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Comparison between SPH and VOF Free Surface Flow Simulation

Y. Andrillon, M. Doring, B. Alessandrini, P. Ferrant
Laboratoire de Mécanique des Fluides
Ecole Centrale de Nantes-CNRS
yann.andrillon@ec-nantes. fr

1 Introduction

The free surface flow simulation sees its limits unceasingly pushed further. One of the last great difficulty
in this domain has been the problem of reconnections of interfaces, occurring in flows with breaking waves.
Within the last ten years, with the advent of the free surface capturing methods initiated by Hirt & Nicholls[6]
the numerical solution of these flows has become possible. Nevertheless, an other approach has been recently
introduced to simulate this kind of flow. This approach, named 'Smooth Particles Hydrodynamics”, comes from
the astrophysics. Monaghan[9] first applied it to free surface flows. This method is really different from both free
surface capturing and free surface tracking methods, indeed it is an meshless and lagrangian approach. Thus it
is more versatile in the simulation of complex flows. During the NuTT’s 01, Tulin[4] showed its robustness and
accuracy. In this paper we present a comparison between a ”"Volume Of Fluid” method using the Fully Coupled
technique and the "SPH” method. The flow case investigated in this comparative study is the classical dam
breaking problem.

2 SPH Solver

The SPH method belongs to a new type of numerical methods : meshfree methods. In this kind of methods
a set of interpolating points is chosen in the medium. This points are associated with an interaction function
(Kernel function) which is used to discretise the partial differential operators. In the case of free surface Hows,
the equations to be solved are Navier-Stokes equations (1, 2) and an equation of state for the pressure called
Tait’s equation (3). SPH is usually a compressible lagrangian method, but if Mach number remains below 0.1
during the whole simulation, the flow can be regarded as incompressible.
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To discretise previous equations, variables are convoluted with the kernel function which tends to a Dirac
distribution. In this paper the chosen kernel is the cubic spline kernel introduced by Monaghan :
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with C a constant set to ensure [ W = 1.



Then the values of a function and its gradient can be determined in the [ollowing way :
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This kind of discretisation is second order in space, and to  Fi1G. 1: Cubic Spline Kernel centered on grey
enhance the numerical performance, such as conservation of particle
angular momentum, the formulae are symmetrized following
Monaghan[9] :
in the mass equation and in the momentum equation :
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Then the following numerical scheme can be deduced, where i-subscripted variables correspond to ith par-
ticle
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This ordinary differential equation system can be integrated in time by schemes such as Runge-Kutta,
Leap-Frog, Predictor-Corrector to ensure second order convergence in time.

3 Free Surface Capturing Solver

The second solver involved in this comparative study, employs the "Volume Of Fluid’ method which has been
investigated by several authors as Ubbink[12], Perié[10, 3] and Didier(5]. Briefly, this method has for principle
to calculate the flow in the two fluids (air and water), considered as one single fluid whose physical properties
vary across the interface. The physical characteristics p and p are determined using the value of an additional
variable (c) the volume fraction, given in equation (12). The value of (¢) is such that, if a cell is filled with
fluid 1, (c=0), and if it is filled with fluid 2, (¢=1). The behaviour of the free surface is calculated through an
additional advection equation (13). Consequently, the computation is performed on one a large fixed grid, which
is one of the advantages of the method.
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The flow is calculated using the incompressible Navier-Stokes equations which drive the motion of the Auid.
In order to discretise the system, their dimensionless conservative form, as presented below (14, 15), is employed
using a fully implicit finite volume method. To ensure the accuracy of the solver, the integrals are approximated
to second order and the flux approximation is evaluated with a deferred correction. One critical issue of the VOF
method is the choice of the differencing schemes employed to solve the convective term of the volume fraction
equation. Low order schemes like central differencing schemes are not suitable because bounded solution is not
ensured. And other differencing schemes like first-order upwind scheme are too diffusive, smear the interface




and introduce artificial mixing of the two fluids over a wide region. Therefore high order mixing schemes have
been designed for this application such as the CICSAM scheme developed by Ubbink([12]. It preserves a sharp
transition zone with a checked boundedness criterion.
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As indicated before the system is built through a Fully Coupled method. Numerically this technique presents
the advantage of accelerating the velocity-pressure coupling and fasten the convergence. More precisely, the Rhie
and Chow(11] velocity flux reconstruction is applied to the conservation of momentum Navier-Stokes equation
to obtain a single system using the pressure, the velocity and an added variable the second velocity. The solution
is calculated with an iterative algorithm BiCGSTAB-w using an incomplete LU decomposition preconditionner.

The VOF solver capabilities have been checked on different applications [1, 2], such as the flow in a sloshing
tank or the simulation of a Rayleigh-Taylor instability.

4 Results
4.1 Dam breaking

To compare the two methods usual test case of the dam breaking has been chosen. This test case is typically
employed to demonstrate the ability of codes to compute transient fluid flow with breaking free surface. The
corresponding experiment has been made by Martin et Moyce[7], and more recently by Koshizuka[8]. The
dimension of the initial water column is a = 0.146 m large and 2a = 0.292 m high, and the tank is 0.584 m
large. The flow, at first stage, presents the collapse of the column with a tongue of fluid propagating towards the
opposite wall of the tank. Then the fluid strikes the right vertical wall, and goes up along it. During the next
stage a breaking wave moves backward, then the flow is damped as in a sloshing tank. The data available from
the experiment consists in pictures which show the time evolution of the breaking water wave, and secondary
data such as the position of the wave front on the vertical and horizontal walls.
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F1c. 3: water position on the left vertical wall F1G. 4: water position on the horizontal wall

The comparisons between numerics and experiments are presented in figures 3 and 4. If the simulated position
on the left vertical wall is in good agreement with the experimental one, the position of the wave front on the
horizontal wall is less accurate. The *VOE” and the "SPH” show the same advance on the experimental result.



Indeed this difference could be explained by the slip condition used on the wall. This difference doesn’t appear
on the vertical wall , due to a lower speed. Another explanation is linked to the capturing of the interface. On
the horizontal wall the tongue of water is so thin that the caleulation in the VOF method of the iso-value ¢ = 0.5
position is dubious. And, for the same reason it is difficult to find precisely the interface in the distribution of
particles in the "SPH” method.
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FIG. 5: water position on the right vertical wall F1G. 6: position of the wave breaking

On the last plots, two other comparisons between "SPH” and "VOF” results are showed. In figure 5 the
temporal evolution of the leading edge on the right vertical wall is followed. Stronger differences appear between
the different configurations of grid, and of numbers of particles respectively. We suppose that the origin of these
differences can be explained in the same manner as for the horizontal front wave evolution. The differences
are increased by the thinness of the water on the wall. The fourth characteristic of the flow studied is the
speed of the backward wave. In this case the two set of numerical data are similar. Unfortunately, there is no
experimental data to validate this result.

(a) Experiments

(b) VOF simulation

(c) SPH simulation

F1G. 7: free surface at t =02 st =04st=06sandt=08s



As it has been written before, different pictures of the flow are available, and figures 7(a), 7(a) and 7(a)
present the free surface profiles for the experiment and for the two numerical methods. globally, the free surface
given by the numerical simulations are close to the experimental one, nevertheless the size of the bubble created
in the SPH calculation is underestimated. But, one has to remember that the SPH code is a one single fluid
solver and consequently the influence of the second fluid is neglected. However, it has been remarked that by
increasing the number of particles the size of the bubble is more and more accurate. More simulations are thus
necessary to explain the origin of this difference.

4.2 Dam breaking with obstacle

This second test case uses the same geometry defined before, with the addition of an obstacle. This results
in a more complex flow. In practice, after the leading edge reaches the obstacle a tongue of fluid continues its
movement towards the opposite wall, and the strike of the fluid on the wall is more violent. In this application,
during the first 0.4 s the flow of the different numerical simulations is in good concordance with the experimental
data. After 0.5 s, the free surface evolution of the SPH is less accurate than the VOF one. Practically, the tongue
of water connecting the obstacle and the right wall falls down abnormally. The explanation of this phenomena
is the same as for the under estimating of the bubble in the previous application. Figure 9(a) gives the pressure
field in both air and water. The difference of pressure between the two sides of the tongue of water hitting the
right wall is clearly depicted, confirms that the influence of air on the water flows cannot be neglected, which
explains the difference between VOF and SPH results.

(a) VOF simulation (b) SPH simulation

F1G. 8: Free surface at t = 0.2 s

(a) VOF simulation (b) SPH simulation

Fi1G. 9: Free surface at t = 0.35 s
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Conclusion

The comparisons given in this paper demonstrate the ability of the SPH method to simulate complex free

surface flows, and the accuracy of the SPH results against experimental and VOF simulation, including local
flow characteristics such as the position of the leading edge on the wall. However, as in the SPH simulation
the influence of the second fluid is neglected, some details flow are inaccurately predicted such as the fow with
fluid 2 confined in a bubble. Then the future work is to consider the second fluid in the SPH method and to
validate the different codes on other applications. In the long term, we plan to evolve the different codes to the
3D applications.
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An Experimental Study on Water Shipping

Marco Barcellona, Marilena Greco, Eric Pequinor and Maurizio Landrini

INSEAN, The lralian Ship Model Basin, Roma, Italy. maulan@ waves.insean.it

Introduction

Shipping of water on ship deck and related loads represents an
important concern for the safety, and should be taken into ac-
count even at the design stage. Despite this tact a full knowledge
about this phenomenon is still far to be achieved. In particular,
the relationships between water shipping severity, geometry and
motion of the ship and sea-state paramelers are not yet under-
stood.

In this paper, the water on deck caused on a restrained ship
model in head waves is studied experimentally. These conditions
are relevant, for instance, for FPSOs, which are ships operated
most of the time as oil platforms, without forward motion.

Three geometries have been considered to investigate the the
role of the bow shape, for several incoming wave steepness. The
models have been equipped with transparent-material deck and
the water shipping is studied by image analysis. In two cases, the
pressure field on the deck has been measured. Finally, impact
loads on a vertical wall to mimic a deck structure have been
measured.

Experimental set-up

The experiments have been performed in the towing tank No.
2 at INSEAN, (220 m long, 9 m wide and 3.6 m deep). The
geometrical parameters and the incident-wave conditions have
been chosen by taking into account information from occurred
FPSOs water-on-deck accidents and their usual operational con-
ditions (¢f. also [2]).

The adopted ship models are shown in figure 1.

Fig. 1: Side view of the used ship models: Esso Osaka (top photo),
cireular bow (left-bottom drawing) and elliptical bow (right-bottom
drawing).

The first model (top picture) is a Esso Osaka ship model (1:70
scale, length L >~ 4.44 m, D/L ~ 0.064, B/L = 0.17). Since
the model is restrained from oscillating during the experiments,
to handle realistic heights of water relative to the deck for repre-
sentative design condition, the upper portion of the bow has been

modified and the freeboard reduced 1o f/L =~ 0.015. The ship
bow has a conventional bulb, but this is likely to be not relevant
for water shipping (¢f. i.e. [1]).

The other two models have main geometric parameters sim-
ilar to the first model (L ~ 4 m, D/L ~ 0.07, B/L ~ 0.17
and f/L = 0.016). To simplify future numerical computations,
simple barge-shape geometries have been used with rectangu-
lar cross section. Actually, to prevent possible vortex shedding
phenomena, the corners have been rounded with a radius of cur-
vatre /L = 0.02. The bows are, respectively, circular (left)
with radius /B = 0.5 and elliptical (right) with large half-axis
equal to B /2 and ratio between axes about 3.8. For all the mod-
els, a Plexiglas vertical wall has been located at d/L = 0.13
from forward perpendicular.

The incident waves are obtained by wave focusing. In partic-
ular, by a linear decrease of the wavemaker frequency to obtain
a train of waves with increasing phase speed. This leads to the
focusing of the generated waves in a point coinciding, in the cho-
sen set up, with the forward perpendicular of the models. The
resulting wave packet is characterized by central wave peak, pre-
ceded and followed by two smaller peaks. The wave generation
process has been tuned to obtain a single water-shipping event as
result of the interaction of the hull model with the largest wave
peak. This is similar to the real case, where the phenomenon,
caused by an irregular sea-state, is usually recorded as a single
or (at most) as a few events. In our experiments, each wave
packet is characterized by an identical amplitude a for all the
generated wave components. A wave-steepness parameter ke.a
is defined for the wave packet, where @ = H/2 is the wave am-
plitude and k. is the wavenumber related to the mean frequency
fe in the spectrum, kept fixed together with the frequency band-
width A f during the tests, and respectively equal to 0.6 Hz
and 0.4 Hz. The characteristic wavelength can be defined as
Ae = 27 /ke = 4.33 m ~ O(L). In the wave packet, the short-
est and the longest wave components correspond to =~ -5 and
o = 2-6L, respectively. The wave steepness k.a has been var-
ied between 0-125 and 0-25.

The tank dimensions, the scale of the experiment and the use
of wave packets ensure that the tests reproduce water-on-deck
casualties in deep and open waters.

Video images have been obtained by using color and black-
white cameras with a frame rate equal to 25 and 30 Hz, respec-
tively, to get side and top views of the phenomenon. A series
of piezoelectric pressure gauges, figure 2, have been distributed
on a regular squared-cell grid (see figure 3, circular bow in the
top and elliptical bow in the bottom). In this way the pressure
evolution along the deck during each event has been recorded.
Actually, only ten transducers were available and each test con-
dition has been repeated twelve times to give the complete map
of the pressure distribution on the deck. Clearly, this procedure
relies on a good repeatability of the experiments.

PUT PRESSURE SENSORS CHARACTERISTICS

A load cell has been mounted behind the vertical wall on the
deck to measure the horizontal force caused by the interaction
between the impacting shipped water. The vertical wall has been
mounted on a low friction linear bearing to reduce possible er-
rors and dynamic effects related to the wall-supporting structure
have been verified by hammer tests in dry conditions.

PUT THE LOAD CHARACTERISTICS
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Fig. 3: Distribution of pressure gauges for the circular (left) and the
elliptical (right) bows.

Bow-shape influence on the water-shipping evolution

Background Two-dimensional water-on-deck experiments dis-
cussed in [1] have shown that the water shipping starts in the
form of a wave plunging and hitting the deck in proximity of the
bow of the restrained model. The formation of a cavity entrap-
ping air has been observed. Later the cavity is stretched down-
stream by the main flow along the deck and eventually breaks
and collapses. Also, due to the impact, the water front plunging
onto the deck splits in two jets: one moving downstream along
the deck, the other one propagating upstream, toward the bow
edge. The latter enhances the detachment of the air cavity from
the deck. 3

The present three-dimensional experiments confirm the oc-
currence of a water front-plunging phase at the beginning of the
shipping of fluid on the deck. In general, the water invades the
deck first from the fore portion, where the wave elevation ex-
ceeds earlier the freeboard. Then the shipping develops along
the bow sides, with a non uniform (decreasing) maximum free-
board exceedance going from the fore portion towards the super-
structure. Although these aspects do not vary qualitatively when
changing the geometry, we have noted some relevant modifica-
tions of the water-shipping features which will be presented in
some detail.
EESS0 OSAKA In this case, figure 4, the sharp and slender ge-
ometry of the bow contributes in causing two main plunging
flows from the two sides of the deck (sketch 1). These fronts,
moving inwards, impact each other along the centerline (sketch
2) and are then deviated outwards (sketch 3). The water enter-
ing the ship deck from the forward portion and that from the
sides feed a tongue-shaped fluid structure (sketch 4), growing in
time and propagating towards the vertical wall with increasing
velocity. The water exceeds the freecboard also along the bow
sides and a tubular cavity entrapping air is observed, with cross
sectional area decreasing from the ship centerline along the bow
sides. The water shipped from the side edges, evolves into two
water fronts with smaller height and moving at an oblique angle.
These lateral water fronts will also impact with the wall. After
the impact with the wall, the water runs up, with spray forma-
tion and fragmentation of the free surface. Under the restoring

Fig. 4: Esso-Osaka model: sketch of the flow evolution during the
water shipping, top-captain view. Time increases from left to right
and from top to bottom.

action of gravity, the upward fluid motion is slowed down and
then reversed into a waterfall, overturning onto the deck.

Circular Bow In this case, the water exceeds the freeboard al-
most uniformly along the fore portion of the bow, figure 5 (time
increases from left to right and from top to bottom). A plung-
ing phase is observed, resulting in a water impact with the deck.
Similarly to the two-dimensional experiments, two flow jets are
generated. The first picture shows the flow just after the ini-
tial plunging. The forward jet is characterized by a non-smooth
leading front. The darker region behind it, indicated by the ar-
row, corresponds to the wetted region of the deck, while closer
to the edge the presence of the air cavity is detectable. The wa-

Fig. 5: Top view of the water shipping in case of the circular-bow
shape. The time increases from left to right and from top to bottom.
The wave packet has kea = 0.2 and A/L = 1-08.

ter front remains roughly two dimensional in the region closer
to the ship centerline. Near the bow sides, the flow enters al-
most perpendicular to the deck edges and it is then deviated to
reconcile with the quasi-two dimensional flow in the inner re-
gion (second picture). The air tube initially entrapped near the
bow detaches from the deck because of the backward jet follow-
ing the impact of the plunging (third picture). Just behind the



waler front, short wavelengths can be seen on the free surtace
(second and third pictures), maybe related o surface-tension ef-
fects. A second system of short waves appears later (indicated
by the parenthesis in the fourth picture). The latter is probably
caused by a contraction-rarefaction evolution of the cavity ob-
served before its collapse. Also, close to the deck edges, where
the longitudinal and the transverse flows have to reconcile, an
oblique-moving water flow (indicated by the arrow in the fourth
picture) is observed. This thickens the front near the centerline.
The final impact with the superstructure is found starting from
the centerline and spreading laterally. Similarly to the ESSO
OSAKA model, water run-up and backward overturning are ob-
served.

Elliptical Bow Also in the elliptical-bow case, figure 6 (time
increases from left to right and from top to bottom), the ini-
tial stages of the water shipping appear well two-dimensional
at the fore portion of the ship bow. After the impact of the initial

Fig. 6: Top view of the water shipping in case of the elliptical-bow
shape. The time increases from left to right and from top to bottom.
The wave packet has kca = 0.2 and A\/L = 1-08.

plunging onto the deck, the jet moving towards the bow induces
a backward wave motion. The forward moving water front is
not smooth, similarly to the circular bow case. Also, similarly
to the circular case, when the backward jet reaches the bow the
cavity is detached from the deck. The following evolution is
characterized by strong shape deformations and, eventually, by
the fragmentation of the air cavity into finer bubbles. These are
(partly) convected by the flow along the deck.

Al the same time, the plunging water front from the fore bow
interacts with the front of the flow entering the deck along the
sides. The two water fronts form an angle of about 90 degrees,
and the resulting flow moves along an intermediate direction
with curved fronts (see the marked area in the second picture).
The radius of curvature of the front, is very small at the begin-
ning and enlarges as the water flow develops along the deck.
This process is qualitatively similar to the collision along the
ESSO OSAKA centerline of the two plunging water fronts com-
ing from the sides of the deck. In both cases we have a conver-
gence of two flow structures related to the presence of a bow por-
tion with sufficiently small radius of curvature. Here, the flow is

strongly three-dimensional near the interaction of the two fronts,
and quasi lwo dimensional near the centerline. The region of in-
teraction between the two fronts is thicker than the surroundings
(see marked area in the fourth picture) and propagates inwards
and downstream, progressively destroying the quasi-two dimen-
sional front along the centerline. Also for this bow geometry,
two short wave systems are observed during the evolution: one,
generated at the initial stage of the water shipping, moving just
behind the leading front and probably caused by surface tension
effects, the other one, appearing later and likely related to the
evolution of the cavity before its collapse. By comparing the
tourth frames for the circular- and the elliptical-shaped bows we
note a strong similarity, though for the latter the interaction front
is thicker and induces a more pronounced three-dimensionality.

The water front impacts with the superstructure in a rather
non-uniform manner. The wall is first reached from the sides,
then the region with the interacting fronts impacts and, finally,
the inner portion of water shipped from the central bow region
hits the structure. As it can be expected, the run up of the water is
quite complex. The backward plunging is concentrated around
the centerline, while along the wall sides it is not clear if a mas-
sive backward phase occurs or if there is a gentler run-down.

Differently than in the two-dimensional case, now part of the
shipped water flows out laterally. As a result, a smaller amount
of water falls back against the deck.

Concerning the water-front velocity along the ship centerline,
the values estimated by images (see figure 7), shows that the
distance from the bow from where on the dispersion effects can
be neglected, is not particularly influenced by the bow geom-
etry. From the flow visualizations, we would expect such dis-
tance reduces going from the Esso-Osaka to the elliptical bow,
the quantitative confirmation of this fact would require a finer
velocity evaluation. Figure 8 shows the backward plunging flow
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Fig. 7: Water front velocity along the deck centerline. Incoming-
wave steepness and bow-shape influence Top: ESSO OSAKA, left
bottom: circular bow, right bottom: elliptical bow.

from the side view, respectively, in the case of the Esso-Osaka
(left) and of the elliptical model (right). In the Esso-Osaka case
the spray associated with the plunging is more pronounced, the
backward overturning seems to be always characterized only by
one flow structure. Ditferently, there are two flow structure for
the elliptical bow. One, observable in the picture, is quite con-
centrated in terms of spray. The other (not visible in the picture),
with an important part of spray, reaches a higher height and im-
pacts further on along the deck, towards the fore bow. For all the
ship geometries, the water-oft-deck phenomenon caused by the
wall reflection modifies the flow-field conditions around the ship
bow with respect to the diffracted wave field without water-on-
deck occurrence. Therefore, in case of repeated water-shipping
events, the second water on deck depends on incident-wave con-



Fig. 8: Backward plunging wave during the late stages of the water
shipping. Left: Esso-Osaka ship model. Right: elliptical bow.

ditions modified both by diffraction and by the off-deck flow
associated with the previous event.

Wave-steepness influence on the water-shipping evolu-
tion

For all the considered bow shapes, a steepness increase causes
a stronger three-dimensionality on the water-on-deck phe-
nomenon. Neighbor water layer interaction enlarges, the leading
water front propagating along the ship deck appears less regular.
The cavity tube initially formed near the bow tends to become
less uniform in the ship beam direction. Moreover, the existence
of a second backward flow structure at the late stages of the wa-
ter shipping is enhanced by a greater steepness. By increasing
the incoming wave steepness, the non-dimensional water-front
velocity (see figure 7) slightly increases and the establishment of
the shallow water-conditions tends to be delayed in space (that
is a greater distance from the bow is needed for the dispersion
etfects to become negligible) and time.

Green-water loading: pressure evolution along the
deck

The pressure distribution along the circular-bow deck is shown
in the left plots of figure 9 for time increasing from top to bot-
tom. The right plots of the same figure give the top view of the
corresponding flow configurations. The considered case corre-
sponds to an incident wave packel with steepness k.a = (-2
and wavelength A = 4-33 m. As we can see, before the wa-
ter impacts with the wall (first and second pictures) the higher
pressure values are located near the bow, where the amount of
water is larger. From the results it is not clear how strong the in-
crease of pressure due to air-cushion effects. Probably, a denser
distribution of pressure gauges is needed. Moreover, pressure
measurements become more difficult when bubbles are present,
and actually, in some cases, unphysical negative pressure values
have been recorded.

Interestingly, a pressure rise on the deck is observed at the
bottom of the deck structured when the water impacts against
it (fourth frame). As it can be expected, the maximum pres-
sure is recorded near the centerline and decreases approaching
the deck edges. The longitudinal extension of the pressure rise
due to the impact is also relatively large (about one fourth of the
deck length). Later, last frame, a second rise of the pressure is
recorded. It is slightly more concentrated near the ship center-
line, though with a longer longitudinal extension. By comparing
with the video images, we can see that this is related to the back-
ward plunging wave occurring during the water run-down phase.

Qualitatively, the main features of the above described pres-
sure evolution are rather similar for the two analytical geome-
tries (the pressure distribution on the deck has not been mea-
sured for the ESSO OSAKA). The maximum pressure on the
deck is recorded at the beginning of the impact with the wall
and itis smaller for the elliptical bow shape, figure 10, for all the
considered wave steepnesses, with the exception of the smallest

Fig. 9: Circular bow: pressure evolution onto the deck (left) and
related flow configuration from a top view (right). The time in-
creases from top to bottom. The wave packet has k.a = 0-2 and
A=433m.



one. The maximum pressure increases as the incoming-wave
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Fig. 10: Influence of the incoming-wave steepness and of the bow
shape on the maximum pressure on the deck.

steepness increases, and the growth rate is slightly larger for the
circular-bow geometry than the elliptical one.

Green-water loading: force evolution on the vertical
wall

Generally speaking, the time evolutions of the force acting on
the vertical wall shows a first peak associated with the initial
impact of the water. A sccondary peak is observed, more pro-
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Fig. 11: Time evolution of the horizontal force acting along the wall.
The wave packet has kca = 0-2 and A = 4-33 m.

nounced in the case of the circular bow shape (¢f figure 11).
Such peak is related to the later backward water overturning hit-
ting the underlying layer of water. The maximum value of the
horizontal force along the vertical wall is given in figure 12. This
increases almost uniformly going from the circular to the ellip-
tical bow. This is due to the different way the water hit the wall.
Although the water-front velocity along the ship centerline is
not very ditferent, for the elliptical bow the main impact with

0.28

ol 1]
- T &7
0.24 | Nl 1
%020 | S 4
i ‘ 7 [
I 02| .
2 018 Je
~ 016 o
w w | ‘,/ "'
0.14 |
0.12 | elliptic —o— ‘
) ¢ circular +
0-1 VR N SR S—— | A e ——
012 014 016 018 0.2 022 024

ka

Fig. 12: Influence of the incoming-wave steepness and of the bow
shape on the the maximum horizontal force on the vertical wall.

the wall is associated with the mentioned flow structures gen-
erated by the interacting fronts. The latter are faster than the
inner water front (¢f fourth frame of figure 6). For both ships,
the maximum force increases as the steepness increases, but it
becomes less sensitive o this parameter in the region of higher
steepnesses. This reflects the trend of the maximum freeboard
exceedance at the focusing point with the steepness.

Surface-tension and viscous effects

[n all the studied cases and for all the ship models, short wavy
structures following the leading water front have been observed.
The related wavelengths were of the order of one centimeter.
This is a spatial scale where surface-tension effects could mat-
ter. Thus a possible explanation is connected with the surface
tension effects excited by the high curvature of the initial plung-
ing wave hitting the deck. This fact has to be accounted for when
transferring the experimental results to the full scale.

Concerning the viscous effects, the global Reynolds number
is sufficiently large but locally viscosity could matter during the
evolution of the shipped water. In the boundary layer formed
near the deck surface the flow is slowed, and the leading front is
forced to become more rounded (steeper) near the deck. How-
ever if the boundary layer is sufficiently thin the water front can
be roughly characterized as a wedge-shaped structure forming
a relatively small angle with the deck. The smaller such angle
is when the water hits the wall the better it is in terms of the
structure safety (see i.e. Greco (2001)). A rough estimate of
the boundary layer thickness can be obtained by assuming the
thickness grows as in the case of the steady boundary layer for
a flat plate. This gives a square-root growing. According to the
estimated mean water front velocity along the deck the thickness
remains sufficiently small and reaches a value of the order of one
millimeter near the vertical wall position.

