" change between
medium and fine grid. So, considering the present results, it
seems that for an accurate prediction of the pressure on the
cylinder at least 20 cells on half the cylinder circumference
have to be used.

Limiting streamlines

Next we consider the limiting streamlines on the cylinder,
plotted in Figure 4. The streamlines converge at the upper
(downstream) side of the cylinder, indicating the formation
of a vortex pair. The limiting streamlines obtained with the
medium and the fine grid are very similar. Especially
further away from the flat plate no significant differences
can be distinguished between the medium and fine grid
solution. Close to the flat plate the differences are
somewhat larger. This is as expected, considering the
numerical geometry in this region.

Three dimensional streamlines

Examining three-dimensional streamlines around the
cylinder shows that the solutions are evidently grid
dependent, but then it is well known that streamline tracing
is notoriously sensitive in this regard. At least encouraging
is that the solutions converge in the sense that the
differences between fine and medium grid are much
smaller than between medium and coarse grid. Not
surprisingly, the streamlines close to the plate show the
most significant grid effect.

Figure 4: Limiting streamlines on the cylinder. Fine grid
solution.



The experiments by Pinard showed a flow pattern as
predicted by the fine grid calculation. The flow is locally
aligned with the cylinder as indicated by the fine grid
solution.

Axial and transverse velocity field

The numerical solutions of the axial and transverse velocity
field in three x-constant planes have been compared to the
experiments. It is found that for a fairly accurate prediction
of the flow field, i.e. considering the discretisation errors,
the medium grid is dense enough. Nevertheless, the fine
grid solution is smoother than the medium grid solution.
Also contour plots of the velocity component in the z-
direction show that a grid independent solution is not yet
obtained.

Figure 5 plots the axial velocity in plane P3 obtained from
the measurements by Pinard versus the calculated velocity
obtained with the finest grid density. Figure 6 plots the
corresponding vertical velocity component. The horizontal
velocity component is plotted for the calculations as well.
The numerical solution is interpolated on the measurement
points hence the solution is much smoother than indicated
by the figures. The agreement of the PARNASSOS results

Figure 5: Axial velocity field at plane P3. Left side of the
figure: measurements. Right side of the figure: fine grid
solution.
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Figure 6: Vertical velocity component at plane P3. Left
side of the figure: measurements. Right side of the
figure: fine grid solution.

with the experiments by Pinard is satisfactory, even if
certain discrepancies can be pointed out. But, first of all,
the incident boundary layer, as found by experiment, has a
quite different shape compared to the boundary layer
imposed in the calculations. It might be worthwhile
therefore to impose directly the experimental boundary
layer profile in order to exclude this source of
discrepancies. Secondly, the geometry of the cylinder has
been modified close the flat plate. This influences the
accuracy of the predicted axial velocity behind the cylinder
close to this region. Moreover, even the applied (modified)
geometry can be captured more accurately by locating a
grid line at the end of the cylinder shape close to the flat
plate. Finally, the experimental data are not perfectly
symmetric due to an a-symmetric geometry, experimental
inaccuracy or instationarity of the flow. Of course also the
influence of turbulence modelling may be important.

Hally has pointed out that the uncertainty in Pinard's
experimental data is substantial and he has even suggested
certain corrections. We have compared here with the
original experimental data, but it is true that the
correspondence between our and Hally's numerical results
is much better than the correspondence with the
measurements. Where Hally concludes that his code
possibly "somewhat underpredicts the recirculation in the
wake of the cylinder while it is embedded in the boundary
layer, but overpredicts it once the cylinder is fully clear of
the boundary layer", the same conclusion would hold for
our results as well.

3.2 Inclined partly rotating cylinder protruding
from a flat plate

As a first exercise to test the implementation of the surface
rotation boundary condition the inclined cylinder with
medium grid density is used. Part of the cylinder is rotating
from just after the junction to approximately 8 cylinder
diameters behind x-constant plane P4. The surface-to-free-
stream velocity ratio W, /U_ is equal to one. This is a

typical shaft rotation speed for ships.

The numerical solution contained non-physical flow
phenomena related to rotation of the cylinder. They were
caused by large discretisation errors due to the specific grid
topology. At the upper part of the cylinder cell sizes in
girthwise direction are much too large to capture the
gradient well in that region. Therefore we decided to
examine this numerical effect and the surface rotation
implementation by an even simpler test case, that is the
rotating cylinder aligned with the flow. This case clearly
shows these errors because the resulting flow has to be axi-
symmetric.

3.3 Flow aligned rotating cylinder

Menter's one equation turbulence model, including the
Dacles-Mariani correction, is used to solve the turbulent
viscosity. The Reynolds number, based on the cylinder
diameter (D=0.268 m) is equal to 2.9 x 10°. The surface-to-

free-stream velocity ratio is equal to W, /U_ =0.0and

1.45 . The maximum y" value for all cases is below 0.5 and
all solutions are converged until changes in the pressure
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Figure 7: Axial and transverse velocity field. C-grid.

coefficient and in the velocity components are below

5%10™. Scaled residuals have been reduced by at least
eight orders of magnitude. The maximum change in the

turbulent viscosity is below 1x107 times the laminar
viscosity.

At first, the C grid is used with an equidistant grid node
distribution on the cylinder circumference. Figure 7 plots
the axial and transverse velocity field approximately one
cylinder diameter downstream of the upstream end of the
rotating section. At the wall the surface speed is imposed
but the solution is not axi-symmetric due to the too large
cell sizes just above the cylinder. In girthwise direction the
stepsize is much too large to capture the gradients of the
boundary layer. Just above the cylinder the left and right
side of the domain are connected via the j=1 & k=11...24
line. The node j=1 & k=11 is located on the cylinder
surface. The node above, j=1 & k=12, is the first node
above the cylinder in which the continuity and momentum
equations are solved. This node is already far outside the
boundary layer and hence the effect of it is that nearly no
mass and momentum is transported in circumferential
direction in the region just above the cylinder.

Stretching the grid towards the top section of the cylinder
can solve this lack of resolution, however as a result a
Navier-Stokes grid runs from the top section of the cylinder
to the outer boundary. This increases the number of grid
cells significantly. We found that it was not possible, at
least not easy, to converge the flow solver with a cell size
in girthwise direction at the top section equal to the cell
size in wall normal direction. With a local cell size 100
times larger then the cell size in wall normal direction the
solution improves definitely but is still not exactly axi-
symmetric. But even for a properly stretched grid the
solution in the top section of the cylinder will be not very
accurate because of the discontinuous change of the
direction of the grid lines. Whether or not the discretisation
errors will then only spoil the solution locally is not clear in
advance.

A much better solution can be obtained with the O-grid
embedded in the C-grid. This gives an axi-symmetric
solution as plotted in Figure 8. Moreover the convergence
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Figure 8: Axial and transverse velocity field. O-grid
embedded in C-grid.

behaviour of the solver has improved significantly.

Now we have a more reliable solution, we can compare it
with the measurements. Figure 9 plots the transverse
velocity profiles in the bounder layer on the cylinder at

x/D=0.09, x/D=0.28, x/D =047,

x/D=0.76, x/D=1.23 and x/D =1.52 downstream
of the upstream end of the rotating section. The reference
length J is the local boundary layer thickness in the
absence of surface rotation. Symbols represent the
experiments by Lohmann and dotted, dashed and solid lines
represent our calculations. The calculations show a fairly
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Figure 9: Transverse velocity profiles in the boundary
layer on the rotating surface.
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Figure 10: Axial velocity profiles in the boundary layer
on the rotating surface.

good agreement with the measurements especially for the
transverse velocity field.

The axial velocity profiles plotted in Figure 10, are in less
good agreement with the measurements. The main
characteristics however are predicted well. The
experiments show a deceleration of the mean axial velocity
on the first part of the rotating section that is predicted as
well. Secondly the experiments show that the influence of
rotation shifts from the rotating surface to the outer
boundary region from the start of the rotating section to
downstream respectively. The same trend can be found in
the calculations. However the experiments show an
acceleration of the mean axial velocity on the second part
of the rotating section. This is not predicted by our
calculations and is most likely due to imperfections of
turbulence modelling. These numerical results are
consistent with numerical analysis reported by Aguilar and
Pierce [7]. The main discrepancy with the measurements
however, is caused by the incident boundary layer profile
that differs from the measured profile. In the calculations
only the boundary layer thickness is tuned with the
experiments.

In both figures some results of the grid refinement study are
plotted as well. Grid refinement in wall-normal direction
and grid coarsening in girthwise direction (not plotted)
show, as expected, no significant influence on the solution.
Also grid refinement in streamwise direction has no
influence on the predicted axial velocity field. The
predicted transverse velocity however is not yet grid
independent. It shows that just behind the discontinuous
change in the boundary condition (no-rotation to rotation),
the solution is still improving by grid refinement in
streamwise direction. However the solution 1.5 cylinder
diameters downstream is hardly influenced. This is similar
to numerical results presented at [5]: the effects may be
expected to remain local.