Repeatability of the experiments

As an example of repeatability of the model tests, figure 13
shows the time evolution of the wave elevation measured at the
undisturbed focusing point and figure 14 gives the time record

wave (mm)

t(sec)

Fig. 13: Repeatability analysis: time evolution of the wave eleva-
tion measured at the focusing point in the case of the circular-how
geometry. The wave packet has k.o = 0-2 and A = 4.33 m.

of the horizontal force on the wall, in the case of the circular
bow. As we can see the results are in satistactory agreement,
confirming a good test repeatability. Figure 15 shows the time
evolution of the pressure at locations 1-4 along the deck, in the
case of the circular bow (¢f. left sketch of figure 3) and of the
same wave packet. The results agrees sufficiently each other,
although some discrepancies have been observed (see plot for
location 4). Probably, these are related to the occurrence and
the development of bubbles due to the initial cavity formation,
which are very sensitive to the local-flow conditions involved.
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Conclusions

A three-dimensional water-on-deck analysis has been presented
by comparing three different bow geometries. The bow-shape
influence on the water-on-deck features and on the green-water
loading on deck structures has been discussed. The results
showed that by taking a more "two-dimensional’ bow geometry
not necessarily the resulting flow onto the deck will have more
pronounced two-dimensional character. [n particular, the ellip-
tical ship is characterized by an flow interaction process giving
rise o a jet structure with velocity growing during its evolution.
This is similar to the tongue-shaped flow occurring in the Esso-
Osaka case. For both of them, it is related to the presence of a
sufficiently small radius of curvature in the bow geometry. The
water-on-deck associated with the circular-bow seems to be the
most two-dimensional one. Here the smoother bow geometry
counteracts the interaction process. The incoming wave steep-
ness has been varied and its influence on both the global features
of the water shipping and on its effects on the deck structures
have investigated. Possible relevant factors in terms of the deck
and wall design have been indicated.
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Modeling Appendages in RANSE Simulations of
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El Moctar et al. (2001), El Moctar and Bertram (2002), Lindenau et al. (2002), Schmode and Bertram (2002),
presented aerodynamic CFD applications of the Hamburg Ship Model Basin HSVA for assorted ships. Ship
superstructures feature many filigree appendages such as railings, antennae, deck equipment etc. An approxi-
mate modeling of these appendages is vital in wind tunnel tests to ensure sufficiently turbulent flow. A geomet-
ric modeling of these appendages in CFD simulation is impossible as this would require an excessive number of
cells. We have now investigated appropriate modes to model the effect of the appendages on global flow pattern
around ships, employing the commercial RANSE solver Comet. Comet is based on the finite-volume method
to discretize the fundamental differential equations. We solve as usual the equations of conservation of mass and
momentum, coupling pressure and velocity by the SIMPLE algorithm. We employed here the standard k-g
model. Comet offers the option of using baffle elements, i.e. partially permeable cell faces. Baffle elements are
e.z. commonly employed in flow simulations to model forests without modeling each individual tree. Baftle
elements are introduced by adding a source term on the control volumes adjacent to the baffle surfaces:

—J.rpr S
s

S is the baffle cell surface of a control volume. v,,, is the average velocity in the control volume. ris given by:
r = p(a+b|vy,|). a and b are user-specified input. The baffle elements thus affect only the momentum equations
directly.

We selected the antennae mast of the Superfast Ferry, Schmode and Bertram (2002), as a suitable representative
of an appendage to ship superstructures. We limited ourselves in this study to wind coming directly from ahead.
The mast is “filigree”. but is expected to have a significant influence on the flow field around the downstream
ship funnel. The 12 m mast was meshed with 3 grids of successive fineness, Fig.1. The computational domain
extended 25 m upstream of the mast, 45 m downstream, 30 m to the side, 15 m to the top. Symmetry in y was
exploited.

Fig.2 shows the turbulent kinetic energy and the absolute value of the velocity. The turbulent energy specitied at
the inlet dissipates rapidly, before the flow hits the mast. At the mast, new turbulence is generated. The wake of
the mast is clearly visible in the plots of the velocity magnitude. The figures show also that we have not yet
reached grid independent solutions, but a common pattern emerges. The turbulence is dissipated faster on the
coarse grid (numerical dissipation error), the wake less pronounced.

Instead of the geometrical mast, we then employed a triangular area with height of the mast and width of its side
wings. The area of this triangle is approximately three times as large as the projected geometric area of the mast.
This was intended to account for the additional blockage due to the boundary layer around the mast. We as-
sumed that the mast decelerates the flow velocity proportional to the velocity. We selected thus a=0 and varied
b, as we could not find any suitable values in the literature. We expected a suitable value to lie somewhat above
the geometric ratio of 1:3, say b=0.4. Fig.3 shows results for various values of b. Agreement is poor in all cases,
particularly for turbulence. While the poor results may be due to wrong choice of parameters, we decided to
abandon the research on baffle elements until we obtain new insight from related flow simulations.

Since the baffle elements were rather disappointing, we investigated next whether a very simplified geometry
would give acceptable results. We modeled the mast by a slender block of same height. The grid had almost the
same number of cells as the medium grid for the “exact” geometry. The results, Fig.4, are encouraging. Wake
and turbulence are slightly larger than in the exact geometry model, but deemed acceptable for our purposes. At
present, the best recommendation we can give for aerodynamic CFD simulations for ships is thus a strongly
simplified modeling of the appendages. '

EL MOCTAR, O.M.; GATCHELL, S.; BERTRAM, V. (2001a), RANSE simulations for aerodynamic flows
around ship superstructures, 4th Num. Towing Tank Symp., Hamburg

EL MOCTAR, O.M.; BERTRAM, V. (2002), Computation of viscous flow around fast ship superstructures,
24th Symp. Naval Hydrodyn., Fukuoka
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Fig.4: Turbulent energy k and absolute value of velocity for Sirﬁblé block

LINDENAU, O.; BERTRAM, V.; EL MOCTAR, O.M.; GATCHELL, S. (2002), Aerodynamic simulations for
an SES employing virtual reality post-processing techniques, HIPER 02, Bergen

SCHMODE, D.; BERTRAM, V. (2002), Aerodynamic flow computations for a Superfast ferry, 3rd High-
Performance Marine Vehicles Conf. HIPER'02, Bergen
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Introduction

We have presented recently seakeeping computations, code Aquaplus (Nantes) and Poseidon
(Poitiers), in the frequency domain, with the diffraction-radiation with forward speed Green function
in a linear formulation, Delhommeau et al. [1], Ba et al. [2]. The main feature of these methods is to
replace the computations of the Green function or of its derivatives by their boundary integration after
having interchange the boundary and Fourier integrations, reducing thus the difficulties of
calculations. A Stokes theorem is used in order to transform the boundary integrations into contour
ones which are performed analytically, see Boin [3] or Maury [4] for details. As we intent to develop
the computer code Poseidon in case of lifting flows, all the different cases of integration appearing in
the expressions, deduced from the 3' Green identity, to calculate the unsteady velocity potential and
the velocity in a first order panel method have been studied. They concern integrations on panels, on
waterline segments, on semi-infinite strips of the function itself or of its first or second derivatives. We
use the this Green function as defined by the formulation of Guevel and Bougis [5], modified later by
Delhommeau [6], and by Ba and Guilbaud [7] to obtain a practical method of computation. The
analysis of the difficulties is presented and the influence of the forward speed has been considered.
Finally, added-mass and damping coefficients on a semi-submerged ellipsoid are presented for various
Froude numbers. The influence of the coupling with the steady potential either uniform, double body
or Neumann-Kelvin flows, is considered, for a Wigley hull and a VLCChull, following Fang [8], but
with the unsteady Green function corresponding to forward speed.

Problem to solve

The diffraction-radiation irrotational flow of an inviscid and incompressible fluid around a ship hull
having a constant forward speed U is considered. A frame of coordinates fixed to the mean position of
the body is used. The velocity potential can be separated into steady f, and unsteady fe™ parts, with
w, the angular frequency. Both have to satisfy the Laplace equation, the body and the corresponding
linearized free-surface boundary conditions and convenient conditions at infinity. In most of the
studies, the potential f is taken as the potential of the uniform free-stream flow, but other choices can

~rd

be done, [8]. The 3" Green's formula leads to an integral equation, involving the corresponding Green

function Ge™ and its derivatives, enabling to compute the potential and, by derivation, the velocty.
This last equation, after discretisation of the body, leads to a linear system of equations through the
body condition. After having solved this system, the pressure can be computed (involving both
potential and its derivative for the unsteady part) and by integration on the body, forces and moments.
The main difficulty is to compute the influence coefficients of the system, corresponding for a first
order panel method, to the calculations of the integrations of the Green function or of its derivatives on
an elementary panel §; or on elementary segment C; of the waterline if no lifting flow is considered:

”Gds; jé‘dy; jjaaé ds; j 9G dy
s, Ol c:

5 ¢ ony.

In the case of lifting flow, a doublet distribution on the body central plane and on semi-infinite strips



extending from the trailing edge (where a Kutta-Joukowsky condition has to be satisfied) to
downstream infinity with intensity, /i, is considered. This intensity, proportional to the circulation, is

linked to the intensity at the trailing edge X, on each strip k, ﬁm‘ . In the wake, the doublet intensity

is related to :arak , see Nontakaew et al. [9], by :
(M, @) = T e ¥~ w U

So, extra integrations of the following quantities have also to be performed:

oG ol s-rilfre QG i 0°G
[j o Lol jj o -dS ; ”anu ™ ds; jj o el el

where X, isa seml—mﬁmte strip of the wake

Numerical method and accuracy of the boundary integrations

The formulation of the diffraction-radiation with forward speed Green function, derived in [5], is used.
The Green function is divided in three terms G = G + G, + conjg (G,). The first one G, is the Rankine

terms (including the source and its symmetric with respect to the free-surface); the two other ones, G,
and G; are the Froude dependant part and are defined by integrals. For example, for G, :

L1 K g (KE+ g (K ED]- K[g(Kéf)Jrg,(Ké)]
GE(M’M)_”LO{.'!- Ji+41cos8

G: has a similar definition but is more complex (several integrals and an extra term). The poles
appearing in G, and G, are very similar to pole K, defined by:

I+a,2r cosB + (i)' \l+a,4t cosO

= 2F%cos’ @

,J=1tod,witha; =1if j=12ora, =-1if j=3,4.

where I =+/—1. F=U/4/gL is the Froude number and T =wU/g, the Brard parameter, L the body

length; details can be found in [3]. Using a Stokes theorem, the various integrations of the functions G,
and G, on a polygonal panel with m nodes are transformed into a contour integral:

[x - -2 ZC xk+| f(/{ﬁ'-)
s dy =l Kiw — Xk

where y = K& or K&' are complex linear functions of the Cartesian coordinates and K is one of the

pole (a non zero complex). The numerical integration of the Fourier integrals are performed through a
Adaptive Simpson method, using a size of the integration step decreasing when the integrand has steep
variation, [9].

The difficulty of the computations of these Fourier integrals can be directly related to the
power o of poles of the Green function, or more precisely to the power of the trigonometric functions
included into it (the weaker the power of the cosine, the larger the oscillations of the integrand). Table
1 presents the powers of the poles involved in the calculations.

Values of o Lds' JH dy' J _ds' Function
G(M M) 2 0 0 -2
OG(M M ")/ ox, 0 -2 -2 -4
3*G(M, M ")/dx,0x, <2 -4 -4 -6

Tablel

: Power of the cosine in the Fourier integrals

Grey zones in table 1 are for the computations not used in a classical panel method. From this
table, the different calculations can be classified by a level of difficulty, from level 1 to level 7, figure
I. The difficulties decrease for the various integrations when compared to the function itself. For a



given field point, the computation of the velocity induced by the wake (o = —4; level 7) is the most
difficult to perform. Three calculations involve the same power of cosine (@ = -2; level 4 to 6),

H 9*G/9x,0x s' on a panel, J' dG/dxgdy ' on the waterline and ” 0G /oxds ' in the wake. Other

factors enable here to classify the difficulties. The waterline integral is always the most difficult, due

z’=0. The integral on the unsteady wake uses two successive numerical integrations, in z* and the
other in 6. The waterline integration of the Green function and the integration of the first derivative on
a panel are simpler (=0; level 2 and 3). For the same reasons as previously, the integration on the
waterline is the more difficult to calculate of the two. Finally, the simplest calculation is for the
boundary integral of G on a panel (o = 2; level 1).

Level of difficulty

1 2 3
| | |

Increasing difficulty
4 5 6 7

J;'[Gds' H—ds jcd

a=+2 =0

*— 9@

| | |
| i | I >

Hax ax as ”——ds j ”8){ ax |

}’
a=-2 o=-4

o— a &

Figure 1 : Scale of the difficulties of the calculations for the Fourier integrations

Re(Tnegrand)

Re(huegaxd) Re (tegrand)
20 1.0 F=03 =03 20

Level1
= = == Level2

g o v
5 oF

g -mg

. "55 o=10 F=1 =1

o I‘_ ” G s’ (]e\d ]) .202_

=) _|! s "deG/cé s’ (level2) 23

&
2
T

i

gsbadate a Jd o o o 1 o o 1 ] 735=;|.|| FITSRTE Na N N |

L] a5 1 15 2 0.5 1 1.5 2
L] u

Figure 2 : Integrands of levels 1 and 2 for function G,

Re(ltegand)
2 e G (Lerel 3)

20
15)
10)

P | PRI R |

Figure 3 Integrands of

levels 2 and 3 for function G,

As an example, we illustrate the behaviour of the integrands for

—[dGdzds' (Level2) a given field point M(-2,1,-0.1) and a source panel defined by 4

nodes :M'l(‘.xcd‘/ﬁx,yﬁo.za,o), M',(-X,-Y,0); M’y and M, are

under the two previous ones but with z=-/. Calculations are per-
formed for 2 values of the Froude number, 7=0.3 and 1, with a redu-

ced circular frequency, v =0.5and 1; (with y = wlL,/ g > Lo=

Im), corresponding to 7=0.15, 0.3 and 1. Figure 2 and 3 plot the real
part of the integrand in 6 for function G; only, (more difficult to cat
culate). The amplitudes of the oscillations for G, have similar shape
but are about 10 times smaller than for G,. The comparison of the
integration of the Green function and of its z derivative over a pa-
nel, figures 2, shows that the integrand is more oscillating as the di-
tficulty level increases. It can be observed that the amplitudes of
the oscillations of the functions increase with t. For 71, the abso-
lute values of the integrands become very weak with weak



oscillations. Some exceptions to he predictions of Table | occur: a more difficult integration on a
waterline segment of the Green function than on the integration of the first derivative on a panel is
predicted, but the integrands are quite similar, (cf. figure 3 for the comparison of the integrands of the
z-derivative of G, on a panel and of the function on a waterline segment). This fact can be explained
because the panel contour includes a branch on the free surface and that the difficulties tied to the
segment at z'=0 are present in the two integrals.

Close to the free-surface, the integrands oscillate with an indefinitely increasing amplitude and
frequency. To illustrate this problem, the behaviour of the integrand of the Green function on a
waterline segment is studied for two different depths of submersion of the field point M (z=-10" and
-107) and two Froude numbers F=0.3 and / on figure 4 in the same conditions as previously. As
predicted, the difficulties appear for 8= /2, due to the poles. If z#0, the integral tends also to zero but
less and less rapidly, with an increasing frequency of the oscillations when z—0. The integration is
still possible if enough points are chosen. But for z=0, there is no more convergence and this
frequency tends to infinity for 7/2. Then the integral is no more defined. Close to the free-surface,
integrals are calculated using an extrapolation for the value at z=0, because the integrals on the Green
function (or derivatives) have no oscillation when the field point describes the z-axis. As the Froude

number increases, the oscillations are shifted closerto 6 =m /2.
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Figure 4: Behaviour of the real part of the integrand for G, close to the free surface,
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Added mass «;; and damping coefficients 4, are given by:
[

a; = 7131’,

] ]
—rff(fw— \% V)n,.i'"l,-dsi:bU =Ly —rff(iw— Vf,-V)nfds
5 l " $

where f, represents the potential of the steady flow. Figure 5 plots the results of the added-mass and

damping coefficients 4;; and B;; for heave motion versus the reduced frequency @ for the surface-
piercing ellipsoid (axis ratio 8:1), already studied by Du et al. [10], at various Froude numbers with a
number of panels N=480. The results of the present method are in good agreement with the ones of
[10] at lower Froude numbers F; as F increases, some discrepancies appear, may be due to the
different methods of calculation of the waterline integral which become more difficult to compute
accurately. Influence of the forward speed is effective only at low frequency and decreases when this

frequency increases.Except at the lower values of the frequency, 4;; decreases and B;; increases as the
Froude number increases.

Wigley hull
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Fig. 6 Unsteady coefficients on a Wigley hull versus the reduced frequency (F=0.2 and 0.4)

The influence of the choice of the steady potential is important. This problem has been study
in [8], using as steady flow potential either the one of uniform flow or the one of Neumann-Kelvin
flow, but with an unsteady Green function not accounting for the forward speed (only encounter
frequency assumption). Here the three different steady flow potentials are used. The unsteady flow is

here one of the 6 different radiation potentials f}, j =1to6. Figure 6 plots pure added-mass and

damping coefficients for heave and pitch motions versus the non dimensional frequency for the three
different steady potentials (uniform, double body and Neumann-Kelvin) for #=0.2 and 0.4. The results
at £=0.2 for the uniform flow as steady potential have been shown to be in good agreement with other
method of calculations for Series 60 hulls or Wigley hull, [1,2] and [3]. As already mentioned in [8],
for Series 60 or Wigley hulls, the influence of the steady potential is weak, particularly for heave
motion, and restricted to lower values of the frequency. Figure 6 shows, partic ularly for pitch motion,
that this influence, always restricted to low frequencies, increases with the Froude number; the double
body calculations give lower values of both added-mass and damping coefficients. The difference
decreases as the frequency increase and become quite negligible for v >2.5.



VLCC hull

Similar results are given on figure 7 for a VLCC hull at F=0.2. Here also, the influence of the steady
potential chosen is negligible on A;; but for the others coefficients, it can be observed on the whole set
of the values of the frequency. For 4;;, the values of the added-mass coefficients increases from the
Neumann-Kelvin, to the double body and to the uniform flow steady potential; for the damping
coefficients, 4;; or Bss, for the same steady potentials, these coefficients increases.
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Fig. 7 Unsteady coefficients on a VLCC versus the reduced frequency (F=0.2)
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Sea keeping simulation of fast hard chine vessels using RANSE

Mario Caponnetto
Rolla Research, Via Silva 5, Balerna (Switzerland)

Introduction

The design of an hard chine vessel requires, more then for other kind of boats and ships, a trade off between
calm water resistance and sea keeping qualities. Following Savitsky theory the prismatic hull of minimal
resistance, above a certain speed, if a flat hull. Even if we consider hulls more complex then a Savitky prism,
the deadrise angle remains a fundamental parameter for calm water resistance and this angle should be
minimized, whatever the other parameters are (beam, LCG...). Keeping all the rest fix, a flat hull generates
more lift, allowing a lower trim angle (less wave drag) and less wetted surface (less friction drag). In waves
a flat hull is one of the worst shape we can image. Large impact pressures are suddenly generated as the
waves hit the bottom; this creates structural problems as well as vertical accelerations that can be hardly
sustained by the crew. In practice a deadrise angle is always necessary but the amount of vee-shape depends
on speed, boat dimensions and expected waves size. Modern boats are seldom prismatic, and have a deadrise
angle that varies along the boat length. Depending on the applications, this angle may vary from 10/20
degrees at the transom to 20/50 degrees near to the bow, where impact pressure are expected to be higher.
This so called “warped” hulls pose new problems to the naval architects. First, Savitky theory can’t be used
to calculate calm water trim and resistance of warped hulls. Second, there is a lack of data usable to predict
sea-keeping qualities of warped (but even prismatic) hulls. Reasonably the more deadrise angle we give the
better the sea keeping qualities, and worst the calm water performances, will be, but when to stop?

A couple of years ago we started trying to answer the problem of calm water calculation of fast hard chine
vessels, bypassing the somehow crude approximations of the Savitky theory. The method we investigated to
deal with this problem is a RANSE solver where the complex behavior of the free surface is computed with a
special kind of VOF (Volume of Fluid) method. The commercial code Comet was tested among others,
giving the best results (ref. 1, 2). Since then, many hulls have been tested, designed and optimized by our
Company and the method is now a valuable tool for a number of leading shipyards in the nautical market.
The step forward required by the designers is the possibility to compute sea keeping. The natural way to
approach this problem is to use the unsteady and moving mesh capabilities of Comet; some of the results
obtained by now will be presented in the paper.

1. Overview of the method

1.1 Main features of the solver

For both steady (calm water) and unsteady (sea keeping) computations, a Finite Volume Method is used to
solve the Navier-Stokes equations. Turbulence, of minor importance for this type of problem, is
approximated using a K-epsilon model. The main feature of the code is the possibility to solve very complex
behaviorssof the free surface, typical of planing hulls. The Front Capturing Method built in the program can
easily compute spray, breaking and overturning waves, detachment and reattachment of the flow along the
chine, the side hull and the transom, and, in some extent, the ventilation of the hull. Details of the method
can be found if ref. 3, 4.

1.2 Mesh generation

Structured or unstructured meshes can be handle by Comet, as well as blocks of cells with not matching
vertices. As far as the hull is a conventional hard chine vessel, we have found that the best results in terms of
precision, as well as time spent to generate the mesh, are obtained with a structured mesh formed by
hexahedral cells. This approach is somehow mandatory, as will be explained later, if the hull must be moved
in a time domain simulation.



A Fortran code has been developed to build the structured mesh. The code loads the geometry of the hull and
generates all the files needed to the solver (vertex coordinates, cells, regions...). The stretching of the cells in
regions were a higher or lower resolution of the flow is required, can be easily controlled playing on a
number of parameters. In general we want to increase cell density near to the hull and the free surface.
Moreover the hull is placed in space giving in input a value for the trim and the sink, but in theory we can
give all the 6 degrees of freedom. The hull, deck and transom are discretised. Special care is dedicated to the
proper definition of the chine and the spray rails. Flaps, tunnels and skeg can be also modeled. A typical
surface mesh of the hull is shown in figures 1 and 2.
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Figure. 3

Figure 3 shows crosscuts of the volume mesh in two transversal planes near to the bow (right) and the stern
(left). Local refinements can be done (as visible in figure 2) splitting a cell in a number of sub-cells.

The time required to build all the files needed to feed the solver is very short; about 10 seconds for a typical
mesh having 200.000 cells.

1.3 Moveable mesh

In a sea keeping simulation the hull will change its relative position in the calculation domain at each new
time step. By now we are dealing only with two degrees of freedom (trim and sink), since only bow waves
are considered. Surge movements can be of some importance with higher waves, and can be added in the
simulation, but this possibility haven’t been tested yet.

At each time step updated values for the trim and sink will be supplied to the mesh program to built the new
mesh. The cell vertices along the external boundary of the computational domain remains fixed, while those
over the hull are moved rigidly of the right amount. All the vertices in between will be consistently moved of
a fraction of the hull movements, but keeping the same topology. Cells and vertices numeration remains the

2



same. Each cell will keep its “identity” and will be formed by the same vertices, simply moved of a small
quantity. In this way the solver can restart without the additional efforts needed to interpolate the old variable
(pressure, velocity...) to the new cells; computational time and convergence rate is speeded up.

1.4 Boundary, initial conditions and time step

Regular bow waves or a “sequence” of waves with different lengths and highs can be generated. Since no
surge movement is considered, the boat is fixed longitudinally in an “average” flow having a speed opposite
to the boat speed Vb. Sinusoidal waves are enforced at the inlet; calling Lw the length of the wave and Hw
its high, the wave profile at the inlet (h) will vary with time (t) in the following way:
h=4Hw*cos(w,t) where: W, =0 +Kb—a)2 and = QLE
g w
At the inlet both air and water are blown in the domain. The cells whose centroid lies below h will inject
water, the remaining air. Since h changes with time, there are cells that will change periodically the injected
phase. The cells whose boundary surface is intersected by the local free surface will have a mixed phase
proportional to the area below and above the free surface. Pressure and velocity boundary conditions are
enforced. Above the free surface the air speed and pressure are set to Vb and Patm. Below the expressions
for the pressure, horizontal and vertical velocities of a linear Airy wave (ref. 5) are used, but shifted from the
undisturbed water level (h=0) to the actual free surface. This approximation has proven to produce in
practice very regular waves, whose length and high can be easily controlled, as far as the slope of the wave is
not too high.

The initial free surface is flat, the flow is initialized with V=Vb and the pressure is P=Patm for the air and
P=Patm +rho*g*z for the water. This pressure condition is also applied to the outlet. To allow a smooth
launch of the computation, the real wave high at in inlet is let to grow linearly from zero to Hw in about one
encounter period.

Time step remains constant during the simulation and its value is normally set according to a Courant
number of 0.15, calculated with the boat speed and the average length of the cells along the hull. For each
time step a maximum of 30 iterations is allowed to reach convergence. The simulation is carried on until
about 10 waves are encountered, but usually the phenomenon becomes periodic at the third or fourth
encountered wave.

1.5 Forces and moments calculation

At the end of each time step the pressure over the hull is know and the vertical force and moment around the
center of gravity can be calculated. Vertical and angular accelerations are then used to compute the new trim
and sink for the next time step.

A problem arise from some numerical fluctuation of the calculated pressure distribution and forces between
an iteration and the next one. Due to this small oscillations, even in calm water, a boat left free to heave and
trim should manifest continuous small movement around the mean position. This problem has been found to
be amplified in the unsteady calculations.

To prevent this phenomenon a quadratic least square fit of the vertical force (and moment) is performed on a
number of time steps preceding the last one (figure 4). The fitting function is extrapolated to the next time
step to compute an average force and moment suitable to calculate the trim and sink changes.
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2. Sample cases

The code has been already used to perform sea keeping calculation for a number of planing hulls. Typically
we have to deal with boats whose length ranges between 15 to 40 meters, and speed from 25 to 60 knots and
above. For this kind of applications we have a lack of experimental data (in full or model scale) useful to
validate the method.

What has been done by now is to check the robustness of the method and to perform convergence and mesh
sensitivity tests. What can be said is that the accelerations computed are realistic. The code is very robust,
since typically 5000 time steps are completed without crashes in the 90% of the cases. As far as accelerations
are concerned, the results are converged with about 100.000 cells (for one half of the physical domain
considering the lateral symmetry of the problem). Changes of hull geometry give qualitatively the expected
results, and this is important in the perspective to rank different boats at the design stage.

[t must be pointed out that, at difference of the typical behavior of conventional ships in waves, whose
largest non linearity is the out coming of the bow off the water, very extreme situations have be encountered
in our simulations. Sometimes the entire hull comes out of the water and then brutally hits the new incoming
wave, rising the water above the deck.

Two cases are presented in the next figures as examples. In figure 5 a 24 meter boat moving-at 45 knots is
shown when coming near completely out of the water in a regular sea with Lw=30 m and Hw=2 m. Figure 6
shows the bow impact of a 35 meter yacht at 30 knots in similar wave conditions.

Rising water

Figure 5 ' Figure 6



[n these cases pressure impacts are huge, and probably to neglect hull flexibility, but instead considering the
hull as a rigid body, doesn’t respect sufficiently the real of the phenomenon. Moreover surge motion should

probably be considered.