4 Conclusions and future work

The aim of this study is to investigate the possibility to
predict the wake of a shaft by PARNASSOS using the O-H

grid topology. The results show that, considering
discretisation errors, a fairly accurate prediction of the
wake can be obtained using 10 cells on half the shaft
circumference. The main features of the flow field are
predicted quite well and finer grids only lead to minor
changes in the flow field; it is mainly smoother. Of course,
for accurate predictions of details of the flow close to the
shaft, at least 20 cells on half the shaft circumference seem
to be necessary. Further confidence in the quality of the
results is obtained from the comparison with data obtained
with another numerical simulation code. The differences
found between measurements and computations might be
further elucidated by studying the influence of the inflow
boundary conditions.

For a non-covered, open shaft, the O-H grid topology is
inappropriate because it leads to large discretisation errors.
These errors only spoil the solution locally for the non-
rotating case because the flow is symmetric along the
vertical axis. But because the cylinder is not rotating and
hence the velocities are zero at the wall, it is expected that
even for a-symmetric inflow to the shaft the O-H grid
topology can give fairly accurate flow predictions. The
discretisation errors for the rotating case have been
investigated by predicting the flow on a flow aligned
rotating cylinder. It shows that this kind of flow can be
predicted much better by using an O-type of grid around
the cylinder embedded in a C-grid.

In the future we will use a better grid topology to predict
the flow around the inclined, partly rotating cylinder
properly. Combined with the present results this all leads to
grid topology and grid density guidelines to assure accurate
flow predictions of the wake field behind open-shaft stern
configurations.
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Hybrid RANSE-Potential Flow Approach to Damaged Ship in Seaways

Peter Woodburn', Paul Gallagherl, Luca Letizia'?

1. Basis of the Model

In the context of damaged stability regulations for
ships, the simulation of damaged ships is of interest.
So far, simulations for a damaged ship in seaways
were based typically on potential flow methods
assuming flat water surface in the damaged room or
some hydraulic bore form. We present here a hybrid
approach allowing more realistic simulations.

The coupled model consists of a 6 degree of freedom
(6DOF) ship dynamics model for the vessel motions,
coupled to a moving grid CFD model for the
floodwater dynamics. The ship dynamics program
calculates the position of the vessel under the action
of forces of the waves on the outside of the hull and
the floodwater inside the hull, and also calculates the
height of the water surface at the damage. The
position of the vessel and the height of the water
surface at the damage are passed to the CFD program.
The computational grid used in the CFD program
adapts to the vessel motions. The dynamics of the
floodwater and the loads on the vessel due to the
floodwater are calculated and passed back to the ship
dynamics model. All the relevant physics are
therefore simulated directly rather than through the
use of conventional empirical models. The two
programs run alternately, waiting between run periods
for the other program to complete its calculation at
each time step. The coupling is explicit, which places
restrictions on the maximum time step that may be
used to ensure stability. However, in practice other
factors in the CFD calculation restrict the time step to
smaller values than those required by the explicit
coupling.

1.1. Ship dynamics model NEREID

The ship dynamics program NEREID is a 6 degree of
freedom (6DOF) model, developed at WSA, building
on the theory behind the code CASSANDRA,
originally developed at the University of Strathclyde
Ship Stability Research Centre (SSRC) [1]. Like
CASSANDRA, NEREID also uses a 3D panel
method to calculate and integrate the hydrodynamic
pressure over the surface of the hull, taking into
account the slowly varying characteristics of the
forces and moments thus derived due to the change of
the mean underwater geometry of a ship during the
flooding process.

The dynamic model adopted takes into account
radiation damping by means of convolution integrals
and also features linearised viscous damping [3], non-
linear restoring forces and moments and second order
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wave forcing terms. The number of degrees of
freedom of the vessel can be limited by restraining
displacements and/or rotations in any chosen
direction. The hydrodynamic coefficients and first
order wave forces are determined beforehand by
means of a linear diffraction/radiation code (AQWA-
LINE) and generally stay constant throughout the
simulation. If the need arises, the variation of these
terms with the vessel low frequency motion - heel,
trim and draught - can be allowed, although usually
only large variations of attitude of a typical RoRo
vessel induce a significant change of the first order
wave excitation and hydrodynamic coefficients.

The non-linear buoyancy terms are an essential
feature of a model, which tries to deal with substantial
changes of a wvessel’s displacement during a
simulation. These terms are calculated by integrating
the instantancous underwater volume of the hull, up
to the mean water line. This approach is consistent
with the assumptions made for the evaluation of the
first order wave forces. Second order wave drift
forces vary slowly in time and both first and second
order excitation take into account the effect of the
vessel’s drift motion on encountered frequency.