The next three figures show some samples of the trim, sink and vertical acceleration of the center of gravity
time histories. The boat in question is 35 meter long and is running at 45 knots. Two waves are considered,

Lw=20 m, Hw=] m and Lw=30 m, Hw=1.5 m.
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An other useful quantity derived is the time history of the drag, that integrated over time can give the
“average” increase of drag, allowing an estimation of the speed reduction in waves. A sample is presented in
figure 10, where the computation has been performed for a 90’ Open yacht.
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The next figures show the calculated pressure distribution, and the corresponding trim of the hull, at three

different instants of the simulation. In the first frame

be boat is nearly out of the water and there is only a

small vee-shaped high pressure region ahead of the transom. After that the hull, falling down, hits the water

all along the keel, and the impact pressure is maximum. The water is partly deflected by the spray rails.

Finally the bow enters the incoming crest. Of course these data can be very useful for structural calculations.
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3. Conclusions

In the paper the need of a tool able to predict the sea keeping performances of hard chine vessels
has been pointed out. The method investigated to face the problem if an unsteady CFD solver where
the free surface is calculated using a VOF method. A code has been developed to allow the
movement of the structured mesh with time. The boat is free to trim and sink, under the effect of
regular bow waves generated at the inlet. The results obtained in the first tested case are still to be
validated, but the code has been proven to be robust and supply qualitatively satisfactory results.
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Numerical Simulaton of 2-Phase Flows by Smoothed Particle Hydrodynamics
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Introduction

Tulin-and Landrini (2000), Landrini er al. (2001a, 2001b) ap-
plied the Smooth Particle Hydrodynamics method (SPH, see ¢. g.
Monaghan 1988) to capture the basic features of wave breaking
around ships. In particular, it has been highlithed and discussed
the basic link between breaking processes, vorticity generation
and air capturing. The latter implies the need of multi-phase
modeling to study the long-term evolution of such flows. On this
ground, we developed a two-phase version of the SPH method,
Colagrossi et al. (2002), which improved the applicability of
SPH to these problems. In this paper, we further extend this de-
velopment and present the algorithmical details of the present
SPH implementation. As a practical example, we consider the
two-phase version of the classical dam-break problem, ¢.g. Col-
icchio er al. (2000). Namely, an initially rectangular column

DAM POSITION

e WALL ‘
Al \’!
: B |
i C‘
;.)x/h

Fig. 1: Dam-break problem and impact against a vertical rigid
wall. The geometrical parameters are chosen according to the ex-
periments performed by Zhou e al. (1999) A-B: wave-gauges. C:
pressure-transducer.

of heavy fluid is surrounded by a lighter one. Both media are
contained within a rectangular tank.

Basic aspects of the SPH method

[n Smooth Particle Hydrodynamics, the fluid is divided into a
collection of N particles interacting each other through evolu-
tion equations of the general form:

(lp,' _ )

i ﬂ:ZJ\’!u
.

d; 1

= ; ; 1)

di i Z Fitds (
7

d::c,- —_—

dt

The interaction terms M., F; follow from the Euler equations
and contain the density p;, the velocity w; and the pressure p;
of the particles. The last equation in (1) describes the motion of
the 4-th particle.

The interaction terms F;; model (at least) the pressure inter-
actions and contain the pressure p; which here is uniquely deter-
mined by the value of the density p; through a state equation of

the form y
p(p) = P [(—”—) —1} . o)
o

The parameters Po, po, v are chosen to have maximum density
oscillations of order of @(1%) around the reference value . In

practice, this is accomplished by choosing the sound speed ¢; =
dp/dp ten times or more larger than the highest fluid velocity
expected in the physical problem. We note that the use of the
actual speed of sound in water would imply a time-step too small
for any practical use.

In this way, the solution of the Poisson equation for the pres-
sure is avoided and the method does not require the solution of
an algebraic problem. Therefore, the memory occupation is pro-
portional to the number of particles, and the efficiency is rather
high. The particles can be arbitrarily scattered over the fluid do-
main leading to a completely grid-free method.

The interaction terms can be computed independently of each
other, resulting in an explicit method which can be easily imple-
mented on parallel computers.

The method is rather robust, even for large free-surface frag-
mentation and folding, efficient, and relatively easy-to-code at
least in its most naive implementation. Modeling of no-slip body
boundary conditions and of turbulent flows are less obvious. Fi-
nally, the stability analysis of the method represents a difficult
task. Some of these issues are discussed by Colagrossi er al.
(2001).

Implementation details

The actual form of the interaction terms follows by discretizing
the interpolation integral
(u(zp)) = f’u,(:r:') W(zp — " h)dV" . (3)
Q
In the original method, Monaghan adopted the following ap-
proximation to the velocity field and its gradient
() > Y w; WidVy , (V) = > u VWV
) J
4
Here and in the following discrete approximations, the kernel
function TV;; is evaluated at the points x;, ;, and the gradient
operator V¥ is taken with respect to the variable ;. We note that
dV; = m;/p,, namely each particle carries a constant mass m;
during the evolution. Also, Monaghan proposed locally conser-
vative expressions for the divergence and gradient operators:

div(w:) = Y (u; = w)- VW ’;‘—’
J ; ~
()
_om
VA = VJ;(AJ = A VW =2
and put the pressure gradient in the form:
V= ) % + ;i VW, () my (6)
J 4 ¥
The latter is based on the use of the identity:
Vp =V i—j + p% ()]



For free-surface flows (that is for a one-fluid system) the last

term vanishes at the free surface and smooth out the presence of

the density gradient which is, in principle, defined only in the
fluid side. For interface flows, the pressure is continuous and
generally different from zero while the density jumps sharply
across the interface. This is a source of numerical instabilities,
mainly when dealing with large density difference in the two-
fluids (see Colagrossi er al. 2002). To avoid this, we use the
discrete approximations

div(u;) =~ uj = ui) - VW dV,
Jiey;
i

(8)
(V) = Y (u; =) ® VIV, dV,
J
The divergence and gradient operators now read:
m
liv(u;) = - ) VW =
div(u;) ;(u‘, u;) - VI; Py
9
m
VA; = ZJ:(AJ = A) I 2L

The main difference between (9) and Monaghan's (5) is the use
of m;/p; instead of m;/p;, which becomes crucial for small
density ratios. Moreover, by using (9) and following Bonet
(1999), we compute the pressure gradient as

Vpi = Y (p; + p)VWjidV; .
J

(10)

Equations (9-10) are still locally conservative.

Equations (8) for the velocity field are complete to the zeroth
order. For the density, we adopted a first-order interpolation pro-
posed by Belytschko ef al. (1998):

() = > p WS (@) av; (1n
J

where the modified kernel is computed through:

WMES (@) = [Bo(wi) + Bu(mi) (i — o) + Ba(mi)(yi — v;)] Wi

Bo 1
B(=i) = ( B ) =A (=) | 0
32 0

Alm;) = ZJ W) Ay

) 1 (wi = u3)
A= | (=i—=5) (i = y) (i = 25)
(i = u3)  (wi =)z = 25) (mi = v;)°

which is computationally more expensive because of the inver-
sion of the 3 x 3 mawix A for each fluid particle 2;. This
formulation allows to obtain a more regular pressure distribu-
tion and an improved energy conservation even for the one-fluid
problerfi. As an example, figures 2-3 show the energy evolution
and the fluid configuration, respectively, obtained by three dif-
ferent interpolation schemes in case of the free-surtace flow after
a dam-break. In figure 2, AF is the potential energy imbalance
corresponding to the static configurations, respectively, before
the dam break and with the fluid distributed along the horizontal
bottom. In particular, interpolation (I1) and the Shepard inter-
polation (¢f. Colagrossi et al. 2001) are used for schemes A and
B, respectively, while scheme C is the Monaghan method. Be-
fore the impact against the vertical wall placed at the right end of
the dry horizontal bottom, the energy conservation is nearly su-
perimposed for all considered formulations, though the pressure

distributions (top plot in figure 3) show high-frequency oscil-
lations which are smoothed out by the Shepard formulation and
suppressed by the MLS formulation. After the impact (mid plots
in figure 3), the energy conservation deteriorates greatly for the
standard scheme. Schemes A and B show better performance,
though the energy loss increases as well. The backward over-
turning (bottom plots in figure 3) is accompanied by a further
increasc of the energy loss. On this ground, we adopted the in-
terpolation scheme (3) also for developing the two-phase version
of the method.

Another modification of the present implementation is related
to the Monaghan’s XSPH velocity correction. This correction
takes into account the neighbors velocities through a mean ve-
locity evaluated within the particle support, i.e.

¢ m, i ) : s
i =ui + g Z ﬁTj(UJ —wi)Wyi o piy = p—?‘& .
J

For particles ¢ close to the two-fluids interface the mean density
pij is wrongly evaluated and the XSPH correction leads to wrong
results. [n our implementation, when considering one medium,
the XSPH correction is computed without considering influence
of the other media possibly present.

We now consider in more detail the formulation for two flu-
ids, say, X\ and Y, without any constraint on the density ratio
px/py. Weassume py [py < 1.

As discussed Hoover (1998), using the pressure gradient in
the form (6) implies fictitious surface-tension effects which are
not detected in the present implementation. In particular, study-
ing the rising-bubble problem, Colagrossi et al. (2002) observed
the fragmentation of the bubble and, for small density ratio, the
dispersion of the light fluid within the other one. This has re-
quested the explicit modeling of surface-tension effects. A pos-
sible strategy is based on the evaluation of V7 at the interface,
Morris (2000). A simpler and more efficient algorithm is based
on the modified state equation

14
s P | [
p(p) 01 2

where the last term models Van der Waals cohesion force, as
suggested by Nugent and Posch (2000). The pressure gradient
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Fig. 2: Dam-break problem. Evolution of the total energy by the

three different interpolation schemes: MLS interpolation, Shepard
interpolation and Monaghan SPH.
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Fig. 3: Dam-break problem. Pressure contours by three different
interpolation schemes: A) MLS interpolation, B) Shepard interpo-
lation, C) Monaghan SPH.

®

becomes

Vp = ZJ (pj + p)VIV(zi)d A,
(13)

- ay, (o} + p)VW (@) da, .

In the present computations, the modified state equation has
been used only for the lighter fluid. In particular, the discrete
version of the extra term reads

=3y (p} + pH)VW;(zi)dd, .
J'%Y

(14)

Fig. 4: Rise of a gas bubble through the water. Left: sketch of the
problem and adopted nomenclature. Center: standard SPH solu-

tion. Right: improved model. py /px = 05, L\/f_q/R) = 4-427.
The solid lines in the right plot represent a Navier-Stokes solution
based on the Level-Set algorithm for capturing the interface.

EMV W(x) dA’ b

|

s

Fig. 5: Modeling of surface-tension effects in case of a gas bubble
rising through the water (¢f. Fig. 4)

For the purpose of discussion, we note that (14) can be approxi-
mated as
~2aphy Y VW, (@i)dA; .
J€Y

(15)

Therefore, because of the kernel properties, the summation in
(15) is zero for a particle totally embedded within its own phase
and results in a vector normal to the interface as the particle
approaches it. The parameter —a allows to control the strength
of the cohesion force. This is qualitatively shown in the left plot
of figure 5, together with the comparison of the solution obtained
with and without surface-tension modeling (right plot).
In the present implementation, we use the state equations

X Yy
pip) _ [ _p
Fo poy

px(p)

p
L1 -
Py

Pox

= —i{]

(16)
with vx = 7 and 7 = 1.4, lor the heaviest and the lightest
fluid respectively, and the corresponding sound speeds are

—— Doyx o 1 f:’j‘ll'*_ (17
Pox oy

The reference pressure P is usually chosen to achieve a small
compressibility for the X-phase, that is Ux maz/ex < 1 where
Ux maz is the expected order of magnitude of the fluid veloc-
ity for the considered problem. We note that both (6) and (10)
imply that for a uniform non-zero pressure the exchanged force
between the particles is non-zero. Therefore the chosen form of
the state equation ensures that for p(@) = pg the pressure is zero
and the fluid stays at rest.

From eq. (17), we note that for small density ratio py/px
the sound speed in the phase Y is much larger than in the heav-
ier phase, and therelore the compressibility is relatively smaller
in air than in water. Typical state diagrams pratically adopted
are shown in figure 6. It is evidenced that to operate in the same
pressure range (as needed by the interface dynamic condition)



the lighter fluid ¥ needs to be modeled by a steeper state curve,
hence with a higher sound speed. In the computational practice,

p=pip)

1
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Fig. 6: State-cquation diagrams for the two phases showing that to
operate in the same pressure range the lighter fluid needs a steepest
density-pressure characteristic curve.

since the method stability is related to the speed of sound, as
the density ratio decreases the time step At decreases largely o
prevent unstable evolutions in the lighter phase. Moreover, as
discussed in Colagrossi er al. (2001), to increase the stability
properties, a numerical viscous term of the form ach is usu-
ally introduced in the practical implementation. Therefore, the
difference in the sound speed of the two media implies using
different viscous coefficients o to achieve the same numerical
viscosity in both phases.

Two-phase modeling of dam-break and im-
pact problems

We discuss the application of the two-phase version of the SPH
method to the flow originated after a dam-break and the impact
of the following water front against a fixed vertical wall. [n spite
of its simplicity, this problem embeds several features related
to practical hydrodynamic circumstances, e.g. slamming and
green-water loads on deck and deck-structures.

The plots in figure 7 gives a first idea of the effect of the
density ratio on the global evolution of the collapse of the wa-
ter reservoir (initial length L/H = 2). The main features of
the flow evolution are the same for both cases: after the heavy
fluid has been released, a liquid tongue develops along the bot-
tom, and eventually impacts against the right vertical wall. The
fluid runs up and then collapses backwards in the form of a large
punger, hitting the underlying liquid sheet and forming a cavity
entrapping the lighter fluid. The results for the air-water density
ratio (left) can be compared with those for a hundred times heav-
ier upper fluid (right). Before the impact, the main differences
are the slope and the propagation speed of the water front along
the horizontal bottom. In particular, for py /px = 0-1, the mo-
tion is slower and the front is blunter than in case of air-water
density ratio. After the impact, a smaller run up is observed for
py/px = 0-1and the following evolution is further and further
delayed with respect to the air-water case. Also, in the latter
case, Lhe splash up generated by the backward plunger is more
Vigorous.

Figure 8 summarizes the effect of changing the density ratio
on the main geometrical parameters characterizing the impact
flow. The limiting case py /px = 0 corresponds to water mov-
ing in a vacuum. The top plot shows that the slope of the water

Fig. 7: Two-phase simulation of the flow after a dam break. Left:
py [px = 0:001. Right: py /py = 0-1. Time increases from top to
bottom.

front increases rapidly as the weight of the upper fluid increases.
This is related to the larger inertia of the upper fluid which in-
hibits increasingly the water motion. The maximum run up, cen-
ter plot, increases as the density ratio approaches the air-water
case. Finally, the area of the entrapped cavity generated by the
collapse of water attains a minimum value for py /px =~ 0-01
and increases both for larger and for smaller density ratios.

As it can be expected, the impact of the water front against
the vertical structure is accompained by large slamming loads,
mainly depending on the velocity and on the slope of the impact-
ing water front, at least in the initial stage. This can be inferred
from figure 9, where the pressure at the wall foot is compared
with the SPH numerical simulations. The first large pressure
rise for t/\/gL = 2.4 corresponds to the impact of the water
front with the wall and both the numerical simulations recover
reasonably well the measurements. The overshoot observed ex-
perimentally is probably related to details of the starting condi-
tions and cannot be further commented. Greco (2001) evidenced
that the backward plunging water front induces a second pres-
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Fig. 8: Two-phase simulation of the flow past a dam break. Ef-
fect of density ratio on: slope of the water front at the impact (top),
maximum run up (center), area of the entrapped cavity (bottom).

sure peak on the vertical wall. This is also observed in figure
9, ¢f apeak A. This phenomenon can be further discussed by
means of the pressure contours at this time instant, which corre-
sponds to the formation of closed cavity, as shown in figure 10
for py /px = 10 and 0 (top and bottom plots respectively). In
the air-water case, the pressure rise inside the air cavity is felt
also in a large water region, near the corner. Clearly, this air-
cushion effect is not observed in the free-surface flow modeling,
and a limited pressure rise is localized around the plunger tip im-
pinging on the underlying layer of water. Actually, see peak B
in figure 9, the free-surtace simulation shows a delayed pressure
rise which can be related with the fast circulatory flow around
the entrapped cavity shown in figure [1. The reliability of the
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Fig. 9: Pressure evolution on the veritical wall. Solid lines: two-
phase (py /px = 10, green line) and free-surface flow (o /px = 0,
red line) simulations. Symbols: experimental data from Zhou et al.
(1999).
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Fig. 10: Dam-break flow simulation and impact against a vertical
wall: color contours of the pressure field corresponding to the pres-
sure peak A in figure 9. Top: two-phase simulation (py /px = 10).
Bottom: free-surface simulation (py /px = 0).

latter result is clearly affected by the lack of modeling of the en-
trapped air. For py /px = 0, the final collapse of the empty
cavity results in the large pressure peak C which is considered
totally unphysical. On the other hand, on a longer time scale, the
two-phase simulation gives a rather realistic pressure evolution
and the slow decay of the measurements is captured rather well.

Actually, high frequency oscillations are predicted which are
not present in the measurements. In the numerics, these pres-
sure fluctuations are associated with the oscillation of the en-
trapped air bubble, and the number of the available experi-
mental samples does not allow a fine judgement. Generally
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Fig. 11: Dam-break flow simulation (py /py =
against a vertical wall: color contours of the pressure field corre-
sponding to the pressure peak B in figure 9.

0) and impact

speaking, beside other parameters, the dynamic behaviour of
such flow field is characterized by the non-dimensional quan-
tity Po/pxU*. For Po/pxU? < 1, the dynamic reaction of
the lighter fluid is weak and the bubble can be more easily en-
trapped, and large volume variations can be observed. For larger
values, say Pa/pxU? > 1, the volume variations are relatively
smaller and either the fluid tends to escape before the cavity clo-
sure, or the swrrounding liquid fragments and the cavity disap-
pears. So far, we have not developed a complete exploration of
the effects of this parameter which is left for future work.
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1 Introduction

The flow field around a ship is extremely complex, even for the
simplest case of motion through calm water with constant for-
ward speed. In particular, many vortical structures are originated
by the ship motion. Some of them are directly related to ship
breaking waves (Landrini er af. 2001). In other cases, vorticity
is created at the hull boundary and shed along and downstream
the ship.

In this paper, we report our ongoing investigations aimed to
gain fundamental understanding of the fluid dynamic processes
connected with the motion of a ship. In particular, we consider
a two-dimensional prototype problem consisting in a vertical
flat plate, piercing the air-water interface, and moving forward
with known velocity. This rather simple problem is meant to be
roughly representative of the fluid phenomena occurring around
the bow of a blunt ship and near a transom stern.

U

air

|i‘ﬂ

water

Fig. 1:
adopted.

Sketch of the considered problem and nomenclature

The problem is studied numerically by a Navier-Stokes solver
with a Level-Set technique to capture the air-water interface.
Details of the method are presented and numerical results are
discussed. Preliminary data from a companion experimental in-
vestigation, still in its infancy, are presented.

2 Numerical modeling
Background fluid-flow solver We assume that the evo-
lution of a two-fluid system is governed by the Navier-Stokes

equations

V-u
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- (
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where the density p and the dynamic viscosity p vary sharply
across the interface. The term 2akdsn is the capillary force,
with ¢ the surface tension, n the normal to the interface, # half
the interface curvature and the Kroneker delta ds is equal to

unity on the interface and zero elsewhere. Finally,
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is the rate of strain tensor.

A second-order approximation in time of Eq. (1) can be writ-
len as:
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and it is solved through a predictor-corrector scheme. To sim-
plify the following description, we name with F(1) the terms
that will be approximated through the Taylor expansion in the
two steps, that is
2V - D 20kdsm

+ -

P

[n the predictor step, the density at the time n + 1/2 is substi-
tuted with thatat n—1/2, and the term [F(w)]"*'/? is obtained
through a Taylor expansion form the previous time steps. The
term containing the pressure gradient is written as:

vpn+l,’2 _ vpn+'f;"2 3 vpu—l,’i vpn—l,"l
pu—l,"‘z - pn—l,"i pn—l,"'.! pn—l,’Q

Flu) =—(u V)u+

and the two-steps procedure to obtain the new velocity becomes:
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[n case of incompressible fluids, the previous equation becomes

~ it +1/2 n—=1/2
Vi _ vd W o +_?
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. . . +1/2 | 1/2
and it gives a first guess for pp*'/%, ud t'/% and p*+'/2. In the

iterative corrector procedure the term [F(w)]**'/? is obtained
through a centered Taylor expansion, and the pressure gradient
is wrillen as

; n+1/2
Ve _ Ll i Vpe
nt+1/2 = T a+i/2 n+1/2
Pr—1 Pr—1 k-1
withk =1,2,... the iterative step. For the predictor part
) gpn /2
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and using the divergence-free condition

Vi _ - ( Ve )
= W nt1/2
= Pr-1
From which we can work out pressure, velocity, density and vis-
cosity at the new iterative step until the convergence is satisfied.
For the spatial discretization, we have used staggered

erid and 2- and y-derivatives have been calculated using a
second-order approximation and ENO schemes.




Interface capturing The interface between the fluids is
traced using a the level-set function ¢. A narrow band around
the interface is characterized by its signed distance from the air-
liquid interface. It is used as well to smooth the discontinuity of
density and viscosity at the free surfuce. In particular the density
is written as p = f(¢). So the continuily equation becomes:

90 (0% . .. vs) =
6@(3.’.+u V@)—G

that is the transport equation for the distance function.

As the velocity field w is not compatible with the displace-
ment of a proper distance function a reinitialization of ¢ is nec-
essary after a given number of time steps. The reinitialization,
as introduced by Osher and Sethian [2], uses the equation

6 (Vé-Vo . e
7e + (Tar 1) o =0

(3)
where ¢ evolve in the pseudo time 7 until stationary conditions
are obtained. The standard solving procedure is based on an
ENO scheme for the calculation of the spatial derivatives. In
such schemes, an error is introduced at the interface and (3] pro-
posed to solve Eq. (3) by
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Though this procedure reduces the rounding error caused by the
level-set reinitialization, some smoothing is still visible and fur-
ther improvement is gained by using, for the interface cells,

0
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This formulation does not smooth the oscillations at the inter-
face, hence a weighted combination of the two methods has been
introduced at the interface:

o' = o — Ar((sign(¢?)|6% ;| = (arsDij + am D))

and, from our experience, a,s = 0-8 and a,, = 0-2 results the
best choice.

3 Discussion

The considered problem is characterized by the following non-
dimensional groups

Py = Un - pwlUrih Wiz hpwUly
ah’ T Jh

where h and Uy are the initial submergence and the maximum
velocity of the plate, respectively. The subscript w indicates the
water properties. In the following, lengths are made non dimen-
sional by h, and the force values are divided by pgh.

[n the numerical simulation, the plate velocity is described
by a Heaviside function U(t) = UmH(1). Figures 2-3
show the Navier-Stokes (laminar) simulation for Fr=0-8 and
Rez O(10%). Surface-tension effects have not been modeled
(We=0c). At the beginning, the fluid runs up along the forward
side of the plate (moving from left to right) and is sucked down
on the lee side. Atthe same time, the starting vortex appears and
progressively grows as time passes, until it is shed downstream
the plate. After that, a relatively small amount of vorticity is
injected in a rather thin shear layer.

On the forward side, the water reaches the maximum run up
and then slightly falls down, accompanied by the formation of
a plateau of water whose extension in the forward direction in-
creases as time passes. The water front steepens gradually and a
forward-plunging jet appears. As the breaking process develops,
the water level on the upstream side of the plate decreases and,
later on, increases again, maybe in a cyclical fashion, though the
length of simulation is too short for a definitive judgment. The
breaking process is characterized by the formation of a cavity
entrapping air and the splashing up of the water after the im-
pact of the plunging jet. As observed in experiments (Bonmarin
1989) and numerical simulations (Tulin and Landrini 2000), the
splash up may evolve into another breaking cycle with the for-
mation of a second forward-plunging jet and a (possibly weaker)
second splash-up structure according to the strength of the ini-
tial breaking front. Se far, we have not investigated this pro-
cess on a long time scale and the simulation is stopped before
the first splash up completely collapses down, under the action
of the gravity. In any event, this breaking process is an impor-
tant source of vorticity, besides the vorticity created at the body
boundary, though in the former case the phenomenon is intrinsi-
cally inviscid and related to the change of topology of the fluid
domain.

On the lee side, the starting vortex sucks down the interface
which evolves into a backward breaker. Also in this case, a cav-
ity entrapping air is formed and a residual clockwise circulatory
region is observed. Closer views of the rotational regions cre-
ated upstream and downstream through the breaking process are
given in figure 4.

Figure 5 shows the pressure force acting on the plate for
Fr = 0-8 and the separate contributions coming from right and
left sides. The force is positive in the positive z-direction. At
the (impulsive) start, a high overpressure on the left side and
a deep depression on the right one (pressure impulse) are ob-
served. This phenomenon is soon to decrease, leaving a positive
force on the left side and a negative force on the right, the lat-
ter mainly due to a depressional area around the lower tip of
the plate. This depression becomes the core of the nascent vor-
tex, and its separation is accompanied by the first peak of the
right force. After the starting vortex is detached, the pressure
decreases again around the lower tip and the force acting on that
side is dominated by gravitational effects. On the left side, after
the sudden start, the continuous piling up of water results in the
the peak load synchronized with the maximum run up. As soon
as the water front propagates away from the solid boundary, the
force decreases and does not show any signature of the interface
breaking observed immediately after. In the final part of the sim-
ulation, the small-amplitude oscillations of the left force are due
to the oscillation of the water level on the torward side of the
plate.

For smaller Froude number a similar evolution is observed,
and it is not reported for the limited space available. For Fr=1-2,
figure 6, a more vigorous vortex shedding is found without any
breaking events of the interface downstream the plate. Interest-
ingly, for this speed the interface moves down and reaches the
edge of the plate, resembling the case of a dry transom stern
in a ship. In general, for all the considered cases, on the up-
stream side the interface evolves into a forward-plunging jet,
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Fig. 2: Interface and vorticity field in water for Fr= 0-8. Non-
dimensional time increases from top to bottom (7 =0-12, 0-24, 0.45,
1.33,2.7).

with strength increasing with the Froude number.

Similar numerical computations has been performed in [5)
for the inviscid free-surface problem, with a vortex sheet ema-
nating from the sharp immersed edge of the plate by using a suit-
able Kutta condition. They have evidenced the presence of three
regimes as for the interaction between the free surface and the
vortex sheet, namely a subcritical regime, Fr < 0-7, where no

-4 -2 [) 2 E)
Fig. 3: Interface and vorticity field in water for Fr= 0-8. Non-

dimensional time increases from top to bottom (7 =3-06, 3-69, 4-68,
5:67, 6:39)

significant interactions between a single branched spiral vortex
and the interface occurs before the breaking events; a rranscir-
tical regime, 0-7 < Fr < 1.0, where the free surface stretches
the vortex sheet, causing its roll up, even though the interac-
tion is limited; a supercritical regime, Fr > 1-0, where the
vorticity affects significantly the free-surface motion. For the
pre-breaking regime, our results are consistent with these find-



Fig. 4: Velocity fields near the cavity entrapping air originated by
the folding and breaking of the interface for Fr=0-8. Top: forward
cavity. Bottom: backward cavity.
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Fig. 5: Pressure loads acting on the left (top) and the right (center)
sides of the plate for Fr= 0-8. The resulting force is plotted in the
bottom figure.

ings. The present numerical method can be used o investigate
further the viscous features of the vorticity-interface interaction,
as well as the post-breaking evolution. For example, figures 3
and 7 show that a new vortex is shed because of the downwash

3 [] 5
Fig. 6: Interface and vorticity field in water for Fr= 1.2. Non-
dimensional time increases from top to bottom (7 =06, 1.2, 1.8,
2.4)

induced by the breaking.
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Fig. 7: Interface and vorticity field in water for Fr= 0-6. and 7 = 3.

Never the less, our numerical scheme still presents some
problem related to the numerical diffusion of the interface across
the surface cells, which presently limits our analysis capability.
The most important feature of the surface capturing schemes,
above all of the one adopting the level set, is the possibility to
leave the mesh unaltered throughout the calculation as the inter-
face is followed using an analytical function ¢ directly linked to
density and viscosily. As the interface is smeared over at least
two cells, there is a diffusion error in the solution of the Poisson
equation which has to be added to the numerical diffusion error
in the calculation of the convection term and to the error in the
mass conservation.



Likely, the elfect of these errors is a wrong approximation
of the mass transport in the area where high vorticity is gener-
ated. For example, on the upper part of the plunging jets there
is a vortex whose wrong numerical handling create sometimes a
nose-up effect. However, it can be reduced using an appropriate
advection scheme as the superbee scheme. Also, we note that
the size of the submerged air bubbles decreases in time because
of the present limits of the method. Therefore, further improve-
ments are needed to handle accurately on a longer time scale the
post-breaking evolution.
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Fig. 8: Pressurce load on the right of the plate for different Froude
number.

Figure 8 shows the forces acting on the right side of the plate
for different velocities. As the maximum velocity increases,
the depressional area downstream of the plate becomes deeper,
causing a shift of the forces to higher values. At higher Froude
number, we observe an oscillation in the force diagram because
of the vortex shedding. This is apparent for F'r = 1-2. Interest-
ingly, for this case, the force on the right side vanishes because
of the reaching of dry conditions. second vortex, later no more
effects can be noticed on that side of the

4 First experimental results

We briefly report our preliminary results from experiments per-
formed in a flume 420 mm wide, 18 m long and a still water
depth of 700 mm. Analuminum vertical plate is towed along the
flume, and the initial draft is 47 mm, see figure 9 Displacement

Fig. 9: Experimental set up

and velocity are measured by an optical encoder and used to
drive the numerical simulations. Comparison of numerical and
experimental results for Re =~ 33000, We =~ 10000 and
Fr >~ 1 are ongoing. Standard water density, viscosity and
surface tension have been used, though fluorescent material has
been added to the water, and temperature and pressure condi-
tions have not been monitored. Figure |1 shows the experimen-
tal and the numerical evolutions for the corresponding instants
of time. The agreement is qualitatively rather good, and also
the vortical structures luckily evidenced by some ventilation ef-
fects are visible. Actually, some disturbances on the free surface

Fig. 10: simulation with surface-tension effects modeled. The su-
perbee scheme has been applied. (L = 0-37 s)

downstream the plate (now moving from left to right) are de-
lectable, partly due to some leakage from the sides of the plate
and the walls of the flume. The plunging of the upstream jet
is delayed in case of the numerical simulation because of the
problems previously mentioned. Also, some influence of surface
tension can also be seen: the jet observed in the experiments is
more rounded than the numerical one.

We have just modeled the surface tension and figure 10 re-
ports a very preliminary, yet encouraging, resull.
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INVESTIGATIONS OF TIP VORTEX CAVITATION INCEPTION
ON HYDROFOILS DEDUCED FROM PROPELLER BLADES
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° " [RENav (Institut de Recherche de I'Ecole Navale), 29240 Brest Naval, France

ABSTRACT

For the same ship propeller project, two propellers with identical propulsive performances and similar
geometry present totally different behaviors of tip vortex cavitation (TVC) during behind hull trials. The aim
of this work is to analyze the blade tip vortex flow both numerically and experimentally. For that purpose, an
original method is proposed which transforms the propeller blades’ geometry into corresponding hydrofoils.
The RANS (Reynolds Averaged Navier-Stokes) computations are compared to LDV (Laser Doppler
Velocimetry) measurements conducted in the ENCT (Ecole Navale Cavitation Tunnel). A good agreement is
found between the computed and measured TVC inception conditions. A particular attention is paid to the
velocity and pressure distributions computed in the very near field close to the tips of the two hydrofoils.
These results highlight differences between the two propeller blade tip vortex flows.

NOMENCLATURE
Propeller parameters

P1 and P2 Propellers T Propeller thrust [N]
D Propeller diameter [m] Q Propeller torque [N.m]
Riax Propeller radius [m] Vos Leading edge velocity [mn/s] at R=0.7
i Local radius [m] s U2 +(077n D)g
R=r1/R,u Dimensionless local radius ’

_ Vo1 Coy : :
H (R) Reduced pitch law Re——v—-— Reynolds number
D
Cos Chord [m] ol section R = 0.7 Kp= % Thrust coefficient
U Ship speed [m/s) pn-D
n, Propeller rotational speed [rps,rad.s™) Kq= ? g Torque coefficient
P, Vapor pressure [Pa] pn-D
Prar Reference pressure [Pa] J Kp -

S . ) nN=—— Efficiency
Y Dynamic viscosity [m/s] 2n KQ
J= U—B Advance coefticient o, and Gy Cavitation inception numbers
n
Pt <P, P.r—P,

Jnnlninul Nominal advance coefficient Gy :W Fpig = W

Hydrofoil parameters

H1 and H2 Hydrofoils deduced from P1 and P2 Vo Cos
at nominal operating condition Re I Reynolds number
X Axial coordinate [m] E
y Vertical coordinate [m] Co=1—gyr  Liftcoefficient
Z Spanwise coordinate [m] 2P= Yo
S Hydrofoil area [m’] C, = -————F: ~ P"i" Pressure coefficient
Vo Inlet velocity [m/s] 7P Vy
B Incidence angle [degrees] P —P, o ) ]
0, (R) Hydrofoil incidence law [degrees] L — m— Cavitation inception number

Fp Litt force [N]



INTRODUCTION

TVC inception depends on several factors, like water quality (Arndt & Keller 1992, Shen & al. 2001), model
scale (Keller 2001), the geometry of the blade tip (Pauchet & al. 1994, Fruman & al. 1995, Kuiper 2001) or
vortex intensity. This has been highlighted by numerous studies conducted on hydrofoils mounted in
cavitation tunnels. In this work, we focus on the influence of the blade tip geometry on TVC inception. In
the past, hydrofoils have been tested in order to characterize the physical effects of different geometrical
paramelers (skew, cross-section...). However, the automatic extrapolation to propellers of the numerous
results obtained on the hydrofoils remains difficult, particularly concerning TVC prediction. On the one
hand, the geometries of the tested hydrofoils largely differ from those of the propeller blades. For example,
the hydrofoils have usually rectangular or elliptical planforms, without any twist law, without any rake, and
without any skew or a very limited one as compared to that of a propeller blade. On the other hand, the
hydrofoils and propellers flow conditions are highly different because the hydrofoils are placed in the
straight inlet flow of the tunnel test section whereas the propeller blades are rotating.

A method has been developed at [IRENav which transforms a "rotating propeller blade" into a "hydrofoil
mounted in a tunnel”. The goal of this method is the characterization of propeller blade TVC behavior on a
simple hydrofoil mounted in the ENCT. The hydrofoil geometry is deduced from the propeller blade by a
geometrical transformation called "blade-to-hydrofoil” transformation (figure 1). The transformation, applied
to the blades of two propellers, P1 and P2, allowed the study of the propellers TVC behavior through the .
vortex [low analysis around the two deduced hydrofoils. The method was validated by both experimental
and numerical studies.

Cn
{9 LOW SHIP SPEED
P1 TVC FACE / ;
M J P1
P2 TVC FACE i PURBAcs
] P2
H=PA TVC BACK
—P2
i HIGH SHIP SPEED —————p
% = SHIP OPERATING CURVE
Figure 1: Propeller blade and its deduced 0 " g ]
hydrofoil. K

Figure 2 : P1 and P2 full-scale TVC inception
curves. Tests conducted at MARIN’s
depressurized towing tank results.

First, we present the different TVC behaviors observed on the propellers P1 and P2 during cavitation tests
conducted in a towing-tank. Second, the different stages of the "blade-to-hydrofoil” transformation are
detailed. Then, the experimental devices and the RANS commercial flow solver Fluents™ are presented.
Finally, the analysis of the experimental and numerical results allows the comparison of the TVC behavior
on the two hydrofoils deduced from the blades of the propellers P1 and P2.

]

1. POSITION OF THE PROBLEM : P1 AND P2 CAVITATION TESTS RESULTS

The two propellers P1 and P2 have been designed for a same project. Both geometries and corresponding
operating curves are very similar and provide the same thrust (identical Ky thrust coefficients) under their
respective operating conditions given by the nominal value of the advance coefficient J. The behind-ship-
hull propeller tests conducted in MARIN's depressurized towing tank on 1/16 scaled propeller models P1
and P2 have revealed similar cavitation behaviors, except for TVC, for which results are completely
different. The McCormick (McCormick 1962) extrapolation at full scale of TVC inception curves resulting
from these trials performed with models are presented in figure 2.

o



For low loads of the propeller blades, a cavitating tip vortex appears on the face of the blade (TVC face)
whereas for high loads the cavitating tip vortex appears on the back (TVC back). The bucket is the region of
this diagram where the TVC progressively disappears from the blade face and appears on the blade back.
The bucket of propeller P2 is centered on the operating curve of the ship. This is not the case for propeller P1
and as the ship advance velocity is progressively increased, TVC appears earlier on P than on P2.

How to interpret these differences ? The propeller trials highlight the strong influence of loading conditions
on TVC. As the main differences between the two geometries are concentrated in the tip region, we will
focus our flow analysis on the blade tip, our “blade-to-hydrofoil” transformation will be defined in order to
keep both this flow and the governing geometrical parameters unchanged.

2. BLADE TO HYDROFOIL TRANSFORMATION

Tip vortex investigations underline the strong influence of blade geometry and tip flow conditions on tip
vortex roll-up and cavitation. Therefore, the transformation will take into account both the geometrical
characteristics of the propeller blade and the flow conditions at the tip. For this study, we have chosen to
keep constant a maximum of the blade geometrical characteristics to facilitate the interpretation and the
exploitation of the results by the propeller designer.

2.1 Blade geometry and flow conditions at the tip

In the plane of the developed sections, the incident velocity magnitude depends on the rotation rate and ship
advance velocity and consequently on the advance parameter J. It is given by the following expression:

Uia®) =AU +(r0) =0, :+(”7R)3 (1)

This velocity magnitude increases with the radius R. The velocity incidence angle, called hydrodynamic
incidence, is delined as the angle between the inlet tlow direction and the local section chord at the leading
edge of each section. The hydrodynamic incidence law g?)J (R) is given by:

9, (R)=w(R) -, (R)

H
—(R)
W (R) = arctan( D

) (2)

with
J
o, (R)= arctan(—)
TR

As shown by expression (2), the hydrodynamic incidence depends both on the geometry through the blade
reduced pitch law %(R) and on the propeller operating conditions through the advance parameter value J.

2.2 Description of the transformation

The hydrofoil issued from the transformation will be placed in the tunnel uniform and straight inlet flow.
Since the incident velocity on the blade sections is inscribed in the plane of the developed sections, the
hydrofoil sections are constructed in these planes, and five out of six of the definition laws will be kept
unchanged: thickness, camber, chord, rake and skew.

As the tunnel inlet flow is horizontal, to keep the hydrodynamic incidence law ¢,( R) unchanged, the

reduced pitch law is transformed into an incidence law given by:

$;(R)=y(R)—a,;(R) )

Because of the J dependence of the hydrofoil incidence law, each propeller operating condition is
represented by a specific hydrofoil, called H’, each hydrofoil differing from the other by its incidence law.
In this work, we focus on the nominal operating condition. Then, the transformation is applied to the P1 and
P2 propeller blades for their nominal operating conditions and the deduced hydrofoils are called H1’ """
and H2'""™™!, respectively, or simply: H1 and H2. Their incidence laws are given in figure 3. These two
hydrofoils have been machined and tested.

The velocity magnitude at the leading edge of the blade sections, depending on the radius R (equation 1),
cannot be reproduced on the hydrofoil sections (figure 4) because of the uniformity of the tunnel inlet flow.
Consequently, due to the relative increase of inlet velocity on the hydrofoil sections close to the root, their



loads are greater than those of the corresponding blade sections located close to the hub. During the tests, the
overloading of the root has given rise to a sheet cavity sufficiently far from the tip to be of no consequence
on the tip flow.

Qynominal (degrés) 15.Leading edge velocity (m/s)
—Uincio (R)
5 ')
10| ===
0
-5 .
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'1003 05 07 . Figure 4: Velocity magnitude at the leading
Y - : ; 4 o s edge of the blade and hydrofoil sections
Figure 3 : Incidence laws of the hydrofoils H1 (Re=1.62 x 10°)
and H2. S .

The global incidence of the hydrofoil can be moditied by an angle B. This angle is measured from the center
of the root section chord, B =0° being associated with the hydrofoil nominal operating condition. The
incidence laws thus obtained, ¢43(R )= (¢, mna (R )+ ), are very close to the incidence laws of the

specific hydrofoils HI' and H2’, equation 3, when J is close t0 J ,omina- Indeed, the differences observed at
the tip do not exceed 5% if —1°<B < 1° Beyond | degree, the difference is increased. Consequently,
propellers and hydrofoils tests results will be compared only for operating conditions very close to the
nominal one.

3. EXPERIMENTAL SETUP

The cavitation tests are conducted for the hydrofoils H2 and H1 in the square test section 192 mmx 192 mm
of the Ecole Navale Cavitation Tunnel (Navaza 2002). The spans of the hydrofoils are equal to 120 mm and
represent 1/12 of the spans of the associated propellers blades. The hydrofoils cavitation tests are performed
at Vo = 10 m/s — the corresponding Reynolds number is then equal to 1.62x 10°, without any roughness on
the stainless—steel hydrofoils and without germs’ injection. The air content is close to 30%, and the free
stream turbulence level is lower than 2%. The TVC inception detection is based on a visual criterion, with
the help of a stroboscope which accentuates the liquid-vapor interfaces visualization. Inception is recorded
as soon as a vapor filament becomes visible in the wake of the hydrofoil.

4. COMPUTATIONS

RANS computations - conducted with the commercial CFD code Fluent5™ - are essential in order to
account for tip vortical structures, which are strongly linked to the boundary layer development on the
hydrofoil. The H-structured grids allow the control of the cells repartition in sensitive regions like leading
edge, boundary layer and tip region. The size of these grids reaches 700 000 cells. About 10 cells are located
in the boundary layer and about 15 cells are transversally located in the tip vortex core. Grid independence is
achieved by successive mesh refinements based on a criterion related to pressure. This vortex core
refinement is a prerequisite to properly compute the tip vortex flow (Dacles—Mariani & al. 1995).

At*the outlet (exit plane) of the computational domain a zero gradient condition, called "outflow", is
imposed. Symmetry conditions are imposed on the tunnel walls.

In this work, we focus on TVC inception on the hydrofoil or in the near wake region, and on the circulation
distribution. The over-diffusion of the tip vortex downstream the hydrofoil is not analyzed.

The computations performed with turbulent flow conditions (k—€ standard and k- RNG turbulence models)
led to an overestimation of the vortex diffusion. Indeed, several authors have shown numerically and
experimentally that the core of the vortex is a low turbulent region (See Dupont & Cerrutti 1992, Fruman &
al. 1992, Viot & al. 1998, Berntsen & al. 2001). Therefore, the first flow analyzis has been based on the
results of computations performed with laminar flow conditions.



5. RESULTS
5.1 Comparison of propeller P2 and hydrofoil H2 cavitation tests

The analysis of TVC on the hydroloil and on the propeller blade underlines identical TVC back and TVC
face behaviors. The propeller P2 and hydrofoil H2 TVC inception curves are compared in a ( B, o) diagram
in figure 5, where o is equal to Gy, for the hydrofoil and oy; for the propeller. The Ky nominal value
corresponds to the zero  value. For the nominal operating conditions of H2 and P2, TVC back appears in
the wake, in an intermittent way, for the same cavitation inception number Gy, = Go; = 0.45 . At the
opposite, TVC face takes place in a high way. Moreover, for the same operating conditions, sheet back
cavitation is more extended on the hydrofoil than on the blade. These three phenomena are explained by the
blade-to-hydrotoil transformation which, for similar tip loadings, overloads the central and root hydrofoil
sections as compared (o the blade ones. In conclusion, the propeller and the hydrofoil TVC behave
qualitatively and quantitatively in the same way when the flow conditions remain close to the nominal one.
For higher and lower values of B, the comparison is not relevant,
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Figure 5: TVC inception curves obtained in Figure 6 : H2 experimental and computational
the cavitation tunnel of the SVA Potsdam for TVC inception curves (Re=1.62x10°).
the propeller P2 and in the ENCT for the
deduced hydrofoil H2.
5.2 Comparison of hydrofoil H2 experimental and computational results

The RANS computations have been performed for H2 (B=0°, Re=1.62x 10%), with different mesh refinements.
The validation of the computational results is made through the comparison between computed tangential
velocity profiles and LDV measurements.

[n the near field, the computed tangential velocity profiles through the H2 tip vortex and the LDV measurements
are in good agreement. Far downstream, the maximum of the tip vortex tangential velocity is under-estimated
and the radius of the viscous core is over-estimated (Viot & al. 1998). The computed pressure coefficient in the
vortex core increases quickly downstream whereas the pressure coefficient estimated from the LDV
measurements decreases in the near field, for H2 nominal operating conditions.

The theoretical prediction of cavitation inception from the knowledge of the initially subcavitating [low domain
results from the comparison of the static pressure minimal value observed in the vortex with the vapor pressure
value. Because of the downstream excessive diffusion introduced by the code, computations do not allow the
prediction of TVC inception in the wake, i.e. close to the H2 nominal operating condition. When cavitation
appears at the leading edge or in the near field —back and face leading edge vortex cavitation, the numerical
prediction agrees with the experiments. The numerical TVC inception diagram, obtained from the computations
performed for H2 and different B values, is compared to the experimental one in figure 6 and shows that only
cavitation tests allow an accurate prediction of the hydrofoil cavitation bucket localization.

5.3 Comparison of hydrofoils H1 and H2 experimental and computational results

Experiments and computations have been conducted for the hydrofoil HI in the same way as for H2. TVC
inception diagrams and tip vortex characteristics are compared for the nominal operating conditions (f=0°,
Re=1.62x 10%). At B = 0°, which corresponds to the nominal operating condition, Hl TVC back appears in an



intermittent way, over the hydrofoil. When the cavitation number is decreased close to the H2 TVC back
inception number, cavitation is still present at the tip of HI.

For the two hydrofoils, the tip vortex is located on the suction side and the path of the tip vortex behind the
hydrofoil is lined up with the chord of the tip section. This observation highlights the importance of the choice
of the reduced pitch value at the tip for a better TVC control.

The tangential velocity profiles show that the HI tip vortex roll-up process occurs upstream as compared to the
H2 one. At the tip, the vortex intensity of H1 is greater than H2's. These results explain the shift of the HI TVC
bucket towards the lowest loads (i.e. p<0°) as compared to H2.

The computed pressure coefficients in the HI and H2 tip vortex core are compared in figure 23. The minimum
value of the pressure coefficient, reached on the hydrofoil itself and associated to the TVC inception number, is
lower in the HI tip vortex core than in the H2 one: Cp,,, = ~0.6 for HI and Cp,,, = —0.3 for H2. These results
agree with the experiments and explain the shift of the HI TVC bucket to a higher pressure level, as compared
to H2.

CONCLUSION

An original method has been developed at IRENav to characterize propeller blades TVC behavior by help of
hydrofoils mounted in a cavitation tunnel. The cavitation tests, conducted in the ENCT on the hydrofoil H2
deduced from a blade of the propeller P2, have shown TVC behaviors analogous to those observed during open
walter tests performed on propeller P2. Moreover, the propeller and hydrofoil TVC inception numbers are
quantitatively comparable as soon as the operating conditions are close to the nominal one. These results
provide, for the tested geometry, a first validation of the method.

The RANS computations conducted on hydrofoil H2 have been compared to the experimental results,
particularly concerning the prediction of tip vortex characteristics and TVC inception. The leading edge vortex
cavitation inception is well predicted. However, the accurate prediction of the tip vortex cavitation still remains
a problem when inception occurs far downstream from the foil tip. Therefore, as this behavior is observed at the
nominal conditions, experiments are still necessary to determine the TVC bucket localization.

The hydrofoils cavitation tests conducted in the ENCT indicate a better TVC behavior of H2 as compared to H1.
This result is in agreement with the TVC observed on P1 and P2, and provides a second validation of the
method in the case of the industrial problem to be solved in this work.
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1. Introduction

The simulation of non-stationary flows requires accurate modeling of the non-linearities
present in the Navier-Stokes equations. Due to the linearisation of these equations, it is
necessary to perform one or more non-linear iterations during the simulation process.

However, traditional solution methods, like segregated method where momentum and pressure
equations are solved successively, appear insufficient to deal with non-stationary flows
simulation. These procedures, where the unknown factors are not given simultaneously, are
called decoupled methods.

A fully coupled method of resolution is presented which solves simultaneously the momentum
and pressure equations, by solving one only linear system coupling velocity and pressure
unknowns [1]. The non-linear effects are thus handled better, and the non-linear residues
convergence is accelerated. In this paper the proposed solution methods employs the finite
volume formulation adapted to unstructured meshes [3] [4].

2. Numerical model

The bidimensional Navier-Stokes equations written in conservative form are integrated on each
control volumes, and discretised using the cell-centered location of the velocity and pressure
unknowns.

The mixed unstructured grid verifies the criteria of Delaunay triangulation. A wall mesh
refinement, supporting quadrilateral control volumes, makes it possible to model directly the
«boundary layer, while preserving the mesh orthogonality.

The overall accuracy of the implicit. schemes is second order in time and space. The three
points Euler implicit scheme is used for discretisation time. Convectif and diffusive terms
are discretised in space using deferred correction scheme [5] and centered differencing scheme



respectively. For unstructured meshes it is difficult to keep the second order accuracy in implicit
schemes based on compact molecules of discretisation; Since in this case only unknowns on
both sides of the control volume interface are used. Compact schemes are thus more adaptable
to ensure the solvability of the coupled linear system. In this case explicit corrections are
requires so that the overall accuracy approaches the second order. The algebraic transport
equation can be written as

u;, + C, + G.p, =F, with i=12 (1)

k#p T"'ik#p

In this equation, index p defines a value of center control volume, index & defines value
of nearest neighbors and center control volume{l,..,n,p}, u; a component velocity with
i = (1,2), p the dynamic pressure. The right member F,; contains explicit part resulting
to the approximation schemes.

Secondary velocity unknown w; is introduced, in order to write a relation between velocity at
the center control volume, secondary velocity and the discrete pressure gradient.

i, — u;p + G.p, =0 with i=1,2 (2)
A new algebraic equation is obtained for the secondary velocity:

u;‘p +C =F, with i=1,2 (3)

rp Biksgp

This discret equation can then be write in a continuous differential form. So that by cancelation
of the divergence operator a pressure equation is obtained. A Rhie and Chow mass flux
reconstruction [7] allows to obtain a discret pressure equation.

(Di)(u}), = DG p, =Fp with i=1,2 (4)

3. Fully coupled solver method

The fully coupled linear system Az = b for the velocity and pressure unknowns can be written
in the following form :

I -1 @G U Iy
C I 0 U* = FU-
0 D =D& P Fp

The matrix A is a sparse matrix, non-symmetrical with a large dimension, made up of several
blocks. Particularly the DG block concerning incompressible pressure equation is very ill-
conditioned.

A preconditioning LU is applied to the matrix 4. The preconditioning linear system is solved
using the iterative solution method BiCGSTAB-w (8] [10]. The figure 1 presents the reduction
order of the maximum normalized variation velocity during a time iteration, for flow calculation
around a cylinder (Re = 3000). A six order reduction is rapidly obtained after five non-linear
iterations.

The figure (figure 2) presents the residue convergence for the resolution of a simple problem
of thermic diffusion in a square domain for a structured and an unstructured grid.
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Figure 1. Non-linear iteration.

The residue convergence is faster for a structured grid than for the unstructured grid. First part
convergence is identical but residue decreases very quickly for structured grid in the second
part of the convergence process. That is certainly due to the multi-diagonal matrix structure of
the linear system in the particular case of a structured grid. This diagonal structure associated
with a preconditioning LU gives a better matrix conditioning, and thus a faster resolution by
iterative methods.

This iterative resolution method BiCGSTAB-w preconditioned LU on unstructured grid
requires once and an half times more iterations than for a structured grid. Nevertheless, it
ensures a regular residue convergence.

————— Structured grid

——————  Unstructured grid
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Figure 2. Residue convergence for a structured and an unstructured grid.

4. Numerical results

o Flow around one cylinder, Re = 3000 and Re = 9500

For Re = 3000, the numerical results of circulation length normalized by cylinder diameter
L/D are in very good agreement with experimental data [2] and with the numerical results
from a vorticity-current function formmlation [6] (figure 3). The circulation zone is however

3



slightly over-estimated beyond that from non-dimensional time ¢ = 2. The evolution of the
first component of velocity profile on the principal axis of the wake is in accordance with
experimental results [2]. For an non-dimensional time higher than t = 2 a slightly over-
estimated of the minimal velocity is observed.
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Figure 3. Circulation length and velocity profiles, Re = 3000.

For Re = 9500, the circulation length L/D and velocity profile of the first component on the
principal axis of the flow for five different times are presented on figure 4. Numerical results
are in very good accordance with the experimental data [2] and the numerical results for a
vorticity-streamlines function [6]. The circulation length evolution is predicted with a good
accuracy. Numerical results presented are in very good accordance with each experimental
velocity profile. Only a small over-estimation of velocity can be noticed for ¢ = 1.8.
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Figure 4. Circulation length and velocity profiles, Re = 9500.

Two cylinders coast at coast, Re = 2200

The figure 5 presents the temporal evolution position of internal and external vortex center,
for center to center distance cylinders of T/D = 1.5, Reynolds number Re = 2200. Parameters
a/D and b/D indicate respectively the position of the vortex center A or B compared with
the cylinder edge, and distances between the vortex centers A or B.

Positions of the internal vortex A and external vortex B are relatively well estimated. Vortex
velocity distance are in good agreement with experimental data [9]. The distance b/ D between
vortex A is slightly over-estimated whereas position center of vortex B presents a strong
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similarity with experimental data. One can notice that the internal vortex is released more
rapidly with higher velocity than the external vortex.
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Figure 5. Evolution of a/D and b/ D for two cylinders coast at coast T/D = 1.5, Re = 2200.