Lastly, the wave elevation at the damage is passed to
the CFD code to provide the appropriate external
water elevation, modified for wave diffraction effects
as described later.

1.2. CFD Model

The extent of the domain used in the CFD calculation
is shown in Fig.1, superimposed for the purposes of
illustration on a simple representation of the vessel.
The domain consists of all floodable internal
compartments, together with an area of sea
immediately adjacent to the damage. At the damage,
the external free surface is assumed to behave as a
simple water column. Its height follows the external
wave elevation time history, adjusted for
reflection/diffraction effects. The wave profile
imposed can be monochromatic or irregular, and,
importantly, the same wave elevation time history can
be used for a series of tests which allows the effect of
different parameters to be tested under exactly the
same wave conditions. For this research, CFD model
of choice was the CFX4 code.

To commence the simulation process, the ship
dynamics code is started from an approximate
equilibrium position and the wave amplitude is
increased linearly over the first 20s. At 60s the



damage is ‘opened’ and the CFD code is started,
allowing flooding simulation to begin.

As the simulation proceeds, fluid pressures calculated
by the CFD model acting on the internal structure are
integrated to provide the forces and moments due to
internal floodwater movement.

The loads and displacements are transferred between
the programs, and the simulation is continued until
either a specified time is reached, or the vessel
capsizes. Motions in all 6 D.O.F., the wave profile,
and the floodwater distribution within the vessel are
recorded at each time step, which provides a large
volume of data for each individual case. These
comprehensive data sets provide much data for
investigation of the physics underlying the dynamics
and capsize.

The purpose of modelling the region of sea outside
the damage is not to provide an exact representation
of the water surface within this region. Rather, it is to
provide the correct height of water at the damage as a
boundary condition for the flooding of the vessel.
This approach is taken because the computational
cost of simulating the entire sea surface around the
vessel is both prohibitively expensive and inefficient
when the requirement is only to provide the boundary
conditions for the flooding process. The strategy for
achieving this is to attain a target height of water at a
short distance outside the damage (a distance at which
the influence of the damage on the water surface is
negligible). This target water height is provided by
the ship dynamics program (based on the relative
motion for this location) and includes the effects of
wave reflection from the hull. Some local effects due
to the hull and flooding through the damage are
calculated as near field deflections of this target
height as part of the CFD solution. This means that a
local depression of the water surface through the
damage as water flows into the vessel is simulated.

Fig.2 shows a view of the vehicle deck in the CFD
model looking aft at one instant during a flooding
simulation. The forward bulkhead of the vehicle deck

has been removed. At this time the whole vehicle
deck was submerged beneath the floodwater, and the
waves caused by water flooding onto the deck can be
seen. The damage and the external water surface
outside the damage are clear. The vessel is heeled
towards the damage, though the movement of the
floodwater means that it is deeper on the side of the
deck furthest from the damage at this instant.

There are some aspects of wave dynamics, such as
the external orbital motions of the water particles,
which are ignored in this approach. It is assumed
that these effects are secondary, since the presence
of the wvessel hull reduces the horizontal
components of these motions significantly. Further
work is being carried out to verify this but early
results described below show support for this
assumption.

2. Testing the Numerical Model

The two models used to form the coupled model,
NEREID and CFX4, have individually undergone
extensive testing and validation [2]. Indeed, this
was one of the motivations for developing a
coupled model rather than a single, dedicated
model, in that only the specific coupled aspects of
the model would require testing.

Tests of the numerical model were carried out for a
series of cases which isolated particular components
of the overall dynamic behaviour, with the key
objective being to ensure that the model was
consistent with all the component physics, as well as
allowing rapid identification of errors. The particular
scenarios studied included:

e  Sloshing at known frequencies and amplitudes in
closed tanks.

e Roll-decay, regular and irregular wave behaviour
for an intact vessel.

e Roll decay tests of coupled ship dynamics —
closed tank sloshing models.

Fig.1. A simplified view of the domain and grid used
in the CFD calculation superimposed on a
representation of the vessel. In this case only the
vehicle deck is open to flooding through the damage.

Fig.2. View of the vehicle deck in the CFD model looking
aft at one instant during a simulation. The forward
bulkhead of the vehicle deck has been removed. At this
time the whole vehicle deck was submerged beneath the
floodwater.



e Regular wave forcing of vessels with closed
tanks.

e Regular and irregular wave flooding into
compartments in vessels fixed in space.

In all these cases, the numerical model demonstrated
consistency with the experimental data [2,4,5].