Two cylinders in tandem arrangement

Here we chose to validate the case of two cylinders in tandem arrangement, in laminar flow.
The non-dimensional cylinder distance center to center 7'/ D is equal to 2.

Figures 6 shows the mixte unstructured grid composed by 30000 cells used and the streamlines
at a non-dimensional time ¢t = 15 for a Reynolds number equal to 200. A computational time of
4 hours is necessary for simulation of a non-dimensional time ¢ = 15, on workstation Compac,
processor 516, 500 MHz. Two stable symmetric circulation areas appear between the first
cylinder and in front of the second cylinder. At the rear of the second cylinder, two instable
large circulation are generated, and alternate vortex is released.

Figure 6. Grid around two cylinders in tandem arrangement and flow at non-dimensional time £ = 15.

Figure 7 shows the non-dimensional drag coefficient Cy for each cylinder as a function of non-
“dimensional time . These results are in agreement with experiments reported by Zdravkovich
[11] which shows that for T/D = 2, the first cylinder experiences a drag coefficient. Cy around
1 (for a single circular cylinder, Cy = 1.35). The second cylinder experiences a drag coefficient
around —0.2. Computational values for drag coefficient present a very good agreement with
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experimental data. Particularly drag coefficient of rear cylinder is exactly —0.2, and an error
lower than 2.5% is obtained for drag coefficient of front cylinder.

front cylinder
Rear cylinder

Figure 7. Drag coefficients for two cylinders, Re = 200, T/D = 2.

5. Conclusion

The results presented here show the ability of the fully coupled method based on the
construction of one linear system in velocity and pressure in case of unstructured grids to
reduce non-linear residues very quickly. Comparisons of predictions for different unsteady
flows with experimental observations are in good agreement.

Further development of the method includes implementation of a turbulence model, in order
to simulate turbulent flow.
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Shape Optimization in a Complex Numerical Framework :
Advances and Limitations
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Introduction

Thanks to the progress in Computational Fluid Dy-
namics (CFD) during the last years, flow solvers are
now integrated in tully automated design optimiza-
tion procedures. In order to use these shape opti-
mization tools in an industrial framework to solve re-
alistic problems, some conditions are required. First,
the flow solver implemented should be able to pro-
vide accurate predictions of complex flows, for high
Reynolds number and realistic geometries. Indeed,
one may expect to solve three-dimensional problems
on unstructured grids, using sophisticated turbulence
models. For hydrodynamics applications, free sur-
face calculation methods are also required. This
condition suppose to solve optimization problems
in a complex numerical framework and will have
strong consequences for the choice of the optimiza-
tion strategy.

The second condition in order the design tool to be
practically used concerns the computational costs.
Since several expensive simulations have to be per-
formed, the costs are usually prohibitive and the
optimization strategy chosen should require as few
evaluations as possible.

Then, the optimized shapes obtained should pro-
vide interesting solutions to the problem studied.
Therefore, one may expect to find through the search
the global optimum. Multi-objective solutions are
also usefull, since opposite goals are often faced in
practice. An other requirement is that the final shape
is rather unsensitive to the physical or numerical pa-
rameters used.

This paper is devoted to the study of the optimiza-
tion strategies which could be used to fulfil the con-
ditions described previously. The difficulties arising
from the use ot a complex flow solver in the design
procedure are particularly explored.

The ISIS flow solver

The flow solver ISIS, developed in our laboratory
is included in the design procedure. It solves the
incompressible Reynolds-Averaged Navier-Stokes
Equations (RANSE) on unstructured grids, with a

strongly conservative formulation. The discretiza-
tion scheme uses a finite-volume method, gener-
alized to unstructured meshes composed of arbi-
trary volume shapes. Thus, calculations involving
complex grids may be taken into account. The
flow variables are stored at the center of the con-
trol volumes, surface and volume integrals being
evaluated using second order accurate approxima-
tions. The pressure-velocity coupling is performed
by a SIMPLE-like algorithm. Several near-wall low-
Reynolds number turbulence models, ranging from
one-equation Spalart-Allmaras model, two-equation
k — w closures, to a full Reynolds stress transport
R;; — w model are implemented in the flow solver.
Free-surface calculations are also possible through
surface-fitting or surface-capturing methods.

Optimization strategies

Several strategies may be considered to drive the
search of the optimal shape. In order to reduce
the computational costs, one may propose to use
gradient-based methods, characterized by a super-
linear convergence and an indepedance from the
number of design parameters. However, the imple-
mentation of this strategy in a complex numerical
framework is particularly tedious. Indeed, the eval-
uation of the derivatives of the cost function with
respect to the design parameters relies on the dit-
ferentiation of the flow solver, through the resolu-
tion of an adjoint equation [1]. Thus, this approach
is still limited to middly complex problems, involv-
ing typically unviscid flows. Two alternative ap-
proaches may be considered to evaluate the deriva-
tives : the automatic differentiation softwares and
an incomplete evaluation of the gradient, neglect-
ing the modifications of the flow. But these methods
are still limited by the complexity of flow solver in
the first case and the range of application in the sec-
ond case. Moreover, gradient-based methods have
several drawbacks. They can only consider one op-
timization criterion and are particularly sensitive to
the numerical noise arising from the use of complex
numerical methods and generating spurious local
optima. Considering all these remarks, the gradient-



based strategies are rejected in this framework. This
choice has crucial consequences, since all other ap-
proaches are submitted to the “curse of dimension-
ality”, the number of evaluations required being at
least proportional to the dimension of the problem.
Thus, the parameterization of the shapes should in-
volve as few design variables as possible.

Derivative-free deterministic algorithms, such as
the simplex method [3] based only on tunction val-
ues comparisons, may be easily implemented in the
design procedure, since the flow solver is consid-
ered as a "black box”, yielding both flexibility and
robustness to solve complex optimization problems.
Moreover, this kind of methods is less sensitive to
the noisy errors. Nevertheless, they are limited to
perform local optimizations including one criterion.

Theretfore, stochastic methods, such as Genetic
Algorithms (GAs), are particularly appealing. In-
deed, they have the capability to perform global
optimizations and solve multi-objective problems.
Furthermore, their robustness to solve multi-modal
problems has been shown several times in the past.
As derivative-free methods, their implementation in
the particular framework of complex CFD is quite
easy [4]. However, this strategy is particularly ex-
pensive, since the number of evaluations is about
ten times higher than the number required by de-
terministic methods. These costs make the use of
genetic algorithms unrealistic for three-dimensional
problems.

These observations look quite pessimistic. Al-
though the ultimate optimization strategy does not
exist yet, one may propose a realistic way, taking
the best parts of the different strategies and using
approximation methods to reduce the computational
time. Genetic algorithms have two main drawbacks:
the number of evaluations and the low local conver-
gence rate. To reduce the number of evaluations
through the flow solver, one may use the knowl-
edge already collected on the problem to build lo-
cal approximations replacing some expensive eval-
uations [8]. More precisely, all exact evaluations
through the flow solver are stored in a database,
whose entries are used to train Artificial Neural Net-
works (ANNs). They are employed to perform in-
exact pre-evaluations of the shapes at each genera-
tion, only the most promising shapes according to
the ANNs pre-evaluations being exactly evaluated
through the flow solver. In that way, the number
of expensive evaluations may be significantly re-
duced, without loosing the interesting capabilities
of genetic algorithms. Then, genetic algorithms are
only expected to determine the overall characteris-
tics of the optimal shape and the final local search is
performed by a deterministic algorithm, which can
quickly precisely define the shape.

This strategy, using hybrid genetic algorithms and

neural networks, has been successfully applied to
optimize the shape of a three-dimensional wing at
the incidence 82, at a location close to the salmon,
with respect to the lift [5]. For this case, an un-
structured mesh of about 800 000 cells was used,
for a Reynolds number Re = 210°, the near-wall
low-Reynolds number SST & — w model being em-
ployed. The shape is described by 12 design param-
eters. The figure 1 representing the evolution of the
cost function during the design procedure illustrates
the strategy. The calculations are performed us-
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Figure |: Evolution of the cost function

ing a multi-block parallelization technique, on sixty
R14000 processors. As seen, very complex prob-
lems may be solved using this strategy. Even if the
costs remain quite large, the CPU time has been re-
duced more than five times with respect to a simple
genetic algorithm. Although this approach has still
some limitations, such as the number of design vari-
ables involved, it seems to be a realistic and promis-
ing way.

Shape parameterization and mesh
update

When three-dimensional unstructured meshes are
employed, the parameterization as well as the mesh
update during the design process are difficult tasks.
Indeed, a curvilinear representation of the shape is
not available. Thus, the use of B-spline net repre-
sentations for instance is tedious. The nodes coor-
dinates on the shape and connectivities are the only
knowledge which could be used. Therefore, a Free
Form Deformation (FFD) technique [10] is used to
control the shape perturbations during the design
process. It consists in embedding in a box the ob-
ject to be detormed, and then modifying the space in



the box and the object inside by deforming the box,
rather than modifying the object itself. In that man-
ner, the shape of the object can be modified with-
out even identifying its nature. This powerfull ap-
proach provides an easy-to-use solution, requiring
only a few control points to control the deformation
of the shape. However, this general technique may
be inadequate to deal with a particular and special-
ized problem.

The automated mesh update is problematic, when
unstructured grids using a near-wall turbulence mod-
eling formulation is employed, since the grid vol-
umes are highly stretched near the wall to ful-
fil the condition y™ < 1. The spring anal-
ogy [7] previously used to deform two-dimensional
meshes [3], may hardly be employed for three-
dimensional problems. Therefore, one may recom-
mend to smoothly deform the shape and the mesh by
the FFD method at the same time, since the FFD ap-
proach relies on a spatial deformation. This strategy
may be carried out tor two-dimensional as well as
three-dimensional grids and is obviously adequate
for multi-block calculations. However, the quality
of the resulting grid is not ensured. An example
of deformation of a hybrid grid around the NACA
0012 airfoil is provided by the figures 2 to 4, using
the spring analogy and the FFD method. As seen,
the FFD method provides a smoother deformation,
but the orthogonality of the grid near the wall is not
maintained, contrary to the spring analogy. Never-
theless, the FFD method gives satisfactory results,
when small perturbations are taken into account.
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Influence of turbulence modeling

The previous sections provide some solutions to
solve optimization problems involving a complex
flow solver. However, one should validate the results
obtained and quantity the influence of the numerical
and physical parameters on the design procedure. In-
deed, some quantities have an influence on the res-
olution of the flow and thus on the optimal search.
For instance the grid size, the stopping criteria, the
discretization schemes, turbulence modeling, gener-
ate noisy errors during the evaluations [9]. A precise
study concerning the role played by turbulence clo-
sures for hull shape optimization was performed in
(6].

The flow around the KVLCC2 tanker is computed
at full scale (Re = 10%), using a structured mesh
of about 400 000 volumes. Two turbulence models
are tested: The eddy-viscosity SST & — w model of
Menter and a second-order closure R;; — w model.
The goal of the optimization is to homogenize the
longitudinal velocity field at the location of the pro-
peller, modifying the stern of the ship described by
6 design variables. It was shown that the two mod-
els give different predictions of the wake for the ini-
tial shape, the longitudinal vortex generated being
intensified by the second order closure [2]. However,
these differences are less important at full scale than
at model scale. We intend to quantify the influence
of the turbulence modeling during the optimization
process.

The figures 5 and 6 show the isowakes for the ini-
tial and final shapes. As seen, the optimal shapes
are characterized by a far more intense longitudinal
vortex homogenizing the flow and close to the vor-
tices observed at model scale. This evolution during
the design process enforces the influence of the tur-
bulence modeling. The figure 7 and 8 represent the
streamlines close to the wall. One may observe that
the topology of the flow has changed and is finally
similar to model scale flows. Therefore, some differ-
ences between the models appear, even at tull scale.
Looking at the optimized shapes (figure 9), similar
trends are obtained, although some differences are
noticed due to the fact that the second order clo-



sure provides a more intense prediction of the flow.
Therefore, lower modifications may generate a more
intense vortex. One may notice that the final shapes
tound correspond to U-shaped hull. The evolution
of the cost function, given in figure 10, shows a re-
duction of 70% of the velocity mean deviation at the
propeller location. The reduction is lower for the
second order closure. This phenomena is maybe due
to the presence of more complex turbulence struc-
tures in the wake, which are not described by the
linear eddy-viscosity model.

Finally, this example underlines the influence of
turbulence modeling in the framework of hull shape
optimization. Although its role was a priori less im-
portant at full scale, it was shown that the choice of
the turbulence model may have a crucial influence,
when a sharp optimization process is performed.

Conclusion

This study explored ditferent strategies to solve
shape optimization problems involving complex
flow solvers. As seen, the choice of the optimizer
strongly depends on the framework and has cru-
cial consequences. Genetic algorithms have sev-
eral advantages over deterministic approaches. It
was shown that their use is now realistic, providing
that acceleration techniques are employed, such as
inexact pre-evaluations through artificial neural net-
works. Some practical ditficulties still exist, for in-
stance the mesh update for three-dimensional prob-
lems. However, the main limitation may be the in-
fluence of turbulence modeling on the design pro-
cess for some problems, since this modeling error
cannot be controled, contrary to other numerical pa-
rameters, such as grid size or partial convergence.
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Figure 5: Isowakes for the SST k& — w model Figure 6: Isowakes for the R;; — w model
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Figure 7: Streamlines for the SST k& — w model

(a) Initial (b) Final

Figure 8: Streamlines for the R;; — w model
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Abstract

This paper is devoted to the numerical simulation of water diffraction in viscous flow. An original approach using a
diffracted flow defined as the difference between total and incident flows is followed. The incident flow is defined
explicitly using nonlinear potential flow theory; Navier-Stokes equations and nonlinear free surface boundary
conditions are solved for the diffracted flow only. This procedure, which is very efficient in terms of computing time
and accuracy, was primarily developed by Ferrant (1996) for 3D non linear wave-body interactions in potential theory.

INTRODUCTION

Today Numerical Wave Tanks (NWTs) have become efficient tools for coastal or ocean engineering problems. First
NWTs were based on the potential flow theory, following the Mixed Euler-Lagrange Method introduced by Longuet-
Higgins and Cokelet (1976). Potential flow nonlinear NWTs were developed by Cointe (1989) in 2D or Beck (1994) in
3D, among many others. Alternative models based on RANS (Reynolds-Averaged Navier-Stokes) Equations with finite
difference or finite volume methods may be developed, allowing vorticity and viscous effects occurring in wave-body
interaction problems to be modeled. In such methods, the interface can be updated by different manners : the free
surface capturing principle has been used by Harlow & Welch (1965) or Miyata (1986) with the Marker and Cell
(MAC) method or Hirt & Nichols (1981) and many others with the Volume of Fluid (VOF) method. Examples of
interface tracking methods may be found in Daubert & Cahouet (1984) or Yeung & Ananthakrishnan (1994)

Wave generation and absorption are of course of primary importance in such numerical simulations. Wave
generation is usually performed by the simulation of a wavemaker on the upstream boundary of the wave tank, which is
equivalent to the prescription of a wave kinematics on this boundary. The generation of waves by a pressure patch (see
Armenio and Favretto 1997) acting over a narrow area of the free surface is advantageous because the upstream
boundary can be used for wave damping. This damping can be achieved by implementing an open boundary condition
(Orlanski 1976) or by modifying free surface boundary conditions ( see e.g. Clément (1996) for the absorption in
potential NWT’s). However wave generation and wave damping remain an issue in NWTs based on RANS equations.

In RANSE NWT’s a fine grid (more than 50 nodes per wavelength) is necessary for a correct simulation of wave
propagation, without damping or dispersive effect, leading to large CPU. Moreover wave reflections on the body or on
the downstream boundary and consecutively on the upstream boundary are going to affect the incoming wave train: as a
consequence, the useable duration of the simulation (for computation of hydrodynamic loads on the structure for
example) is usually limited.

In this paper a new formulation is proposed which suppresses these limitations by modifying the initial problem in
order to solve the diffracted flow only. This approach was previously used for potential flow model in 2D (Schenberg &
Chaplin 2001) or 3D cases (Ferrant 1996). It consists in splitting all unknowns of the problem (potential and free
surface elevation) in a sum of an incident term and a diffracted term. The incident terms are described explicitly. Here
splitting of unknowns will be applied to a 2D viscous flow solver (Gentaz et al. 2000) whose main properties are
described hereafter. The case of a regular wave train on a submerged square body is studied to demonstrate the viability
of the proposed approach.



NUMERICAL PROCEDURE

The initial RANSE Solver

The fluid domain is discretized by a structured monoblock grid. A free surface tracking method is used to update the
interface : at each time step the mesh is regridded following the new shape of the free surface. RANS Equations and
fully nonlinear free surface boundary conditions are discretised by 2™ order finite difference schemes in space and time.
A pressure equation is obtained by combining the equation of mass conservation with transport equations following the
Rhie and Chow procedure : thus checkerboard oscillations classically associated with center 2" order schemes are
suppressed.

An original method called fully-coupled method (Alessandrini and Delhommeau, 1995) is used to solve the
discretized problem : at each time step all equations (RANS Equations, pressure equation, free surface boundary
conditions, no-slip conditions) are collected in a single large and sparse linear system which is solved by a bi-CGSTAB
algorithm. With such a technique the velocity-pressure coupling and nonlinear convergence are improved compared to
weak coupling algorithms as SIMPLER, which is very beneficial for the accurate simulation of unsteady flows.

Definition of the diffracted problem
To consider the single diffracted problem primitive unknowns (Cartesian components of velocity (u“) with ae {12},
pressure p and free surface elevation /) are decomposed as follows :

u® = ug +uj
P=p,+py ae{l2} (1)
h=h, +h,

where variables with the underscripts / and D represent incident and diffracted variables respectively.
This decomposition is then introduced in the set of initial equations by assuming that the incident wave flow verifies
RANS Equations :

- RANS equations :

oup, +(u‘, . \ouj, el duj _ _9pp e )Bzug +§KL dup N ou}, @
o VTP opr TP el T e o o | axd x®
. du,
- Mass conservation : =0 (3)
dx’
- Free surface boundary conditions :
; ; 5 4 oh oh 2
(i) kinematic condition _ a—[’) +ul gtl‘ + (u,' +ul )ﬁ =u} 4)
. . ou)
(i1) normal dynamic condition Pp = pghy, +2p(v +v, )gu-—fj— nn, (3)
X
s ; s 5 du’
(iii) tangential dynamic condition (njtf. +n;t; )_8";1_ =0 (6)

In equations (2) to (6) terms with incident variables (velocities, velocity gradients, free surface elevations and free
surface elevation gradients ...) are explicitly computed knowing kinematics and interface position of the incident flow.

Models of incident flows

For numerical results presented below a non linear regular wave train has been used for the incident field. An
algorithm based on the stream function theory of Rienecker and Fenton (1981) has been implemented.

A non linear irregular wave train could be easily prescribed by a spectral formulation. This kind of procedure has
been already developed by Ferrant & Le Touzé (2002) combining a spectral formulation and a Boundary Element
Method (BEM) to simulate an irregular wave train interacting with a 3D body under potential flow theory.



It has been supposed hereafter that incident wave flows verifies RANS Equations in order to establish equations (2)
to (6) for the diffracted problem. This not strictly exact because incident flow models used here are based on potential
flow theory. However the error made with this assumption is negligible in practical applications.

Finally the combination of incident potential flow and RANS solvers for the diffracted problem can be summarized
as follows : At each time step of the computation the geometry of the fluid domain is updated. The kinematics of the
incident wave flow is calculated on this updated grid and then the diffracted problem defined by equations (2) to (6) is
solved following principles of the viscous flow software described previously.

RESULTS

Fig. 1 : Vorticity field around the immersed structure

The interaction between regular waves and a fixed submerged square cylinder (figure 1) has been studied to validate
the method. This case was studied experimentally by Arai (1995) and numerically by Armenio and Favretto (1997).

The water depth is #=0.78 m. The submerged square cylinder is 0.045 m in breadth and its center is 0.093 m below
the mean water level. The wave period is 7=1.05 s. Simulations were be carried out for wave steepnesses
2¢,/ H varying from 1/191 to 1/24 (where &, is the wave amplitude). Thus wavelength is about A=1.735 m,

depending on the amplitude. Corresponding Keulegan-Carpenter and Reynolds numbers range from 0.447 to 3.58 and
860 to 6900 respectively, Consequently numerical simulations were run with the assumption of laminar flow.
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Fig. 2 : Variation of vertical hydrodynamic loads with time for
2¢,/ H =1/191 (top) and 2&, / H =1/43 (bottom)

A 39000- nodes grid is used for computations. Hydrodynamic loads are computed and compared with Armenio &
Favretto’s results for two steepnesses: 1/191 and 1/43. Figure 2 shows the time series of vertical hydrodynamic loads Fy
acting on the immersed square section.



For the smaller amplitude a periodic regime is quickly obtained, owing to the small vortical component in the
diffracted flow. On the contrary the shedding of vortices is very strong for the larger steepness of 1/43 and this shedding

prevents the obtention of a periodic steady state.
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Fig. 3 : Rotating force for wave steepness 2&, / H =1/191
Left : Armenio & Favretto’s computations. Right : present computations.

Figures 3 and 4 show the rotating force (vertical component Fy versus horizontal component Fx) for steepnesses
17191 and 1/43 respectively. On both figures present results are again compared with those of Armenio & Favretto
(1997). The viscous NWT developed by these authors is based on an improved MAC method to calculate free surface
elevation. Waves are generated by a periodic time variation of the pressure at the free surface. In this method the total -

unsteady flow is computed.

wave steepness = 1,43

Fy [N]
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Fig. 4 : Rotating force for wave steepness 2¢&, / H =1/43
Left : Armenio & Favretto computations. Right : present computations.

On the contrary in the present study RANS equations are solved for the diffracted flow only, and the total flow is
obtained by summing the diffracted flow with the explicit incident flow. For both steepnesses the amplitude of
horizontal and vertical forces given by present computations is in very good agreement with results of Armenio &

Favretto (1997).
Finally hydrodynamic horizontal and vertical loads (per unit of length) have been decomposed following the

Morisson equation (7).

(7N



D is the projected area of the body per unith length in both direction, p the water density,
wy(e)uj(e)a)(t)and i} (¢) velocity and acceleration components at the position of the body, |u,'|and|uﬁ‘ the amplitudes

of horizontal and vertical velocity components, CM, and CM, the coefficients of the inertial forces in phase with
acceleration, CD, and CD, the coefficients of drag forces in phase with the fluid velocity.

Practically these coefficients are computed by using a Fourier decomposition of time history of horizontal and
vertical loads in a moving window. Coefficients of the Fourier decomposition in cos(wr)and sin(ax) lead to the
determination of the inertial coefficients CM, and CM,. Terms of higher order are not reproduced here but could give
higher-harmonic components of forces.
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Fig. 5 : Inertial coefficients in horizontal direction (left) and vertical direction (right) versus KC number

Inertial coefficients CA, and CM, are compared with Armenio and Favretto computations and Arai experiments in
figure 5. The agreement is quite good showing a decrease of coefficients with KC increase except for KC around 3
where present computations are comparable to Armenio & Favretto’s results but underestimate experimental values.
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In figure 6 the Fourier decomposition is shown for two steepnesses. The moving window is one wave period long.
For the weaker steepness of 1/191, the average component or terms in cos(wr)andsin(wt)are sensibly constant after the
first four seconds during which the incident wave field is gently introduced in the computation. This is due to small
vortices which interact with the body at this steepness. On the contrary the signals are perturbed for the steepness of
1/43 that is coherent with the strong vortex shedding in this case. This conclusion is confirmed by Armenio &



Favretto’s results in figure 5. The variance of results (shown by triangles for each KC number) increases indeed when
KC becomes larger.

CONCLUSION

A new approach for wave-body interaction in viscous flow has been presented here. Instead of computating the
whole velocity, pressure and free surface fields, the diffracted flow only is computed by solving RANS Equations. The
incident wave field (which is nonlinear, either regular or irregular) is prescribed explicitly.

First results concerning the action of non linear regular wave field on a submerged square cylinder are encouraging
and demonstrate the effectiveness of the method. With this approach classical problems of reflection of waves on bodies
or boundaries that lead to a drastic reductions of useful time of calculation are avoided.

Besides non linear incident wave fields defined by domain spectral method will be considered to extend this
approach to irregular wave diffraction (Ferrant et a/., 2001) and this approach will be developed for a three-dimensional
RANS Equations solver.
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Unstructured Multigrid Method for Ship Flows

Takanori HINO and Nobuyuki HIRATA *
National Maritime Research Institute, JAPAN

1. INTRODUCTION

Modern ships have a complex shape and the presence of propulsors and various appendages further
increase their geometrical complexity. Therefore, hydrodynamic design tools for ship hull forms should
be able to cope with bodies of complex geometry. Due to its flexibility of handling complex geometry,
unstructured grid methods are expected to be one of the powerful CFD (Computational Fluid Dynamics)
approaches for use of practical design applications. Flow solvers for ship design are also required to have
capability of free surface How simulations since a free surface has significant effects on the hydrodynamic
performance of ships.

However, unstructured grid approaches generally require larger amounts of memory and CPU time
than structured grid counterparts. Memory saving can be achieved to some extent by using an adaptive
grid method, in which grid density distribution is optimized. Thus, CPU time reduction is essential for
a practical use of an unstructured grid method. In the present study, a multigrid method which enables
the fast convergence for steady state flow simulations is applied to an unstructured Navier-Stokes solver
with a free surface capability.

In order to demonstrate the efficiency of the present approach, numerical simulations of Aows around
ship hulls are performed.

2. NUMERICAL PROCEDURE

2._1 Flow Solver

The flow solver used in this study is called SURF (“Solution algorithm for Unstructured RaNS with
EVM?) which is under development at National Maritime Research Institute[l, 2, 3. The governing
equations are the 3D Reynolds averaged Navier-Stokes equations for incompressible flows. Coupling
between pressure and a velocity field is made by artificial compressibility approach. The final form can

be written as follows: v v v
dq  de=e®)  OF=f") Ag-g¥) _
at dx dy Oz

0 (1)

and )
g=[p v v w]?

In the above, all variables are made dimensionless using the reference density gy, velocity Uy and length
Ly. In case of [ree surface Hows, pressure p is modified as

>

p=p + E
where p* is the original pressure and F is the Froude number, Uy/\/gLg, with z being the vertical
coordinate. The velocity components in the (z,y, z) direction is expressed as (u, v, w).
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The inviscid Auxes e, f and g and the viscous fluxes ¥, f¥ and gV are defined as:

Bu Bu Gw 0 0 0
2
uT+p v w v Tz v Ty v Tig
e=|“ Pl =2y |e=]| Uv | &= U= L g¥ =
uv v+ p wy Txy Tyy Tyz
2
u vw WD Tax Tyz Tzz

where 3 is a parameter for artificial compressibility and 7;; = (% + ) (g—‘;j + %1;‘-1) R is the Reynolds
number defined as Uy Ly /v where v is the kinematic viscosity. v; is the non-dimensional kinematic eddy
viscosity which is determined by the Splart-Allmaras one equation model[4] or its variant[5].

Since a basic numerical procedure for the Navier-Stokes equations are described in references(1, 2],
only the brief outline is given here and the treatment of free surface and the multigrid method are
described in the following sections.

Spatial discretization is based on a cell-centered finite-volume method. A computational domain is
divided into unstructured polyhedral cells and flow variables (pressure, velocity and eddy viscosity) are
stored in the center of each cell. Cells whose shape are hexahedra, tetrahecra, prisms or pyramids can
be used and the combinations of these cells give greater flexibility for handling complex geometry.

For the inviscid fluxes (convection terms and pressure gradient terms), the second order upwind
scheme based on the flux-differencing splitting of Roe[6] with the MUSCL approach is employed. The
viscous Huxes are evaluated by the second order central scheme. Thus, the overall accuracy in space is
the second order.

The backward Euler scheme is used for the time integration. Local time stepping method is used,
in which time increment is determined for each cell in such a way that the CFL number is globally
constant. The linear equations derived from the time linearization of the fluxes are solved by the Gauss-
Seidel iteration.

2.2 Free Surface Treatment

Free surface is an interface between air and water in the present applications. Free surface condi-
tions consist of kinematic and dynamic conditions and they are implemented in the interface capturing
framework.

The kinematic condition is the condition that fAuid particles on a free surface remain on an interface.
This condition is implemented based on the localized level set method[7] which improves the efficiency
of the original level set approach[8] used in the previous version of the present code[3].

Since most of ship hydrodynamics applications require a flow field of water region only, one-phase
fow approach is used, i.e., the flow equations are solved only in a water region. Flow variables in an
air region are, therefore, extrapolated from a water region in such a way that the dynamic condition on
free surface boundary is satisfied. This method also has an advantage that it is not necessary to cope
with large density difference between air and water. At this point, the present method differs from the
original level set method[8] where two-phase flow approach is employed.

The dynamic free surface condition can be approximated by the following two conditions. 1) the
velocity gradients normal to the free surface are zero. 2) the pressure on the free surface is equal to
atmospheric pressure. In order to satisfy the first condition, the velocity components are extrapolated in
the direction normal to the interface. Following the method introduced in (7], this is achieved by solving
the following convection equation in an air region for the pseudo time 7.
dq Vo .
or " Vel Vg=10 (2)
Note that the quantity —V¢/|V¢| is the unit vector normal to the interface whose direction is from water
to air. In the region away from the interface where ¢ is constant, —V¢/|Ve| is replaced by the vector
(0,0,1)7.



The pressure boundary condition is written as
h

p = 5 on the free surface (3)
where atmospheric pressure is assumed to be zero and ) is the z-coordinate of the interface. For an air
cell which is next to a water cell, pressure is extrapolated by computing the approximated location of
free surface using the level set functions of both cells. See reference[3] for detail. In case that an air cell
has several adjacent water cells, the pressure value is obtained by taking the average of the extrapolated
values from each water cell. In the remaining air region, pressure is extrapolated using Eq.(2).

2.3 Multigrid

A multigrid method is known as the extremely efficient way to get fast convergence. The concept of
a multigrid time stepping applied to the solution of hyperbolic equations is to compute corrections to
the solution on a fine grid by the time-stepping on a coarser grid. This is called a geometric multigrid
and successively coarser grids should be generated geometrically from an original grid.
The procedure of the multigrid method is as follows. Equations to be solved is written as
dq ,
0 = =) (4)
and the subscript & denotes the grid index.
First,the solution g, is obtained in the fine grid () by solving
Y - _Rifay) )
by the numerical scheme described above, i.e., the Euler-backward scheme and the Gauss-Seidel iteration.
The solution is transferred from the fine grid (k) to the next coarser grid (k + 1) by

(0) k+1
it = T;.:+ qs. (6)
where T,‘f“ is a transfer (restriction) operator for a solution defined as
k r r o
T = (O @ Vi) / Vit (7)

where the sum is over cells to be fused to a coarser grid cell and V' is a cell volume. The solution in the
coarse grid is updated by solving the equation
g1
dt

with the same manner except that the spatial operator Ry, adopts the first order scheme and q,‘:'H is
obtained. P in the above equation is called the forcing terms in the coarse grid (k + 1) defined as

Pi1 = Qi Ri(qy) — Risa(al),) (9)

where Qﬁ“ is another transfer operator for a residual and is the sun of the residuals of cells to be
merged into a coarser grid cell, i.e.,

— “Rk+1(qk+1) — Py (8)

Q¥ Rilgy) = Y _(Ry) (10)

q;f_H - qﬂl gives the correction of the solution at the grid (k + 1) which reduces the residual in the
finer grid k due to the forcing terms added in the coarse grid equation above. Finally, the correction is
transferred back from the coarse grid (k + 1) to the fine grid (k) by
« + ke + (0)

qk =4y I IR:-{-](QI\:-}-I - qk-{-l) (11)
where I,fH is an interpolation (prolongation) operator for a correction. Simple injection is used for I,ff‘H
in the present scheme. A multigrid cycle employed here is V-cycle in which the equations are frst solved
at the finest grid and the solution moves down to the coarsest grid with an update of a solution at each
grid and the interpolation is used in the transfer of correction from the coarsest grid to the finest one.



3. RESULTS

3.1 KVLCC2

The ship model used is called the KRISO VLCC2 (KVLCC2) which was one of the test cases in
Gothenburg 2000 Workshop for Numerical Ship hydrodynamics(9]. In this case, a free surface is treated
as a symmetric plane and the Froude number is set zero, while the Reynolds number is set 4.6 x 10°
which corresponds to the model scale of Lyp = 5.5172m.

The grid used is based on the structured grid of 0-O topology with 256 x 48 x 64 hexahedral cells. Four
level multigrid is used for this computation. The coarser grids are generated based on the information
of the structured grid.

Shown in Fig. 1 is the comparison of convergence histories between a single grid computation and a
multigrid one. Horizontal axes are the work unit which corresponds to the CPU time required for one
multigrid cycle. It is obvious that the multigrid case accelerates the convergence significantly.

Hull surface pressure distribution is shown in Fig.2. The result appears to be reasonably well compared
with other results presented in the Workshop([9].

3.2 KCS

The second case is for free surface flows around a container ship. The ship hull used is called the
KRISO Container Ship (KCS) which was also one of the test cases for the Workshop at Gothenburg[9].
The computation is performed for the model scale in which Lyp = 7.2786m and the Froude number and
the Reynolds number are set 0.26 and 1.4 x 107, respectively.

The computational grid is generated as a structured grid of 0-O topology with 128 x 24 x 32 cells
and its data structure is converted into that of an unstructured grid. The three level multigrid is used
in this case. Again, the coarser grids are generated based on the structured grid data.

Counvergence histories are shown in Fig.3. Although the full convergence is difficult to achieve due
to the nature of free surface capturing approaches, the total drag history shows reasonable convergence.
The multigrid acceleration can be observed in this free surface flow simulation as well.

The computed wave contour around a ship hull, which is the iso-surface of ¢ = 0, is compared with
the data measured at KRISO([9] in Fig.4. The computation and the measurement agree well, although a
finer grid is required to obtain a more accurate wave field away from a ship hull.

4. CONCLUDING REMARKS

An multigrid method for an unstructured Navier-Stokes solver has been developed. The acceleration
of convergence is demonstrated both for a double model flow simulation and for a free surface flow
simulation.
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NUMERICAL SIMULATION OF PROPELLER-RUDDER INTERFACE

Jean-Marc Laurens and Frangois Grosjean (Ensieta)
(laurenje@ensieta.fr)

A mumerical method coupling a potential flow code and a RANS solver has been developed to compute
the hydrodynamic coefficients of a rudder operating within a propeller slipstream. The obtained results are in
good agreement with available experimental results. Moreover, the computational velocity allows a parametric
analysis of the interaction (rudder position, propeller load, etc.) 1o be carried out and the method is extendable
to other configurations or studies like contra-rotating propellers. In unsteady state mode, amplitudes of
fuctuations of hydrodynamic forces on the rudder are far from negligible and, depending on the configuration,
[frequencies of the fluctuations are not only at blade rate but also at blade rate multiples (BR-, BR;, etc.) and at
frequencies comprised between BR and RPM when the propeller is itself operating in an unsteady state mode. It
has been verified that the averaged hydrodynamic coefficients of the rudder in unsteady mode are similar to the
results obtained in steady state mode. Several configurations are simulated in unsteady state mode in order to

assess the influence of geometric parameters on the hydrodynamic coefficients of a rudder operating within the
propeller slipstream.

Experimental results obtained by Molland and Turnock (1994) show that, even when using a
correction formula for wake constriction as proposed by Soding in Brix (1993), the actuator
disk theory used to determine the flow acceleration downstream of the propeller leads to an
overestimate of the hydrodynamic coefficients of the rudder when the propeller is heavily
loaded. Nowadays, a full explicit Navier-Stokes simulation of the propeller rudder system still
requires a lot of computational power as well as considerable preparation time which do not
allow parametric studies to be carried out within a reasonable time scale.

Based on years of previous research and development, three methods coupling a potential
flow code and a Navier-Stokes solver by way of induced velocities were developed in order to
simulate steady and unsteady flows around complex systems such as the propeller / rudder
interaction. The experimental data and results of the three different methods were compared
and satisfactory results were obtained, see Figure 1. The third method (M3) was then selected
for further development. Not only because the obtained results were closer to the
experimental results but also because it seemed to be the most stable method. Furthermore,
changing the set-up to simulate various configurations is not very time consuming and
relatively few computational resources are needed.
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Figure 1. Rudder lift coefficient (C.) at 9.2° angle of attack versus propeller load coefficient (Kt/J*).



The retained method consists in a simulation of the propeller using the potential flow code.
The propeller induced velocities are subsequently
computed within a plane parallel to the propeller disk
and situated immediately downstream. These
velocities are then imposed as velocity inlet boundary
conditions within the Navier-Stokes domain of
computation where no obstacles are present. The
velocities computed by the RANS solver are then
interpolated at the control points of the surface mesh
of the rudder which is simulated using the potential
flow code. The opposite figure illustrates the method
used for a standard rudder propeller configuration.
The propeller induced velocity field can be either

averaged in time to proceed to a steady state

simulation or taken per time step in order to perform an unsteady state simulation, see Figure
)

Figure 2. Example of a propeller induced velocity field. Averaged (left) and instantaneous
(right).

A large number of configurations were simulated in order to assess the importance of
geometrical parameters such as the lateral and longitudinal position of the rudder. Simulation
results have shown that the hydrodynamic coefficients of the rudder can be quite different
when operating within the slipstream of various different propellers with the same load. The
propeller load distribution influences the overall hydrodynamic coefficients of the rudder. The
hub diameter effect was examined and was found to be of some importance but did not
explain all the differences. The negative rudder drag which generates additional thrust and
increases the propulsive efficiency can also be assessed.

The example of steady state simulation results presented at Figure 3 shows the influence of
the lateral position of the rudder in terms of lift coefficient for a constant NACA0020 section
rudder at zero degree of attack working within the propeller slipstream operating at a thrust
coefficient of Cy=2.
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Figure 3. Rudder lift coefficient at a zero angle of attack operating in the propeller slipstream
with a Cy=2 load. The graph background shows the Cp distributions obtained for 5 lateral

positions of the rudder as well as the velocity vectors induced by the propeller in the entry
plane.

The method is sufficiently flexible to be used for other types of configurations such as contra-
rotating propellers or twisted rudders.

An example of pressure coefficients, Cp, distributions and wakes for a twisted rudder
operating within the slipstream of a propeller is presented in Figure 4 together with the same
results obtained for the conventional rudder. The propeller load is Cy=2, the rudders are at a
zero degree angle and the configuration is standard. The hydrodynamic coefficients for the
rudder in this case and the open water case are presented in Table 1. The propulsive efficiency
of the twisted rudder increased and the lift decreased.
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Figure 4. Pressure coefficients, Cp, distributions and wake for a twisted propeller compared
with the conventional rudder.



Table 1. Lift and Drag coefficients, Cr and C,, obtained for the two rudders

Open water With propeller

Cq C. Cqy CL
Conventional| 5.800E-04 | -3.500E-06 | -2.058E-02 | -2.112E-01
Twisted| 4.430E-03 | 2.920E-02 | -3.096E-02 | -1.206E-01

Results of unsteady simulations such as the example presented on Figure 5, show that force
fluctuations on the rudder operating within the propeller slipstream are far from negligible. In
this particular example, non-negligible fluctuations occur from BR (Blade Rate) to BR,
(Blade Rate time 4). Of course when the propeller is itself working in unsteady state mode,
frequencies as high as the propeller rate are also obtained.

Cz

0.79 -
D.??J
0.75 -
0.73
0.71
0.69
0.67
0.65

i 5

|

|
1.5 1.75 2
Tours

1.25

Figure 5. Rudder lift coefficient fluctuations at a 10° angle of attack operating
within the slipstream of a four blade propeller operating at Cy,=0.6 during a
complete rotation.

When computing the average rudder lift coefficient from the results of the unsteady state
simulation of Figure 5, the obtained values are almost identical to those obtained for the same
case simulated in steady state mode, see Table 2.

Table 2. Average CL and C4 obtained compared with steady state
simulation results.

CL Cd
Unsteady state simulation 0.72 0.054
Steady state simulation 0.74 0.053

If this trial is repeated when the rudder is at a zero degree angle of attack and with a propeller
Cth of 2, we obtain the results given in Table 3 where the average lift coefficient is almost
unchanged between the two modes of simulations but where the negative drag coefficient has
significantly increased for the unsteady state simulation.

Table 3. Average Cp and Cy compared with the steady state simulation where the
propeller load is Cy=2 and the rudder is at a 0° angle of attack.
Steady state Unsteady state
Cqy C. Cq C.
-2.058E-02 | -2.112E-01 | -4.27E-02 | -2.14E-01

The computation time of the unsteady state simulations is reasonable enough to conduct
parametric studies. For example, as common sense suggests, it has been found that increasing



the number of blades decreases the amplitudes of the hydrodynamic coefficients fluctuations
of the rudder.

In the final example presented here we consider the test cases of
Figure 3 where the lateral position of the rudder is modified. The
rudder is at 10° angle of attack (see the opposite figure) and
unsteady state simulations are performed. The hydrodynamic
coefficient responses of the rudder are presented in Figure 6.
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Figure 6. Fluctuations of rudder lift coefficients (left) and drag coefficient (right) for different
lateral positions.

This last example demonstrates the difficulty to predict the hydrodynamic coefficient
fluctuation behaviour of the rudder without explicit simulations. The curves of Figure 6 could
not have been predicted intuitively.

The simulation method briefly presented here together with various application examples can
be used for many purposes such as the assessment of some of the numerous devices designed
to imptove propulsion efficiency. Furthermore, computed pressure fluctuations can be used as
a boundary condition to estimate the vibrations generated by rudder propeller configurations.

This study has been partially funded by the Bassin d'essais des carénes.

BRIXJ. (1993) (Ed.), Manoeuvring Technical Manual, Seehafen Verlag Gmbh, Hamburg.

MOLLAND, AF.; TURNOCK S.R. (1994), Prediction of ship rudder-propeller interaction at low

speed and in four quadrants of operation, Manoeuvring and Control of Marine Craft, Southampton, pp.
319-333.



RANSE Simulations for Cavitating Hydrofoils

Olaf Lindenau, Heinrich Streckwall,, HSVA, streckwall @hsva.de
Volker Bertram, ENSIETA, Volker.Bertram@ensieta.fr

RANSE methods have been applied to the analysis of ship propellers in open-water condition and
behind ships for a good decade now. So far, these applications did not model cavitation. We present
here first results of our attempts to include a practical cavitation model in the commercial finite-
volume RANSE solver Comet. Before applying the cavitation model to propeller calculations we
validate the model on 2-d and 3-d hydrofoils. The fundamental cavitation model follows largely Sauer
(2000).

Comet is based on a finite-volume method and allows unstructured grids with cell-wise refinements.
The equations for conservation of mass and momentum are solved in integral form using a second-
order discretization in space, a first-order Euler implicit method for time discretization, and a
segregated solution algorithm based on the SIMPLE method. The Reynolds stresses (due to turbulent
fluctuations) were modeled using the RNG and the standard k-¢ turbulence model.

At the inlet, velocity components, turbulent energy and its dissipation rate are prescribed. At the
outlet, zero gradients in longitudinal direction are enforced. On solid surfaces, the no-slip condition is
enforced using a wall function.

The main new feature in our simulations of flows is the cavitation model. The basic treatment for the
two-phase flow is analogous to the treatment of free-surface flows using the interface capturing
method in combination with a volume of fluid approach. Here an additional transport equation is
solved for the volume percentage of air in each cell. The two-phase fluid is treated as one effective
fluid with effective viscosity and density determined by a weighted sum of air and liquid in each cell.
For the modeling of cavitation the transport equation is adapted, now having on the right hand side a
source term. This source term based on classical bubble dynamics models the growth and collapse of
vapor bubbles. The fluid is now an effective fluid consisting of vapor and liquid.

The cavitation model is built up in three steps:

- Seed distribution
The different seed types are idealized by a single seed type micro-bubble, and the spectral seed
distribution in a liquid is approximated by an average seed radius R, and an average number of seeds
ny. The parameter 1y is a material constant defined as the number of cavitation seeds in a unit volume
of liquid.

- Convection of vapor bubbles
It is assumed that the vapor bubbles in a control volume have the same radius and a homogeneous
distribution. This assumption allows us to describe the distribution of a bubbles by a single scalar
field, namely the vapor volume fraction C,=V,/V. V, is the volume occupied by the vapor, V the total
volume of the control volume. Assuming that only one liquid and the corresponding vapor can
occupy the control volume where cavitation takes place, we can express C, as a function of the
average vapor bubble radius R:

N,4nR> /3 ny4nR> /3
" = ) l
ViV, l4ngdnR /3 G

Vi is the volume occupied by the liquid, N, is the number of vapor bubbles in the control volume.
The mixture of liquid and vapor is treated as an effective fluid, i.e. as a continuous single fluid with
changing density and viscosity determined by a weighted sum of vapor and liquid in each cell.

The vapor fraction inside a control volume can change due to convective transport and the bubble
growth of collapse. The equation describing the transport of the vapor fraction C, was derived by the




Lagrangian observation of a cloud of bubbles and exploiting that the vapor density is much smaller
than water density:

2-J‘C‘, CfV+J.CI,(17‘"17\.)'d§=J‘—”O-3—"—£ i?‘IR} dv )
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v is the velocity vector of the fluid, v, the velocity vector of the control volume surface, V the

volume, S the surface of the control volume, and d5 the outward surface vector on the control
volume surface.

'

Vapor bubble growth

The modeling of the rate of phase change, which appears on the r.h.s. of Eq.(2), is based on the
conventional bubble dynamics (observation of a single bubble in an infinite stagnant liquid). The
analysis results in the “extended Rayleigh-Plesset equation’:

2 2 - )
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ps is the pressure of saturation which corresponds to the temperature at the bubble surface, p.. the
pressure of the surrounding liquid, p; the water density, 1, the viscosity, and o, the surface tension
coefficient. The inertia controlled growth model, derived by Rayleigh neglecting the inertia, viscous
and surface tension terms in Eq.(3) is given by:

DRY _2p,-p. "
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Our first applications were for relatively thick 2-d and 3-d foils of low aspect ratios as found in
rudders and stabilizing foils. The results were qualitatively as expected based on our experience from
model tests and with inviscid flow codes. E.g. for the 2-d foil, a cyclic detachment of cavitation
bubbles was observed in the time simulation. The fluctuation of the cavitation in 3-d simulations was
less pronounced which corresponds again to our experience in model tests. Overall, Comet managed to
reproduce the essential characteristics of real cavitation:

a) Unsteady character of sheet cavitation at foils
b) Relatively stable cavitation at sharp corners
¢) Extended longitudinal cavitation areas at foil tips

After gaining experience with the initial test cases, we applied the cavitation model to a NACA 16-206
2=0.8 (mod) 2-d and 3-d hydrofoil. This thin foil represents a typical cross section of a propeller. For
the 2-d foil we did some numerical tests varying for example the size of time step, the grid and the
parameters in the cavitation model. Periodic supercavitation is observed for all cases. Fmally a robust
set of solver settings were found and applied to the 3-d problem. The results of the 3-d calculations are
compared to the experiments of Ukon (1986). A reasonably good agreement between the visual
observations in the experiments and the calculations is noted Even the beginning of tip vortex
cavitation is captured by the simulation. The visualization of the periodic three dimensional cavitation
process is additionally done using the Virtual Reality Modeling Language (VRML97). Details on
these calculations and the VRML model are presented in Lindenau (2002).

Although some numerical problems during these first tests were observed we are encouraged to apply
this cavitation model to rudders and propellers.

References:
COMET, ICCM Institute of Computational Continuum Mechanics GmbH, Comet Version 2.004. A,
Hamburg, now part of Computational Dynamics Ltd
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Fig.1l: Fluctuating cavitation on NACA 0015 foil for two cycles with attached and detaching cavitation
bubble, inflow velocity 12 m/s, angle of attack 6°, cavitation number 6=1.0

cdvbririnig

Fig.2: Cavitation on a rectangular NACAQO15 foil ~ Fig.3: Periodic supercavitation on NACA 16-
of small span, inflow velocity 12m/s, angle of 200 foil, inflow velocity 8m/s, angle of attack
attack 0°, cavitation number ¢=0.3, time 6°, cavitation number 6=0.628

steps=0.005 s from left to right, from top to bottom
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Numerical Investigations of the Viscous Flow around Costa Bulbs

Lars Ole Liibke, Potsdam Model Basin,
e-mail: luebke@sva-potsdam.de

1 Introduction

The presented work is part of a research project
dealing with the propeller rudder interaction and
the design of a twisted rudder with bulb. All fol-
lowing results are used as a hasis for proceeding
design tasks and experiments.

The rudder operates in an accelerated flow with
the inclination angles varying, due to the rotational
energy imposed by the propeller into the fluid. The
stagnation pressure of the rudder is decelerating
the flow and thereby increasing the thrust loading
of the propeller blades as a function of the angular
position of the blades. This implies that both parts
interact and influence their operation conditions.

The concept of the costa bulb is more than 70 years
old but experiences an increasing interest in order
to discover unrealized gains in ship design. Most
applications of the CPB concept were realized for
more moderate ship speeds in the range of 12 to 16
knots. Thus one aim of the work is also to inves-
tigated if the costa propulsion bulb (CPB) is ap-
plicable for high speed container vessels and if the
approach via CFD is able to reveal more profound
design criteria for such applications.

The idea behind the costa bulb concept is to recover
vortex related energy and thus enhance efficiency.
Bach blade of an operating propeller induces a root
vortex into the flow. Additionally, due to it's vis-
cosity (no-slip condition), the water near the hub
rotates with the speed of the propeller forming a
hub vortex. These different vortex systems (blade
root and hub vortex) can interact, combining their
intensity in a single vortex behind the hub. The
energy required to create and maintain the vortex
system has to be imposed by the propeller and sup-
plied via the propeller torque.

According to Maierform in [1], they achieved sav-
ings between 2 % and 5 % In motive power com-
pared to a conventional rudder configuration in
model scale. In general improvements in required
power for a given speed can reach values up to 4%
for model and 8 % for full-scale [3].

In the literature two main reasons for this gain can
be identified.

e The costa bulb achieves this goal by preventing
the vortex system to join, leading the vortices
separately over the device, and thus decreasing
the rotational component in the flow.

e According to Ebersolt [1] the costa bulb also
generates a vortex-system which acts in the
opposite direction than the sense of rotation
of the propeller and thus reduces the hub vor-
tex. It is considered that the diameter of the
bulb is large enough in order to assume that
the upper and lower rudder act independently
in the flow. If it is further assumed that the
inclination angle of the upper and lower rud-
der varies, causing the pressure to differ on the
lower and the upper side of the rudder. This
difference in pressure induces a flow in counter
rotation to the propeller and thereby decreases
the intensity of the hub vortex.

Numerical simulations were carried out to investi-
gate different ruder - costa bulb - configurations
under the aspect of hydrodynamic performance in
propulsion conditions. The costa bulbs were inves-
tigated with a five bladed propeller in design con-
ditions.

2 Computational method

The numerical calculations of the viscous low were
carried out using the commercial method CFX-
TASCHlow. The code solves the three dimen-
sional Reynolds-averaged Navier-Stokes (RANS)
equations. An adopted formulation for rotating co-
ordinate systems is employed, which involves ad-
ditional terms resulting from the transformation of
the equations. The effects of turbulence on the flow
are modeled by the SST model.

The approach to discretize the convective fluxes
in the transport equations are based on the
schemes developed by Raithby [4]. Al calcu-
lations in this report were carried out employ-
ing the Linear-Profile-Skew-Upwind-Differencing-
Scheme (LPS). Further a Physical-Advection-
Correction (PAC) was employed. A multigrid
solver is used to solve the coupled equation system.



3 Geometry

As geometry to start with the five bladed KP505
propeller employed for the KRISO container ship
(as example of a fast container vessel) was cho-
sen, with full-scale diameter D = 7.9/, area ratio
Ae/Ao = 0.8 and mean pitch ratio P/D = 0.95.
Three different costa bulb geometries according to
test made by Maierform (1984) were employed,
with the costa bulb varieing mainly in length and
diameter. In the following the different geometries
are denoted Costa0 for the bare rudder and Costal,
Costa2 and Costa3 for the three different costa bulb
variations. Whereas Costa2 is a variation of diam-
eter and length and Costa3 being mainly a varia-
tion in diameter, compared to the design of type
Costal. See also Figs. 1. A rudder with lateral
area A = 82.6m? was arranged behind the pro-
peller with distance between propeller axis and rud-
der shaft of [ = 0.64D, with D being the propeller
diameter. The ship hull was not included in the
calculations, hence the hub was prolonged 1.5 pro-
peller diameters to the front and fitted with a con-
ventional hub cap. Tt is considered, that the ne-
glecting of the ship’s wake and thus assuming a ho-
mogeneous inflow to the propeller is of minor effect,
regarding the CPB performance.

4 Boundary conditions

The solution domain was chosen to extent approx-
imately 20 times the propeller diameter D to the
front, downwards, to port and to starboard side,
80x D to the back and 1.5x D upwards. The origin
corresponds to the bottom end of the leading edge
of the rudder. At the inflow boundary the veloci-
ties, the length scale and the turbulence intensity
are given.

At the outflow boundary the gradients of the ve-
locity vector and of the turbulence values are set to
zero. The rudder, the costa bulb, the hub, the shaft
and the propeller are treated as smooth walls. For
the outer boundaries no-slip walls were employed,
with the upper boundary being located in the dis-
tance of the propeller clearing of the KC-ship.

Part of the investigations were carried out using a
fully unsteady calculation with turning propeller.
For these simulations the solution domain is
divided into a stationary and a rotating part,
with the rotating part confining a region around
the propeller. See also Fig. 2, with the rotating
frame being rendered in blue. Sliding interfaces
separate both frames of reference, e.g. rotating
and stationary part.

5 Computational mesh

In the solution domain a block-structured, body fit-
ted and non-orthogonal grid was generated, consist-
ing of hexahedral control volumes, using the com-
mercial ICEM-CFD HEX mesher. The grid topol-
ogy around the costa bulb rudder configuration is
shown in fig. 2. In Fig. 3 and the numerical mesh
is shown for configuration of type Costa2 .

For the stationary simulations the mesh around
the costa-bulb-rudder configuration could be gen-
erated as a single multiblock domain, while for the
unsteady calculations six multiblock domains were
employed. One domain covers rudder with costa
bulb and the outer solution domain, while the other
five contain each one propeller blade. The propeller
grids are periodic for the lower radii of the pro-
peller, meaning that matching interfaces exist near
the hub. Grid information is given in Tab. 1.