2.1. Sloshing simulations

Simulation of the dynamics of the floodwater on
deck can be isolated in simulations of sloshing in a
closed tank. For these tests, the geometrical data
and the test conditions were similar to those
reported by Armenio and La Rocca [4,5].

Forced oscillation tests, which tested the CFD
modeling of floodwater flowing around a moving
tank, were carried out at a frequency of 3 rads™.
The non-dimensional wave height at the sides,
(with respect to the tank breadth) in the simulation
was 0.62, which compared favorably with that
measured by Armenio and La Rocca, which was in
the range 0.65-0.7.

The coupled model was applied to the case of a
model fishing vessel with a large closed container,
partially filled with water, on board [5]. The vessel
was initially displaced from its equilibrium position
in roll, and the resulting roll motion was compared
with that observed in the experiments. The
computed results for roll natural periods (in
seconds) compared with those derived from
experiment are shown in Table 1.

Table 1: Comparison of roll periods (s) in roll
decay tests.

Depth/Breadth | Present | Armenio et al.
0.15 1.90s | 1.84s
0.10 2.05s | 198s

Fig.3 shows the forced roll response from the same
fishing vessel with a partially filled tank when
subjected to a range of forcing frequencies (@) in
both experimental and numerical tests. The external
wave slope was restricted to 1/100 so as to give
results which were as close to linear as possible.

The results from the numerical model compared
reasonably well with the experimental data,
particularly given the need to estimate some of the
key hydrodynamic coefficients in the roll equation
of motion used. The main differences appeared
around the peak of the response in roll, where
damping, and in particular the degree of additional
viscous damping, is a critical parameter, and was
not available for this vessel.

Roll amplitude (degrees)
(o]

Omega

Fig.3: Roll amplitude versus frequency for ship
model for d/B = 0.25; @: Present results, line:
Armenio and La Rocca experimental results.

2.2. Ship fixed flooding tests 1

Simulations were carried out of a damaged Ro-Ro
in which the ship was held fixed and subjected to
flooding through a damage opening, in a repetition
of an experiment carried out at the University of
Strathclyde [2]. The prescribed water elevation time
history was  derived directly from the
experimentally measured water elevations outside
the damage location. A case with notional values of
significant wave height of 4m and zero crossing
period of 6.25s was chosen.

The experimental values of the mass of floodwater
were estimated using the water heights within the
Ro-Ro compartment measured using four wave
probes. Fig.4 shows a comparison of the computed
and experimentally measured time histories for the
mass of floodwater within the vessel. Extrapolation
of the wave probe measurement of water height to
obtain the overall volume of floodwater in the
experiment gives a noisy graph with unfeasibly
high inflow/outflow rates, but does allow the
average values of the mass of floodwater to be
compared.
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Fig4. Fixed ship flooding: Comparison of
computed and experimentally measured time
histories. Upper, approximately steady line:
Simulation; Lower, noisy line: experiments.



Simulation

Experiment

Fig.5: Comparison of water surface profiles.
2.2. Ship fixed flooding tests 2

Flooding tests and particle image velocimetry (PIV)
measurements of floodwater dynamics were carried
out as part of the NEREUS project. As can be seen
in Fig.5, during the flooding cycle the water surface
profiles in the simulation compare well with those
photographed in the experiments.

3. Sensitivity Studies

Following model testing, a number of factors
thought likely to have a significant effect on the
flooding rate, final mass of floodwater on deck, or
capsize were tested in a parametric sensitivity
study. Since there were few detailed experimental
data to compare each of these cases with directly
this was not intended to be a validation exercise.
However, the results obtained were broadly in line
with expectations based on previous experience.
The results in some cases were strongly dependent
on the relationship between several of the key
parameters, but it is by no means expected that
these dependencies will be universal. Rather, the
approach is to identify those factors having a
significant effect on the flooding and capsize so that
their effect within a larger parameter space can be
identified in further research. The parameters
studied were:

e Number of degrees of freedom

e Heading

e Significant wave height (Hs) and zero crossing
period (Tz).

KG

Damage size and geometry

Vehicles on deck

Inclusion of side casings

Inclusion of lower compartments, both full
width and wing-tanks

e Cross-flooding

e Scale

A series of experiments carried out previously at
the University of Strathclyde provided the majority
of the data on floodwater behaviour for this project
[2]. The model used for these tests was a 1:42 scale
model of a RoRo vessel, used extensively in
previous model testing. The main particulars of
which are shown in Table 2.