Part No. of knots

with prop. | without prop.
Rudder 388000 408000
Rudder with CPB 497000 -
Propeller 493000 -

Table 1: Mesh size and quality

The overall number of grid cells for the case with
bare rudder and turning propeller amounts to ap-
proximately 881000, while for the costa bulb calcu-
lations (all three cases) 990000 cells were used.

6 Results

All caleulations were carried out for an advance
speed of V, = 24 kn in full-scale, under consid-
eration of an wake coefficient of w = (0.192. For the
simulations under propulsion conditions the rate of
revolution was taken to be n = 1.69, leading to an
advance speed of .J = 0.747. The model scale data
was derived for an scale ratio of A = 31.6.

6.1 Rudder behind Propeller

The bare rudder in the wake of the hub was in-
vestigated in model and full-scale for the operation
point. given above. In Tab. 2 the resistance values
for uniform inflow with inactive (first row for each
coefficient) and in the slip stream of the propeller
(second row for each coefficient) are given. The
ratios between these values are given in the third
row. The values are made dimensionless with the
stagnation pressure and the lateral rudder area.

For both scales an resistance increase for the inves-
tigated configuration of approximately 55% can be
established.



| [ model 1 full-scale i ['ull/morlel—|
Cy 1.895 -7 | 1.296- 72 0.684
2.921-e7? | 2.034-¢72 0.696
[ ratio 1.541 1.569

Table 2: Comparison of model to full-scale resis-
tance of rudder with inactive (first row) and with
active propeller (second row)

In Figs. 4 and 5 the axial and civcumferential veloci-
ties for model scale are shown in two vertical plains
with turning propeller. The first plane is located
0.3D behind the propeller, which corresponds to ap-
proximately 0.1D in front of the rudder, and 0.2D
behind the trailing edge of the rudder at height of
the propeller axis. The propeller diameter is refered
to as D. Please note, that the leading and trailing
edge of the rudder are not vertical.

In Fig. 4, showing the plane in front of the rudder,
the wake of the hub and the deceleration of the flow
due to the rudder (stagnation point) can be seen.
The maximum thrust is produced roughly between
radius 0.6 and 0.7.

Behind the rudder the angular momentum of the
flow causes the propeller slip stream to move up-
wards on one side and downwards on the other.
The rotational energy in the propeller slip stream
is reduced behind the rudder, it is believed that a
conversion towards the axial component in the flow
accurs, which improves the propeller efficiency, by
increasing the propeller thrust.

In Tab. 3 the generated thrust and torque coeffi-
cients are given for the propeller operating with or
without rudder. The propeller in full-scale gener-
ates more thrust and requires less torque compared
to model scale, due to relatively smaller viscous
losses.

model full-scale

free | rudder | free | rudder
J 0.747 | 0.747 | 0.747 | 0.747
Ky 0.133 | 0.147 | 0.147 | 0.162
10K 0.252 | 0.267 | 0.247 | 0.264
Kp/10Ko | 0.528 | 0.551 | 0.595 | 0.614
Crn 0.607 | 0.669 | 0.668 | 0.739
70 0.627 | 0.651 | 0.705 | 0.728

Table 3: Thrust and torque coefficients for the pro-
peller only and a propeller rudder configuration
Costa0

It shows that the thrust loading of the propeller
increases due to the interaction with the rudder.
The reason is the deceleration of the flow near the
leading edge of the rudder, increasing the pressure
on the pressure side of the blades for the 180° de-
gree and especially for the 360° degree position.
And also for reasons of decreasing the rotational

momentum. The rise in thrust amounts to about
10% for both scales and the rise in torque ahout
6% in model and 7% in full-scale compared to the
free running propeller. This implies an increase in
efficiency. Please note, that the calculations were
carried out with a propeller mesh especially fine
near the hub in order to resolve the flow around the
hub and, in the following sections, the bulb most
accurately. This implies that the blades at higher
radii, were most thrust and torque is generated,
was coarsened, due to limiting memory resources.
Therefor the chosen approach accepted already less
accurate values and the author ask to beer that cir-
cumstance in mind.

For the calculation rudder behind a propeller three
main conclusions can be drawn.

e The rudder reduces the rotational momentum
and therefor increases the propeller efficiency

e The interaction between rudder and propeller
causes an increase in propeller thrust loading
(the applied actuator disk calculations were
not able to capture this interaction).

e The hub vortex is more pronounced in model
scale

6.2 CPB behind Propeller

The obtained results for propeller with rudder
(Costa0) are taken as reference to evaluate the costa
bulb configurations. Since the aim of the study is to
obtain data for full-scale in order to design a twisted
rudder with bulb, the calculations were carried out
for that scale. Also the model scale calculations
were not fully completed by the time writing the
paper. It is believed that the number of grid cells
required to resolve especially the full-scale flow suf-
ficiently is not reached, but that the approach to
carry out a comparison of different configurations
is feasible and gives the right tendency.

The costa bulb are designed such that the CPBs are
placed in the hub vortex, reducing the separation
zone. See also Figs 6 and 7. In Tab. 4 the friction,
the pressure and the total resistance of the differ-
ent CPB variations are given for turning propeller.
The forces are normalized with the corresponding
bare rudder resistances, thus for the configuration
denoted Costa0 the values are one. See also Tab. 2.
In the following all dimensionless coefficients with
sub 0 refer to the bare rudder, configuration Costa0.

The configuration denoted Costa? causes the small-
est resistance compared to the other costa bulb con-
figurations but produces an resistance increase of
13% compared to the bare rudder. The bulbs are
exposed on the entire circumference to the propeller
slip stream, while the rudder is only exposed on a
smaller region at the leading edge.



l | Costal l Costal | Costa2 ] Costa3 |
Cr/Coy 1.0 1.013 1.000 | 1.005
Cp/Cop 1.0 1.409 | 1.207 | 1.379
Ci/Cou 1.0 1.261 1.130 | 1.240
»/Ci 0.628 | 0.702 | 0.671 | 0.699

Table 4: Rudder with CPB resistance under
propulsion conditions

In Fig. 8 the thrust and the net thrust for the differ-
ent configurations is plotted over two propeller rev-
olutions. The net thrust is generated with the resis-
tance of the entire configuration being subtracted
from the propeller thrust. This approach takes the
resistance into account and enables a better com-
parison of the CPB configurations.

In Figs. 9 to 11 the propeller efficiency is plotted
for a single propeller blade, for all blades employing
the propeller thrust only and with the net thrust
of the entire configuration over the rate of revolu-
tion. A minor increase in efficiency amounting to
approximately 1% for all types can be observed if
the additional resistance of the bulb is not taken
into account. In case of taking the net thrust the
small benefits in efficiency for the investigate op-
eration point and geometry is reducing to almost
7ero

In addition the propeller characteristics generated
with the net thrust are given (torque does not
change) in Tab. 5. The data is normalized with
the corresponding values for the configuration de-
noted Costa0. It shows that the efficiency for all
configurations is the same, with the gain in effi-
ciency amounting to 0.2% for Costal and to 0.6%
for Costa2 and Costa3.

I | Costal) | Costal l Costa2 } Costa3 |
K¢/ Kor 1.0 1.032 1.020 1.020
Ko/ Kog 1.0 1.029 1.015 1.015
Mo /00 1.0 1.002 1.006 1.006

Table 5: Propeller characteristics set in relation to
propeller in front of rudder (Costa0) for .J = 0.747

It has to be considered that an increase in propeller
thrust s observed for all three configurations. If the
propeller is looked upon as a disk accelerating the
flow and the thrust being the change in momentum
( T =1 Av), the axial component of the flow has
to be increased by the CPB’s and it is assumed that
this increase is due to an conversion of vortex re-
lated energy to the axial component. For example
the propeller in front of bulb type Costal produces
3% more thrust, but also extra effort has to be in-
vested to lead the flow over the bulb. The concept
may be therefor also applicable if more thrust is
desired. To show the dependency of the obtained

results to the ratio of bulb to hub diameter, Figs 12
and 13 are introduced. For the configuration of
type Costal this ratio is dy,u/dn, = 2.0, for Costa?2
yain /dy = 1.64 and for Costa3 dy/dy = 1.8. Tt
shows that an increase in thrust can be observed for
the investigated range in case of increasing bulb to
hub diameter ratio, which goes hand in hand with
an corresponding rise in torque. Therefor no gain
in efficiency is observed.

7 conclusion

Three different costa bulb configurations original
designed for more moderate speeds were investi-
gated for a speed of V, = 24 kn with rotating
propeller. The final comparison was carried out
in full-scale. Beside all encountered uncertainties
the following conclusions are drawn.

o The CPB’s lead to an increase in generated
thrust for reasons of converting rotational mo-
mentum to axial velocities. But due to a rise
in required torque no efficiency increase was
found for the investigated operation point.

e Bulbs designed for more moderate speeds are
not directly applicable for higher velocities

Publications indicate that CPB's are sensitive to
the Rn-number. Unfortunately model scale calcu-
lations were not finished on time.

References

(1] Esersort, M.: Reducing Propeller Hub Vor-
tex, The Naval Architect, September 1999

(2] Yamano, T.; YAMASIITA, Y.: IWASAKI, Y.
Tacucni, IK.: An Energy Saving Apparatus,
J. Kansai Soc. N. A., Japan, No. 223, March
1995

[3] GREGER, O.: Testing the Costa Propulsion
Bulb with a view to its use on modern ships,
Int. Shipbuilding Progress, Vol.8, No.77, Jan-
uary 1961

[4

Rarrnpy, G. D.: Skew-Upstream Differenc-
ing Schemes for Nearly-Steady Problems In-
volving Fluid Flow, Comp. Meth. Appl. Mech.
Eng., Vol. 9, pp 153-164, 1976



. costas — J

Figure 1: Comparison of costa bulb geometries
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Figure 5: Velocity field behind rudder, model scale,
Costal

Figure 2: Grid topology

Figure 6: Hub vortex for bare rudder Costa0, full-
scale

Figure 7: Hub vortex for bulb of typ Costa2, full-
scale

Figure 4: Velocity field in front of rudder, model
scale, Costa0
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INTRODUCTION

Optimal design is an idea that is investigated for a very
long time, but remained unused up to the recent years
for different combined reasons. Sirehna has believed in
this approach since 1990, and thus focused on solving
the problems that prevent from an efficient use of it
since this time.

The first investigations were performed in the field of
ship forward resistance, with help of deterministic
algorithms taken in mathematical libraries, with
simplified deformation tools. This led to successful but
limited demonstration of the applicability of such
methods.

A decisive progress was made through the EC Brite
Euram project called Optim, led by Sirehna and
involving a number of European partner from various
sectors. This project allowed a wide investigation of
multi-disciplinary optimisation approaches, including
aeronautic and maritime applications. It led to some
tools applicable for general purpose applications, that
were ready to be used in some consultancy work after
the project. A number of maritime applications were
performed, especially dedicated to ship bow shape
optimisation for resistance purpose.

Despite the progress made in the tools, still some
improvements were necessary to really jump to
practical routine use of optimal design technologies.
This first concerned the ease of connection of any
external analysis software, the exploitation of best
information technology to take advantage of multi-
processing, distributed computing in heterogeneous
environment, portability. But over all, these approaches
were still oriented towards mono-objective, local
deterministic optimisation, which are robust in their
domain of validity, but which domain of validity only
covers a small range of the variety of practically
encountered problems. Efficient methods to deal with
noisy functions, discrete or mixed problems, failures
inherent to any complicated calculation, without
preventing the method to give interesting results, were
expected.

At the end of the 1990', Sirehna got involved in
numerous FP6 EC projects, especially with the role of
promoting and investigating the possible applications
of optimal design approaches in the maritime domain,
in  particular by solving the above described
shortcoming of the current tools. The specifications in

this sense were established, and it turned out that a lot
of them were met by the tools developed during a
previous project, modeFRONTIER.

This software is an outcome of an Esprit projects called
Frontier, which took place between 1996 and 1999, and
addressed multi-partner  collaborative ~ design
optimisation, with a multi-sectorial partnership. The
transfer of the knowledge acquired during this project
into a successful commercial product
(modeFRONTIER) was performed after the project by
a new [talian company, ESTECO.

This software, in addition to an offer of different

optimisation algorithms, provides and environment

dedicated to the set up of design assessment chains and
efficient investigation of the design space. In brief it
includes

- intuitive tools for the integration of assessment
calculation chains, allowing complicated logics,
and thus able to address real life cases where
conditional process must be ensured (eg stopping
calculation as soon as some criteria are not
satisfied, to avoid useless computing time...)

- exploitation of most recent technologies (java,
xml...) in order to address remote calculations in
heterogeneous environments, concurrent
calculations, maintenance and readability of full
design database, portability (only one version to
maintain), etc...

- tools and algorithms for an efficient exploration
and analysis of the design space, including:

- design of experiments

- response surfaces, from classical (like linear,
quadratic approximations, local
interpolation...) to advanced methods
(gaussian processes, neural networks)

- optimisation algorithms, from classical
deterministic  local  algorithms  (BFGS,
SQP,...) to most recent technologies,
including true multi-objective optimisation
(genetic algorithms, MOGA...). This last
point is still unique and of prime importance
for practical design problems, which are very
rarely naturally mono-objective ones.

- multi-criteria decision making tools, that
allow the designer to define his preferences
through a limited number of choices within
best designs (in the multi-objective sense),
and help him to get the best trade-off solution.

- graphical analysis tools for a quick and good
understanding of the design space: scatter



plots, parallel plots, response surfaces
visualisation,

- an harmonious possibility of combination of
the above features. For example, it is possible
to mix real calculations with response surtace
approximation within an optimisation, in order
to minimise calculation time while keeping
sufficient accuracy. This is very efficient in
case of high computing demanding problem:s.

PRACTICAL APPLICATIONS IN THE
MARITIME FIELD

After set up and first trials of modeFRONTIER, the
number of identified applications where it could bring
significant benefits , in the domain of maritime design,
grew in an exponential way. Since this date, a number
of such applications started to be investigated, either
internally or through R&D projects, mainly related
with ship design. Some of them are described below:.

In addition, some investigations are led in the field of
optimal distributed ship design. Such an application is
also described in the wash minimisation example
below.

Ship hull form. This problem is still of major
importance in ship design, and has no straightforward
solution. The advantages brought by optimal design are
further investigated namely within the EC Growth
project "Fantastic” which gathers most of the European
leading shipyards, design and research centres, and
software companies. The following key problems are
addressed:

- ship hull parametric modelling, including classical
CAD tools (Napa) but also innovative approaches
(Friendship, TUB), or general purpose tools
(Catia)

- improvement of accuracy, automation, speed and
communication of ship assessment tools, focused
on potential flow calculation methods, and
entering viscous flow domain.

- investigation of design search and optimisation
approaches applied to this problem,

- practical implementation in actual design
environment and procedure assessment.

A ship hull model is built with relevant tools (Napa or

Friendship or specific ones). The process flow is then

built with :10deFRONTIER, involving the defined

parameters and specifying the calculation chain and the
multi-objective optimisation problem, here minimising
ship resistance while maximising displacement. The
calculation chain can be set up in a multiple platform
environment. The MOGA algorithm enables to detect
the set of best designs for both objectives (Pareto
frontier), then allowing the user to define within this
set the trade off solution that best fits his needs. Some
help is provided by modeFRONTIER to investigate
this, like for example the parallel plot of all
input/output values within their variation range, which

enables to visualise and filter the solutions as wished.
Then a set of alternative interesting solutions can be
selected for further study.

Ship wave wash minimisation. The problem of ship
wave wash minimisation has become crucial with the
use of high speed craft, for environmental and safety
reasons regarding the shore line and related activities.
This problem is in particular addressed through an EC
Growth project, "Flowmart", which aims at improving
the involvement of wash criteria in design procedure.
The problem consists in minimising the ship wave
wash together with its forward resistance with some
constraints on its capabilities regarding cargo
transportation (displacement), propulsion (transom
stern area) and stability.

Figure 1 shows information on this case. The
parametric modelling is performed by Chantiers de
I'Atlantique with Napa, and consists in a set of 18
parameters ruling the shape of two sections (middle
and aft) and of the bow.

The wave wash and resistance calculation are
performed by SSPA with the Shipflow solver.

The whole process is thus distributed between three
geographical areas: St Nazaire for the shape generation
with  Napa, Gothenburg for the hydrodynamic
calculation with Shipflow, and Nantes for the
calculations management and optimisation procedure
with mode FRONTIER.

This is implemented by using a tool developed at
Sirehna (Asydas) which ensures an asynchronous
client-server based communication between the
different nodes.

This procedure, using a mixing of genetic algorithms
and response surfaces leads to some significant gains in
both wash and resistance. Some modeFRONTIER
tools (t-student) providing information on the
sensitivities of outputs to design variables are used in
intermediate steps, in order to better define the
parametric modelling.

Ship stabilisation fin. This case was the occasion to
set up a complete advanced flow calculation chain,
including the following components:

- GridGen, high level grid generation tool fitted
with automation and parametric capabilities
through its command language Glyph.

- Fluent, the well known general purpose flow
solver,

- FieldView, flow post-processing tool, including
advanced capabilities for extraction of accurate
information, and  fitted  with  automation
capabilities through its command language Fvx.

The problem concerns the optimisation of ship roll

stabilisation fins, by modification of their profile. It

consists in maximising the lift, while minimising the
drag and risk of cavitation, at a given angle of
incidence. The above calculation chain is easily set up
with modeFRONTIER. The search strategy is chosen
in order to minimise the computational effort. It
consists in setting up response surfaces on an initial



designs database, and performing multi-objective
optimisation with a mix of real calculations (using the
calculation chain) and of virtual calculations (using the
response surfaces). This approach is very efficient,
leading to an accurate detection of the pareto front
while keeping short calculation time. The further step
consists in investigating this pareto set, visualising
designs, and establishing pair-wise preferences
between them, according to criteria that can be
subjective (guessed as difficult to manufacture,
aesthetic,...). Then the multi-criteria decision making
tool of modeFRONTIER establishes a ranking of the
designs and produces utility functions that are then
used in a unique global objective function. This
function is then minimised to get the "best" trade-off.

Integration of ship appendage. The problem consists
here in using 3D viscous flow calculations to assess the
added drag due to the integration of an appendage on a
hull, and try to minimise it (see figure 2).

The link between the hull and the appendage is made
of a surface ruled by a number of nodes, which
coordinates are the design variables of the problem.
This is managed with Pro/Engineer.

The grid generation is made by the GridGen software
on the basis of an IGES file generated by
Pro/Engineer.

The flow is calculated with the Fluent solver, on the
GridGen generated grid.

For saving computing time, advantage is taken of the
local character of the perturbation to reduce the
computational domain once an initial flow field is
calculated on the whole domain.

The search strategy consists in setting up response
surfaces approximation on an initial set of designs
before running a genetic algorithm mixing real and
virtual calculations. Once this is done, the response
surfaces are updated with the new real calculated
designs, and the global virtual optimum is search. The
validity of the solution is then checked with a full real
calculation. The total calculation is about 120h for a
total of 75 real calculations, and some hundreds of
virtual ones.

One major problem addressed in such a real life case is
robustness. Many sources of error or failure exist:
combination of parameters that cannot be handled by
the CAD, geometry that cannot be meshed by the grid
generator, grid quality insufficient for the flow solver,
solver divergence, and even hardware/network
temporary breakdowns. This highlights the importance
to have an algorithm which supports such things and
gives anyway useful information. The genetic
algorithms in modeFRONTIER are quite successful in
this sense.

" Shape optimisation involving Ranse solvers. The
progress in design search techniques now makes it
possible to seriously envisage their use with high
computing demanding flow analysis tools like Ranse
solvers, on the whole ship. Some investigations are
being performed at the moment in the EC "Fantastic"

project. Another preliminary application is being
performed in collaboration between Sirehna and the
fluid mechanics laboratory of ECN, involving the
ICARE RANSE solver (B.Alessandrini).

The problem consists, in a first step, in minimising the
forward resistance of a ro-ro ship, which front shape is
parametrically modelled with help of the Catia surfacic
modeller. The flow around shape variations is
calculated as a perturbation of the flow initially
calculated on a reference ship, in order to save time. A
combination of wide spread search genetic algorithm
with more focused algorithms is used, which leads to
some significant gains in term of ship resistance, in a
reasonable time. This work is to be continued, namely
taking advantage of response surface techniques, and
addressing more global shape variations, which can
normally be handled more accurately with such a
method than with classical panel methods.

Ship wave pattern identification. This is another
example of the use of modeFRONTIER for
identification purpose.

The problem is here to predict wave height at a given
long distance trom the ship centreline, from model tests
in a narrow towing tank which only allow
measurements near the ship, thus including reflections
on the walls.

The principle is to minimise the difference between
wave heights measured on longitudinal cuts and wave
heights calculated with a model of the ship ruled by a
finite number of parameters, and then remove the walls
in the model to predict wave heights in free water.

TRENDS FOR R&D WORK

The trends for future work in the domain of optimal
design are multiple.

One aspect which must be worked on is parametric
modelling. Indeed, this is a key area that is not yet
solved in a satisfactory way. CAD tools theoretically
offer parametric capabilities, but these are not robust
enough when addressing complex problems like
arbitrary surface modelling. In some specific cases, it
can be relevant to develop specific modellers,
dedicated to one domain (like ship shape modelling).
The complex problem of multi-disciplinary design,
which involves multiple sets of design parameters, is
also to be considered carefully, as well as the multiple
level  parametric  description of the product,
corresponding to several stages of the design progress.

One specific aspects is producibility. Most of the
assessment tools are able to predict product
performances, and some simple geometric criteria. It is
more difficult however to guarantee that the design will
be producible at a cost that will ensure the overall
viability of the product. Two ways are generally
possible for this. The first one is to natively ensure
good producibility with adapted parametric shape



modellers (eg metal sheets developability). The second
one is to assess producibility as post-processed criteria
(eg curvatures), which are forced to satisfy given
constraints through the optimisation process. No
satisfactory solution exists yet, and some effort must be
put on it.

The performance of product assessment tools have now
reached a good level in many domains: finite element
methods are robust, flow solvers are becoming more
and more reliable, and most tools can now be run in an
automated way, after a configuration stage. However,
some work is still needed to improve capabilities,
accuracy and computing performance of such tools
especially in the domain of free surface complex flows.

Even if the present design search algorithms are now
efficient and able to provide very relevant information
on the design space, it is still worthwhile to improve
them. This is in particular addressed by ESTECO.
Several trends are investigated, among which the
coupling of response surface and optimisation
techniques, which must drastically decrease the number
of real design evaluation for a given level of
information. Robust design innovative techniques will
also be provided, based on multi-objective approaches,
enabling the user to optimally define the trade-off
between optimal performance and stability of the
solution (ie independence with respect to variations in
the parameters).

Finally, one important area lies in the integration of
such methods with on-going design methodologies and
approaches, taking into account tools (CAD, PDM,
innovative IT...) as well as physical or human design
organisation, capacities and knowledge (distributed
remote computing, concurrent or flexible design,
knowledge management,...). This is also a great
challenge for the optimal exploitation of design search
tools.



Objectives :
- minimising generated wash wave
- minimising ship forward resistance
Constraints: - displacement

- transom stern area

- stability criterion
Parameters: 18 parameters, middle ship and
transom sections + bow parameters (see on the
left)

— E[ Parametric modelling: NAPA (at CAT)
Analysis software: Shipflow (at SSPA)
Algorithms: Genetic algorithm mixed with
response surfaces.
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Development of an Unstructured Pressure-Correction Solver Based on
Triangle Meshes

Tommi Mikkola*
Ship Laboratory, Helsinki University of Technology

1 Introduction

In the recent years a lot of effort has been put in the develop-
ment of computational methods for viscous ship flow calculations.
The methods used have almost exlusively been based on structured
grids. However, within the ficld of computational fluid dynamics
(CFD) in general, the interest in unstructured methods has been
constantly increasing. The difference between these two alternat-
ives is in the structure and indexing of the division of the com-
putational domain into finite elements. In the case of a structured
approach. the computational grid can be projected into a cartesian
grid with a continous mapping, that preserves the structured order-
ing of the elements relative to each other. By knowing the index of
an clement we hence know the indeces of its neighbours as well.
With unstructured grid, on the other hand, the ordering of the ele-
ments is arbitrary and thus the grid does not have any well-defined
structure. [t is therefore not possible to deduce the indeces of the
neighbouring cells from the structure of the grid.

Both structured and unstructured grid based methods
have their respective advantages and disadvantages. Due o the
nature of the linear equation systems arising from the use of struc-
tred grids, the numerical solution methods for these are very ef-
ficient compared to the ones for unstructured grids. On the other
hand, grid generation, especially for complex geometries, has be-
come a bottle-neck in the solution process using structured meth-
ods. The drawbacks related to structured grids have been emphas-
ized in case of complex hull forms with the deforming grid based
surface tracking method used at Ship Laboratory for free surface
problems. The advantage of the unstructured approach lies partic-
ularly in the flexibility of the grid generation and adaption. Hence,
it has been seen as fruitful to also explore the alternative unstruc-
tured approach for the solution of free surface fows.

In the early stages, the work has concentrated on the de-
velopment of the basic flow solver part. The result of this work is
a finite volume solver using unstructured triangle meshes for lam-
inar 2D flows. The mass conservation is satisfied with a SIMPLE-
Lype pressure correction approach. A cell-centred collocated grid
arrangement has been adopted with an explicit pressure damping
term in the mass flux calculation in order to avoid velocity and
pressure oscillations.

2 Governing equations

The flow ig,assumed to be incompressible, laminar and isothermal
in 2D. The governing equations for the flow are the incompressible
2D continuity and momentum balance equations in the conserva-
tion form. For the finite volume method the domain of interest is
divided into a finite number of nonoverlapping triangles, i.e. con-
trol volumes and the equations are applied for each volume separ-
ately. The conservation of mass for triangle [ can be written as a
sum over the three edges {m of the triangle:

Zm,m =0, (1)

m
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where 1, is the averaged mass flux through face Im. The bal-
ance of momentum can be written similarly as

8;;"! = “% g ( i Fx‘lf:m) ) 2)
where
Filtm = (P, ) Bttm) + Pty (im)) Stim) (3)
and .
Film = ,LLMS“,") (4)

an
are the averaged inviscid and viscous fluxes on face lm respect-
ively. Here @y, is the convection velocity normal to face [m.

3 Pressure correction method for triangle meshes

The first intermediate goal of the development was a 2D, cell
centred pressure correction solver for laminar flows based on un-
structured triangle meshes, which would then act as a basis for fur-
ther development. The pressure correction approach in the method
is of SIMPLE [1] type. Boundary conditions are satisfied using
ghost cells located outside the boundaries of the computational
domain.

The solution process is based on a velocity-pressure de-
coupling, in which a new velocity field is first constructed from
momentum balance Eq. (2) and corrected after this by altering
the pressure according to the mass balance error in the continu-
ity equation Eq. (1). This process is iterated until a steady state is
reached. Each of these iterations can be divided into three parts:
calculation of the change of velocities, the mass balance error and
the pressure corrections.