In the tests used in the present study, the vehicle
deck was open to the sea in all damage

configurations. Some compartments below the
bulkhead deck were either considered filled with
floodwater, but not in communication with the sea
(in order to achieve the freeboard desired), or were
initially empty and allowed to fill through the
damage and remain in communication with the
vehicle deck. The damage is located amidships and
has the form of a trapezoidal opening, according to
a 100% SOLAS damage opening.

The model was tested in irregular beams seas
(JONSWAP Spectrum; y = 3.3) with the damaged
side exposed to the incoming waves. The
experimental rig is constructed such that it is
possible to constrain one or more degrees of
freedom, or hold the vessel such that is was fixed.

Table 2: Main particulars of the vessel

Dimensions Full-Scale | Model
Length, Lgp 131.0m 3117mm
Breadth, B 26.0m 619mm
Draught, T 6.lm 145mm
Initial 12200 tons | 164kg
Displacement

A total of 35 simulations were carried out in the
present study, each with typical duration of 12-20
minutes of real time at full scale. The same wave
realisation (H&=4.0m, T,=6.25s) at the origin was
used for all the cases, to allow direct comparison of
the effects of each parameter. The wave elevation
time history experienced by the vessel is shown in
Fig.6, together with the roll and heave motion time
histories for the reference case in Fig.7(a) and (b)
and the corresponding time history for the mass of
floodwater on deck is shown in Fig.7(c). In this
case, only the vehicle deck was open to flooding,
though a full width lower compartment was
assumed fully flooded (though not in
communication with the deck) with 4400 tons of
floodwater to give a damaged freeboard of 0.2m
before flooding of the vehicle deck started. In this
case the undamaged vessel KG was 10m. With a
KG of 10m, the undamaged GM was 4m, which
means the undamaged vessel is stiffer than is usual
in this type of vessel. This stiffness is reflected in
some of the behaviour of the vessel and the effects
of changing some parameters in the sensitivity
study.

The effect of the floodwater on the motion of the
vessel can be seen clearly in Fig.7. The vessel sank
lower in the water and the amplitude of the roll
motions decreased as the mass of floodwater on
deck increased, and the vessel also acquired a
steady loll away from the damage of approximately
3° after about 500s.
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Fig.7(b): Time history of heave motion.

For the cases which had been covered by previous
experimental systematic studies, principally the first
four in the table above, the final volumes of
floodwater predicted were in line with those
measured (taking into account both the likely
experimental error bounds and differences in model
set up). This provides confidence in the
compatibility of the numerical and experimental
results. No experimental data were available for
comparison with the remaining factors. However,
there was a consistency in the results achieved
which allowed plausible explanations of the
observed results based on sound principles of
dynamics and fluid mechanics. The principal results
obtained from this study were:

1. A two-stage pattern of flooding was identified,
consisting of an initial flooding phase followed by a
phase during which the mass of floodwater on deck
remained approximately steady. During this second
‘steady’ phase, inflow and outflow continued, but
were approximately equal such that the rate of
change of the depth of water on deck with time was
low.

2. All the parameters tested caused significant
changes to the initial flooding rate.

Fig.7 (c): Time history of floodwater.

3. Parameters causing the greatest changes to the
‘steady’ mass of water on deck were KG, Hs, Tz,
and flooding of lower compartments.

4. The vessel’s KG was shown to have a
significant effect on the dynamic roll response of
the vessel, such that small changes in KG caused
significant changes in both the initial flooding rate
and the final ‘steady’ mass of water on deck.
Significantly, in the cases tested here, vessels with
lower KG accumulated greater volumes of water on
deck.

5. The final mass of floodwater was dependent on
both Hs and Tz — the dependence of the mass of
floodwater on Tz was an important indication of the
importance of the vessel dynamics on the mass of
floodwater on deck.

6. The width and geometry of the damage
opening had a strong effect on the initial flooding
rate, but not on the final mass of water on deck.

7. The presence of vehicles in the form of fixed
obstructions on the vehicle deck caused both the
initial flooding rate and the final ‘steady’ mass of
floodwater to be reduced. The presence of
obstructions reduced the rate at which water on
deck near the damage could flow across the deck
away from the damage, thereby reducing the overall



flooding rate, while the presence of the ‘fixed’
vehicles reduced the area available for flooding.

8. It was demonstrated that all compartments
open to flooding should be included in the flooding
simulation domain, the modelling of flooded lower
compartments as fixed ‘closed’ masses of water
was not a good assumption when communication
through large openings was possible.

9. Side casings, while reducing the overall mass
of floodwater on deck, allowed the vessel to
continue to respond dynamically.

10. The effect of scale on flooding processes was
not found to be significant. Apart from the need to
treat overall roll damping with great care, this
research indicates that reduced scale tank testing is
viable

11. Repeat testing with cross-flooding ducts of
different cross-sectional areas allowed the effects of
this parameter on the vessel’s ability to survive to
be quantified. Concerning the overall dynamics of
the problem, two points become clear. Firstly that
when capsize occurred, it was rapid compared with
the length of time allowed for cross-flooding which
is 1200s, and at no time did the vessel reach an
equilibrium steady position. In each case
insufficient equalisation had occurred to prevent
capsize. However, there remained a cross-sectional
area above which capsize was prevented. This arca
was sufficiently large that equalisation could occur
within 100-150s. The second point is that the
continuing motions of the vessel prevent and
reverse the cross-flow of floodwater in the cross-
flooding duct. While the provision may be adequate
in a quasi-equilibrium sense, the continuing
motions may disrupt the flow to such an extent that
little equalisation takes place in practice.

Fig.9: Section through the vehicle deck and lower
compartments looking forward, showing the vessel
position and water surface at one instant during the
simulation.
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1 Introduction

During ship operations in confined waters or in following seas, safety and functionality of the ship
depend on the maneuvering performance. The path of the ship strongly depends on the fluid flow,
wind field and the resulting forces acting on the hull, rudder and propeller or other maneuvering
devices from the fluid flow. Viscous and turbulent effects and the interaction between ship and
flow play an important roll here. The complexity of the problem requires a method, which can
predict the hydrodynamic forces and ship motion accurately. So far, methods developed to predict
the maneuvering motion of a ship are mostly based on empirical relations, theoretical or numerical
methods, which ignore the viscous effect of the water. Due to the importance of viscosity during
maneuvering, three dimensional CFD simulation solving RANS Equations appeared in the 1990s
to improve the accuracy of the prediction of hydrodynamic coefficients[1-2]. The computations
were mostly limited to steady flow computation around a ship with a constant inflow angle. By the
late 1990s, RANSE results with free surface deformation and the generation of the waves[3-5] have
been shown. The simulation of ship maneuvering considering the interaction of the maneuvering
motion of the ship and the turbulent free surface flow around the ship has been seldom presented.
In previous NUTTSs, we have presented a numerical method, which considers the viscous and
turbulent effect, free surface deformation and the interaction of fluid flow and flow-induced ship
motion. The ship motion module follows rigid body dynamics for six degrees of freedom and has
been integrated into the commercial package *Comet’ for fluid flow. The detailed description of the
method and computational results compared to the experiments have been presented in previous
NUTTSs[6-7].

In this paper, we will focus on the application of this method in ship maneuvering simulation. The
propeller is simulated by applying a body force on a layer of cells in the propeller plane[8]. The



rudder is modeled geometrically and a random rudder angle can be set using the technique of the
sliding interfaces. Three type of computations related to ship maneuvers are under way in our
numerical tank: ship running in oblique waves, turning circle and Z-maneuvers. Some preliminary
results will be presented in this paper.

2 Numerical Method

The finite volume method incorporated in the ”Comet” code is used here to simulate incompress-
ible viscous flows with free surface. The conservation equations for mass, momentum, and scalar
quantities (e.g. energy or chemical species) are solved in their integral from. When the grid is mov-
ing, the so-called space conservation law (SCL) has to be satisfied. Interface-capturing method
and High-Resolution Interface Capturing (HRIC) [3] scheme have been used to simulate the free-
surface effects. In addition to the conservation equations for mass and momentum, a transport
equation for void fraction of the liquid phase ¢ has been introduced. Due to the limit of space,
these basic equations will not be introduced here; for more detail, see [3,8-9].

The motions of the rigid body are computed following the dynamics of rigid bodies, which will
not be repeated here. The forces and moments acting on a floating body are obtained from the fluid
flow around the body. However, the flow itself is influenced by the body motion and both problems
have to be considered simultaneously. For the prediction of the body motion, a predictor-corrector
method which can be easily coupled with the iterative procedure for flow prediction (SIMPLE-
algorithm) has been used here. For more details about the integration scheme, see [5].

3 Numerical Grid and Boundary Conditions

The block of surface-fitted grid surrounding the ship has a shape of a rectangular block and is made
of a finite number of control volumes, which can have more than 6 faces. All variables are stored at
the center of each control volume. Structured as well as unstructured grids with multi-blocks can
be employed. As mentioned before, sliding interfaces, which allow a random rudder angle, have
been taken between the block containing the rudder and the blocks surrounding the rudder block.
Numerical beaches have been generated at some boundaries of the domain, which are far from the
ship, to avoid the unexpected reflection of the waves at the boundaries. For the moderate roll, pitch
and heave motions of the ship, a block around the ship (including the block with the rudder) can
be moved together with the ship and the grid far way from the ship is kept unchanged; the block
in between has to be smoothed or regenerated in three dimensions. For large yaw motion(e.g. in
the case of turning circle), either the whole computational domain can be moved with the ship or
additional body forces corresponding to the rotation should be applied to the whole domain instead
of grid moving.

Great care should be taken to set boundary conditions correctly since the fluid could be flowing
in or out from the same border of the domain at different time instances during ship maneuvering.
Here a pressure boundary condition has been combined with the inlet boundary condition at the
corresponding inflow and outflow parts of the border. No-slip wall condition has been applied to
the ship hull as well as the surface of the rudder. At the bottom of the domain, slip wall condition
or symmetry condition can be applied if it doesn’t exist physically. At the top of the domain, static
air pressure can be applied or other corresponding conditions can be set up if the wind is consid-
ered.

4 Results and Discussions
4.1 Ship motions in oblique waves

One of the first test cases in the numerical tank is the computation of the ship motions in oblique
waves. Waves are generated by specifying the velocities according to the linear wave theory at the
corresponding inlet boundaries. The angle between waves propagation direction and the ship run-
ning direction is 170 degree. The heave, pitch and roll motions of the ship are set free; the surge,
sway and yaw motions are kept fixed since the rudder/propeller is not modeled in this case. Figure



1 shows the computed wave pattern and the resulted motions of the ship in the oblique waves at
F,, = 0.18. What is to be mentioned, is that the time averaged roll angle is not zero degrees due to
the effect of the oblique waves.
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Fig. 1 Wave pattern and motions of the Wigley ship (F,, = 0.18) in oblique waves (170°).

4.2 Turning circle maneuver

A captured turning circle test in calm water has been carried out in the numerical tank. The Wigley
hull has been considered first due to its simple geometry. Boundary conditions are rather complex
in this case. A combination of inlet and pressure boundary conditions is applied to the boundaries
ahead of the ship and at the inner side of the turning circle. At the outer boundary of the turn-
ing circle and the boundary behind the ship, pressure boundary condition is employed. The grid
around the ship is moved for the moderate motions(heave, pitch and roll) of the ship; for the large
yaw motion during maneuvers and the motion due to ship’s forward speed (F,, = 0.29, ' = 0.4),
the corresponding body forces or field velocities are applied to the whole computational domain.
Rudder is not modeled in this case, therefore the yaw motion is forced to follow the course of
turning circle shown in Fig. 2(b). The computed wave pattern of the Wigley ship at a certain time
instance is shown in Fig. 2(a).

Besides the Wigley ship, the turning circle has also been computed for the container ship ’CBOX’.
The Rudder of ’CBOX’ is geometrically modeled and can be turn to any desired rudder angle.
The propeller is modeled by a body force model[10]. The ship is computed in model scale at the
nondimensional yaw rate ' = 0.6 and F,, = 0.23 and expected to turn dramatically when the max-
imum ruder angel is set. Some preliminary results are shown in Fig. 3. The pressure distribution
shown in Fig. 3(a) becomes asymmetric on the ship hull during the turning circle maneuvers. The
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Fig. 2 Turning circle maneuver of the Wigley ship (r' = 0.4).

computed wave pattern is presented in Fig. 3(b) giving a reasonable impression. The computation
is running currently; more detailed results will be presented later.
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Fig. 3 Turning circle maneuver of the ship CBOX (r’ = 0.6).

4.3 Z-maneuver

Using the same grid system as those employed to simulate ship motions in oblique waves and the
turning circle maneuver, 25 degree Z-maneuver with the Wigley hull at average Froude number
0.18 has also been performed in the numerical tank. The resulting wave pattern at a selected time
instance and the forced course and yaw angle of the ship are shown in Fig. 4.

5 Conclusion

The instaneous interaction between viscous free surface flow and flow-induced body motion has
been computed using the finite volume method. Rigid body dynamics for six degrees of freedom
has been integrated to the fluid solver to compute the body motion. The method has been tested
and demonstated for ship motions in waves etc. in previous NuTTSs, showing good agreement
with the experiment. Further application on maneuvring motion of a self-propelled ship has been
intended in this paper. The rudder has been modeled geometrically in addition to the ship hull. The
propeller has been simulated by a body force model. Some preliminay results about ship motions
in oblique waves, turning circle maneuver and Z-maneuver have been presented. The computa-
tions will be futher analyzed and compared with the experiment in the future.
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