3.1 Change of velocity

The changes of the velocity components in each triangle are cal-
culated using the implicit Euler scheme for Eq. (2). By linearizing
the fluxes with respect to the cell centre values from the old time
level, the implicit scheme for Eq. (2) in triangle [ can be written as

Vi
Z (%Om -+ ain) Avi,n = Rn.t y

n

(3)

where

Riy=~=3" Fiim. (6)

m
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Here R, and F; i, are the explicit residual in cell { and the sum
of the inviscid and viscous fluxes on face lm respectively.

3.1.1 Inviscid flux The convection part of the inviscid flux
in Eq. (3) is upwinded as
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where v}, and v}, are the extrapolated values on the right and
lefthand sides of the face Im respectively. The convection velocity
D1 and the pressure py,, on the face are caleulated as averages of
the cell centre values to the left and right of the face. Here, the
outer normal of a cell face is assumed to point from left to right.
The convected velocity components U:‘,tiu are extrapolated onto
the face based on a higher order construction by Frink [2]. This is
illustrated in Fig. 1. The approximation can be written as

2 ;a8
ot =f % (% - u}) ; (8)
The higher order extrapolation above is used in the calculation
of the flux terms in the explicit residual (6). This extrapolation
would, however, lead to a complicated and large stencil on the left
hand side of the implicit stage Eq. (5). Therefore a simple, first
order approximation is used for the fluxes appearing in the a,,
term of (6). Only the closest neighbours of a cell are therefore
included into the stencil of the momentum matrix.

3.1.2 Viscous flux The normal derivatives for the calcula-
tion of the viscous part of the momentum fluxes (4) are resolved
by using the Gauss theorem for an auxiliary volume surrounding
the face (see Fig. 2). We get

4
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for the velocity derivative on the face. Here, V;%, is the area of
the auxiliary volume and nj .., and S, are the components
of the outer normal and size of face n of the auxiliary volume
respectively. The velocity components v; g,y at the centre of face
n of the auxiliary volume are approximated by an average of the
values at the corner points of this face. Form (9) is used for the
calculation of the explicit residual (6) in the momentum equation.
Similarly (o the inviscid flux, a much simpler approximation is
used for the fluxes on the left hand side of Eq. (5). For these the
normal derivative is approximated as

avi.lm _ Vi,m — Vi

an " (xm

i.e. as the difference between velocities at cell centres on both

sides of the face divided by the distance normal Lo the face between

the cell centres. As before, this leads to a stencil including only
the closest neighbours of a cell.

(10)
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3.2 Calculation of the mass imbalance

As the velocities resulting from the momentum equations prob-
ably do not satisty the continuity condition, mass imbalance in the
continuity equation (1), driving the pressure correction, has to be
calculated. The use of velocity interpolation scheme by Rhie and
Chow [3] for the mass flux calculation is a common approach on
collocated structured grids to avoid possible decoupling of neigh-
bouring pressures and velocities. There has been modifications of
this scheme for unstructured grids as well, eg. by Davidson [4]
and Thomadakis and Leschziner [5]. As these effectively lead to
fourth-order dissipation similar to the one commonly used with
central differencing to stabilize the solution of the momentum
equations [6], a simplified pressure diffusion term is used in the
current approach. This term is added to the convection velocity
taken as average of the values at the cell centres on both sides of
the face leading to form
CSumy , n

’h‘!‘m = PS(!HI) [E(,.‘m) e 44 (.’pm! - 3])171 I 37)! N ?)Pm)
AP (Im)
(1

for the mass flux in Fig. 3. Here C' is a parameter controlling the
overall amount of damping and A p,,, is the average of the diag-
onal terms on the left hand side of the momentum equations (3)
for cells { and m to the left and right of the face.

3.3 Pressure correction

[t the continuity condition is not satisfied and there is mass imb-
lance, the velocity ficld has to be corrected accordingly. This is
done by adjusting the pressure in the domain. The flow variables
satisfying the continuity equations can be given as

v = + v p=p +p, (12)
where v; and p" are the unknown corrections. By substituting the
velocities into the continuity equation (1) we get an equation for
the mass flux corrections

o ey o
§ My = — E Mym, -
m

m

(13)

An cquation for the pressure corrections is reached by giving the
changes in mass flux on the left hand side of Eq. (13) in terms
of changes in pressure. This is done by substituting the yet un-
known values (12) for velocity components and pressure into the
momentum equations (S) and by taking into account that the pro-
visional values v; and p* satisfy these equations. This gives us
a relation between the velocity and pressure changes in a cell
and its neighbours. We follow the approach used in the SIMPLE
method [1] and approximate the relation by neglecting the velocity
corrections in the neighbouring cells, leaving relation

Ap iy = — Z SinPinMi i - (14)
n

Based on the Gauss theorem, the left hand side is equal to the
volume integral of the pressure derivative in direction x; over tri-
angle /. The relation for convection velocity ;,, on face lm is
reached by averaging the relations for cells [ and 1 and by taking
a dot product between Eq. (14) and the normal vector on face lin

giving
o Vuny (O
Um = — 1 ) .
APpP,(lm) n (tm)

Here, Vi and A p iy, are taken as averages of the respective values
incells  and m. By approximating the normal derivative similarly
to Eq. (10) and by substituting the relation (15) into Eq. (13), we
get the pressure correction equation

(15)

Z(“’Im}”:n = - Z Tj'l-m > (16)
m m
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are the off-diagonal and diagonal elements respectively.

The velocity corrections are calculated from (14).
After this, the velocities and pressures are updated. However,
practice has shown, that for a stable calculation, pressure has to
be under-relaxed at this point. This is a known feature of the
SIMPLE-algorithm [7]. Pressures are thus updated from

n+l

P =0l o (18)

Parameter v, is the under-relaxation factor for the corrections and
a value between 0 and 1 should be given depending on the case.



3.4  Overall algorithm

Now, that the individual parts of the solver have been discussed.
we can summarize the algorithm with the following sequence of
steps.

1. Initialize the velocities and pressures in the computational
domain.

(38}

. Update the ghost cell values according to the boundary con-
ditions.

3. Calculate the inviscid and viscous fluxes for vy .

4. Calculate the explicit residuals of vy.

5. Determine the matrix coefficients (6) for the implicit stage.
6. Solve the change of w1 from the linear system (35).

7. Repeat steps 3-6 for velocity component vs.

8. Update the velocity components.

9. Calculate the mass imbalance on the right hand side of
Eq. (16) using Eg. (11).

10. Determine the coefficients (17) of the pressure correction
equation.

1. Solve the pressure corrections from (16).

12. Update the pressures according to Eq. (18) with under-
relaxation.

13. Calculate the velocity corrections from Eq. (14).

I4. Repeat steps 2-13 until convergence.

4 Data structures

For unstructured solution methods the connections between dif-
ferent grid elements have to be explicitly defined. Thus the data
structure is an integral part of any unstructured flow solver. It has
influence on both the memory and CPU time requirements and the
data structure is usually a compromise between these two.

4.1 Face based data structure

The data structure used to define the faces of the element grid is
similar to the ones in e.g. [5] and [8]. These have four identi-
fication integers for each face in the grid, which define the two
endpoints of the face and the triangles to the left and right of the
face respectively. For our purposes, two additional integers are
added for each face. These define, which subregion of the grid do
the triangles on the left and right hand sides of the face belong to.
For instance, the ghost cells of difterent boundary patches belong
to different subregions. For face lin in Fig. 4 the entries in the tace
datastructure are

iface(lm, 1) =n
iface(lm, 3) = |
iface(lm, 5) = block(l)

iface(lm,2) =p
iface(lm,4) =m
iface(lm, 6) = block(m) ,

with the direction of the face from n to p, leaving element { on the
left hand side and m on the right hand side of the face.

4.2  Element based data structure

The data structure for triangles is similarly an extension of the
element data structure used in e.g. [5]. The original data struc-
ture has three entries for each triangle, giving the indeces of the
faces forming the triangle. This leads to a hierarcial data struc-
ture, in which the element structure gives the faces of a triangle
and face data structure gives the corner points. However, with this
approach each corner point of a triangle is resolved twice and com-
mon corner points have to be eliminated separately. In this work,
the problem is avoided by using an approach based on a reference
triangle shown in Fig. 5. The first three entries for each element
are the indeces of the sides of the triangle. These are collected
in a counter clockwise direction starting from some arbitrary side
of the triangle. In addition to these, there are three entries, which
define the orientations of the sides relative to the reference tri-
angle. These give a data structure

ielem(l,1) = Im
telem(l,2) = In
telern(l,3) = Ip

ielem(l,4) = orient(lm, )
ielem(l,5) = orient(In,!)
ielem(l,6) = orient(Ip, 1) ,

where

0 if  is to the left of Im

0"‘3“"(“”'”:{ 1 iflistotherightof Im

is the orientation marker for face lm relative to triangle /.

5 Numerical tests

Several test calculations for different types of flows have been car-
ried out during the development of the solution method. These in-
clude e.g. tully developed channel flow, lid-driven flows in square
and skewed cavities and flow around a 2D cylinder. Results for
a lid-driven cavity flow are presented below. The linear systems
arising from the momentum equations are solved using Gauss-
Seidel iteration, whereas the pressure correction equation is solved
using either Gauss-Seidel or conjugate gradient stabilized (CG-
STAB) method.

An overview of the case is presented in Fig. 6. Cavily
flows are standard benchmark cases for testing solution methods
for Navier-Stokes equations with a great deal of reference data
available in the literature. The geometry is simple, yet the recircu-
lating flow is quite complex associated with a balanced presence
of both diffusive and convective processes. [5]

The dimension L of the cavity and the velocity u of
the lid are 1.0 m and 1.0 m/s respectively with Reynolds number
set to 1000. The angle 3 of the cavity for the tested case is 30
degrees. The no-slip boundary condition was applied on all walls.
Computational grid shown in Fig. 7 was generated by dividing the
quadrilaterals of the corresponding structured uniform 40 x 40
grid into two triangles. The resulting mesh has 1681 nodes, 4880
sides and 3200 triangles. A constant time step of 0.6 s was used
for the momentum equations and the resulting linear systems were
solved using 24 Gauss-Seidel iterations. The mass flux damping
parameter C' was set to 0.5. The Gauss-Seidel solver was used for
the solution of the pressure correction equation with 6 iterations.
The under-relaxation factors for pressure and velocity were o), =
0.2 and o, = 1.0 respectively. The convergence of the residuals
is presented in Fig. 8. As can be seen, the residuals do not change
anymore after around 380 global iterations. By this time, the Lo-
norms of the momentum residuals have dropped by over 5 decades
and the norm for the pressure corrections by 3 decades.

The velocities in the cavity are compared to the numer-
ical reference data by DemirdZi¢ et al. [9]. The comparison is
based on the v, and v2 velocity components along the centre lines



of the cavity from left Lo night and from bottom to top. This is
shown in Fig. 9. As the cell centres of the computational grid do
not coincide with the exact centre lines of the cavity, points closest
Lo these lines below and above or to the left and right have been
used. As can be seen from these figures, the computations agree
rather well with the reference solutions. The minimum of va ve-
locity is, however, overestimated by 7.4 per cent. Additionally
the difference between the computed solutions above and below
the horizontal centre line is quite large at the right hand wall of
the cavity. This is due Lo the fact, that in this case the end of the
centre line is located very close to the point, where the flows from
above and below converge. It is likely, that the grid resolution is
somewhat insufficient and the accuracy of the results could be im-
proved by making the grid finer at certain locations. In fact, in
the grid dependence studies by Demirdzi¢ et al. [9] the locations
most sensitive to changes in grid spacing were the ones mentioned
above.

6 Conclusions and future work

An unstructured, pressure correction based flow solver for lam-
inar flows on triangle meshes has been developed and tested with
several different test cases. Results for a lid-driven skewed cav-
ity flow have been presented. The accuracy of the method for the
cases tesled has been comparable to similar methods found in the
literature. However, all of the grids used for testing were featured
with a smoothly varying cell size. Some validation using grids
with considerable differences in the sizes of the neighbouring cells
should therefore be done in the future.

The development is still in an early stage, but a solid
base for further development has already been established. The
long term goal of this work is the application of the solver for free
surface flows using surface tracking grid reconstruction, in which
new cells are introduced and old ones destroyed, as necessary, fol-
lowing the movement of the free surface. For this a method for the
surface deformation computation as well as a grid reconstruction
algorithm have to implemented.
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1. Introduction

The important fundamental problem of defining the farfield waves generated by a ship advancing in calm
water or in regular waves (or an offshore structure in waves) is considered for deep water and uniform finite
water depth. A classical Fourier representation defines the farfield time-harmonic (or steady) waves generated
by a ship or an offshore structure in terms of one-dimensional Fourier superpositions of elementary waves that
satisfy the Laplace equation and the boundary conditions at the sea floor and the free surface. This classical
Fourier representation of farfield waves does not satisfy the radiation condition (and thus does not preclude, for
instance, waves ahead of a ship advancing in calm water). Another Fourier representation of farfield dispersive
waves, given in Noblesse and Chen (1995) and Noblesse (2001), does satisfy the radiation condition, as well as
the boundary conditions at the free surface and the sea floor. However, this representation (which involves the
sign function) does not satisfy the Laplace equation exactly.

Thus, neither the classical Fourier representation of farfield waves nor the representation given in Noblesse
and Chen (1995) satisfy all the equations and conditions that define the farfield waves generated by a ship or
an offshore structure. These two known Fourier representations of farfield waves are reconsidered and extended
here. A representation — which exactly satisfies the Laplace equation, the radiation condition, and the sea-
floor and free-surface boundary conditions — is given. Thus, this new farfield representation satisfies all the
equations and conditions that define the farfield waves generated by a ship or an offshore structure, except
the nearfield boundary condition at the wetted hull of the ship or structure (the nearfield boundary condition
determines the amplitude of the farfield waves). The new farfield representation can be useful (i) to couple a
nearfield flow calculation method and a farfield linear potential flow representation, as in Yang et al. (2000),
(ii) for numerical methods based on a spectral approach, and (iii) to define practical Green functions based on
Rankine sources and Fourier superpositions of elementary waves, as will be shown elsewhere.

Although farfield waves generated by a ship advancing in calm water or in regular waves, or an offshore
structure in regular waves, are primarily considered here, the approach and the analysis expounded in the study
are valid more generally and in fact can easily be applied to a broad class of dispersive waves.

2. Problem statement

A ship advances in regular (time-harmonic) waves along a straight path, with constant speed If , at the free
surface of a large body of water of uniform depth D. The X axis is chosen along the path of the ship, and points
toward the ship bow. Thus, the ship advances in the direction of the positive X axis. The Z axis is vertical
and points upward, and the mean free surface is taken as the plane Z=0. The sea floor Z=—D is assumed to
be a rigid wall. The flow is observed from a Cartesian system of coordinates moving with speed I{ along the X
axis, and is expressed as the sum of a steady component, which represents the flow due to the ship advancing
in calm water, and a time-harmonic component associated with the ambient waves, the waves diffracted by
the ship, and the radiated waves due to the motions of the ship about a mean position. g and w represent
the gravitational acceleration and the frequency of the waves encountered by the advancing ship, respectively.
The steady and time-harmonic components of the flow due to the ship are expressed in nondimensional form
in terms of the water density and a reference length L and velocity U, which can be taken as the length and
the speed U of the ship, respectively. Thus, nondimensional coordinates £ = (£,n,() = X /L and velocity
potential ¢ = ®/(UL) are used here. The nondimensional water depth isd = D/L. ;

Farfield waves generated by a ship may be analyzed within the framework of linear potential-flow theory.
Thus, farfield ship waves are defined in terms of a velocity potential ¢ that satisfies the Laplace equation

beg + by + ¢ =0 (1)
In addition, the potential ¢ satisfies either the deep-water boundary condition

p—0 as (— -0 (2a)
or the (rigid) sea-floor boundary condition

bc=0 at (=—d (2b)



The potential of farfield time-harmonic ship waves also satisfies the free-surface boundary condition
O — [P+ Flee+i2rde —ic(fo—iFgs) =0 at (=0 (3a)

where f=w+/L/g, F=U/\/gL ,7=Ff and 0 < & <« 1. The potential of farfield steady ship waves satisfies
the free-surface condition

¢C+F2¢5§§—EF¢§=U at ( =0 (3b)
This condition corresponds to the special case f = 0 = T of the condition (3a) associated with diffraction-
radiation of time-harmonic waves with forward speed. The parameter 0 < < 1 in the free-surface boundary
conditions (3) is associated with initial conditions that correspond to a flow starting from rest at time T = —00
e.g. see Lighthill (1978) or Noblesse (2001). These initial conditions and the related parameter ¢ in the free-
surface boundary conditions (3) ensure that the radiation condition is satisfied. Finally, the potential ¢ satisfies
boundary conditions at the ship hull that specify the derivative d¢/n of ¢ along the normal to the hull surface.
However, these nearfield boundary conditions are not required for the present analysis of farfield ship waves.

3. Elementary waves and dispersion functions

Consider the elementary wave functions
W(&,n,¢) = emtlaetPmtke (4a)

W(&,n,¢) = e (@8+8M) cosh [k(¢+d)]/cosh(kd) (4b)

where k is the wavenumber defined as
k=+a?462 (5)

The elementary wave (4b) is identical to (4a) in the deep-water limit kd — co. At the mean free-surface plane
¢ = 0, the wave functions (4a) and (4b) become

W(E.m.(=0)= e-i{at+sn

The elementary wave functions (4) satisfy the Laplace equation (1). In addition, the elementary wave (4a)
satisfies the deep-water boundary condition (2a) and the elementary wave (4b) satisfies the sea-floor boundary
condition (2b). The elementary wave functions (4) also satisfy the free-surface boundary condition (3a) if the
Fourier variables o and @ satisfy the dispersion relation

D+ieDy =0 . (6)
with the dispersion functions D and D; given by

D=(f-Fa) -k D) =f-Fa (7a)
D = (f-Fa)? — k tanh(k d) D) = f-Fa (7b)

for the wave functions (4a) and (4b), respectively. The dispersion function D defined by (7b) is identical to
the deep-water dispersion function (7a) in the limit kd — co.

Thus, the elementary waves (4) — where k, a and f satisfy (5) and (6) with (7) — satisfy the Laplace
equation and the boundary conditions at both the free surface ( = 0 and the sea floor ( = —d or ( = —o0.
These wave functions therefore are elementary farfield solutions. Accordingly, the farfield waves generated by
a ship or an offshore structure can be represented by a Fourier superposition of the elementary waves defined
by (4a) in deep water or (4b) in water of uniform finite depth d. This Fourier representation of farfield waves
is examined below for generic dispersive waves of the form (4a) and (4b) associated with a dispersion relation
of the form (6). Farfield waves corresponding to the dispersion relation (6) with ¢ = 0 are considered first, and
the dispersion relation (6) with 0 < ¢ < 1 is examined subsequently.

4. Classical representation of farfield ship waves
In the limit € = 0, the dispersion relation (6) becomes
P=1 (8)

For instance, consider the dispersion function D defined by (7a) in the special case F'= 0, which corresponds to
wave diffraction-radiation without forward speed (e.g. by an offshore structure) in deep water. The dispersion
function D in this special case is D = f2—k and the dispersion relation (8) yields k = f2. Thus, the dispersion



relation for this special case shows that the Fourier variables a and B in (4a) lie on a circle with radius f?
centered at the origin k = 0 of the Fourier plane (a, ). More generally, the dispersion relation D(a,8) = 0
associated with generic dispersive waves typically defines several curves, called dispersion curves, in the Fourier
plane.

Thus, farfield waves can be represented by one-dimensional Fourier superpositions of the form

ds AW (9)
D=0 Y D=0

where the Fourier variables (a,3) lie on the dispersion curves defined by the dispersion relation (8). In (9),
summation is performed over all the dispersion curves defined by (8), ds represents the differential element
of arc length of a dispersion curve, W is the elementary wave function given by (4a) or (4b), and A stands
for an amplitude function (that is determined by the nearfield boundary condition at the ship hull surface).
The classical Fourier representation (9) of farfield waves is associated with the dispersion relation (8), which
corresponds to (6) with € = 0. Thus, the farfield waves defined by the classical Fourier representation (9) do not
satisfy the radiation condition. For instance, the representation (9) does not preclude steady ship waves ahead
of a ship advancing in calm water. Farfield waves associated with the dispersion relation (6) with 0 < e <« 1,
which accounts for the radiation condition, are now considered.

5. Elementary waves that satisfy the radiation condition
The dispersion relation (6) with 0 < £ < 1 defines complex Fourier variables of the form
a+ica B+ich k+ick (10a)

and requires
D(a+icay,B+ich)+icDi(a+ica;,B+ief) =0

In the limit € — 0, this dispersion relation yields
D(a,B) +ie(c1Do + 1Dg + D1+ 0(?) =0

where Dy and Dy are the derivatives of the dispersion function D with respect to the Fourier variables o and
8. The foregoing equation and the relation D(a, 8) = 0 yield

a1D, +,81Dg =-D, (].Ob)

Furthermore, the Laplace equation requires

k+icki=(a+ico)?+ (B+icf)?
In the limit € — 0, this relation and (5) yield .
k= (aar +861)/k (10c)
Using the Fourier variables (10a) in (4a) yields elementary waves of the form

e~ ilaé+fn—cki()+k{+e(a1&+Fin) (11a)

For ¢ > 0, the elementary wave function (11a) is unbounded in the limit €2+ 7% — oo if cn £+ B1n > 0.
Elementary waves of the form
O e~ tlaf+Bn—cki{)+k(+e(ag+pin) (11b)

are bounded everywhere if the function © is null in the farfield for oy €+8; 7 > 0. For instance, the function ©
© = [1-sign(1§ +Bin)] /2 (11c)
satisfies this requiremént. The limit € — 0 of the bounded wave function (11b) may then be taken and yields

O e~ ilad+8n)+k( (11d)

The elementary wave function defined by (11d) and (11c) does not satisfy Laplace’s equation. Thus, the
function © is now modified so that the elementary wave (11d) satisfies Laplace’s equation.



Consider the function

6(a1§+ﬁ1n+iklc)

= (12a)

where o, is a positive real function of the Fourier variables & and 3. The function defined by (11d) and (12a)
satisfies Laplace’s equation if

k? = O:2+/82 k% = O:%-!—ﬁf kki=co1+83

The first and last of these three conditions are satisfied by virtue of (5) and (10c), and the second condition
requires a; /a = 31/ . Thus, the wave function (11d) satisfies Laplace’s equation if

(al,ﬁl,kl)=r(0’,ﬁ,k) (12b)
Expression (10b) defines the proportionality factor I' as

—Dl ‘“Dl EDll

r: — = —
aDe+PDs _ kDx " k[D]

(12¢)

where Dy = Dy a/k+ Dg 3/k is the derivative of the dispersion function D in the radial direction (o, 3)/k and
u is defined as
L= signDy signDy, (12d)

Expressions (12a)-(12¢) then yield

o(-

MW) (12¢)

where ¢ = o, k| Dy /D, | is a positive real function of & and 3.

A simple function of the form (12e) that satisfies the farfield condition associated with (11) is

al+PBn+ik(

©=1/[1+exp(—p =

)] (13a)
Indeed, (13a) yields © — 0 as u(aé + Bn)/oc — —co and © -1 as p(a € + Bn)/o — co. Furthermore, (12d)
yields

., LtsignDisignDysign(aé +8n) - |ef+ B

e 13b
e 5 . oo (13b)
in accordance with (11c).
Thus, the elementary wave function
e—i(a£+6n)+k</[1+exp(_#9‘_5_w” (14a)

where p is given by (12d), satisfies the Laplace equation (1), the deep-water condition (2a), and the free-surface
boundary condition (3a), which accounts for the radiation condition. The elementary wave (14a), related to the
deep-water elementary wave (4a), can be extended to uniform finite water depth by substituting the function

e,gc@(_#)aﬁ-i—ﬁ;’}ﬁ-ikg)

by the function

ek(g+d)@(_uaf+5'fl+ik(4+d))+e-k(c+d)@(_ua§+5n~’ik(C+ d))

o o
which satisfies the boundary condition (2b) at the sea floor ¢ = —d. The elementary wave function
8~i<ae+am( explk (C+d)) N exp(=k (¢+d)] ) (14b)
1+exp[-p*{al+Bn+ik(¢+d)}]  1+exp[-p*{af+Bn—ik(¢+d)}]

where u* = p/o, satisfies the Laplace equation, the sea-floor and free-surface boundary conditions, and the
radiation condition.



6. Fourier representation of farfield ship waves

The foregoing analysis shows that farfield ship waves can be expressed in terms of one-dimensional Fourier
superpositions of the elementary wave functions defined by (14) and (12d), which satisfy every farfield condi-
tion (Laplace equation, sea-floor and free-surface boundary conditions, and radiation condition). This Fourier
representation of farfield ship waves is now given. The Fourier variables a and 3 and the horizontal coordinates
& and 7 are expressed in the polar forms

a cos
{ }:k{_ {} with k=+10?+6%2 and —-7<v<7 (15a)

Jé] sin -~y

n sin@

These polar representations and expressions (14) show that the potential ¢ of farfield (steady or time-harmonic)
waves generated by a ship (or an offshore structure) can be expressed as

{£}=h{cf)59} with h=+/E+72 and —-r<f<nm (15b)

¢~ Z/ dn,A © A (cosH —i sinH ) (16a)
i>1
Here, H is defined as
H=oaf+pPn=Fkhcos(y—0) (16Db)
and the function A is given by
A =exp(k() A =cosh[k((+d)]/cosh(kd) (16¢)

in deep water and in uniform finite water depth d, respectively. Summation in (16a) is performed over all the
dispersion curves defined by the dispersion relation D=0. The wavenumber k in (16a)-(16¢c) is a function of v
that is given by :

k=k(y) with 7 <y<qf

where k;(7y) are the roots of the dispersion relation D=0, and v and 7Y are the lower and upper limits of the
corresponding range of the polar angle v. The function © in (16a) is given by
expH, + cosV, +1i TsinV,  expH, + cosV, +1 TsinV,

= = 17
© expH. + 1/expH, + 2cosVi 2 (coshH, + cosV, ) L

where the functions H, and V, are defined as
H.=pHjo Vi=uV/o with u = signD; signDy, (17b)

and Dy = D, cosy + Dg siny. The functions T and V in (17a) and (17b) are given by

1 k¢
2{tanhV} Vz{k({+d)} (17¢)

in deep water and in uniform finite water depth d, respectively. The variation of the function H, that

corresponds to a period of the trigonometric function exp(—i H) is given by 2n/c. Thus, the choice ¢ =1
in (17b) ensures that the function © defined by (17a) becomes practically identical to 0 or 1, more precisely
to the farfield approximation given below by (18), within one period (wavelength) of the function exp(—i H).
The amplitude function 4; = A4;(+y) in the Fourier representation (16a) is determined by nearfield boundary
conditions, flot considered in the farfield approximation (16a).

7. Comparison of alternative farfield representations

The farfield waves defined by the Fourier representation (16), with © given by (17) and the dispersion
functions D and D, given by (7), satisfy the Laplace equation, the free-surface boundary condition (3a) with
0 <& « 1, and the boundary conditions (2a) or (2b) at the sea floor. The potential ¢ defined by the Fourier
representation (16) with © = 1 satisfies the Laplace equation, the free-surface boundary condition with ¢ = 0,
and the sea-floor boundary condition. The function © in the Fourier representation (16a) of farfield waves
corresponds to the dispersion relation (6) with 0 < ¢ < 1, and introduces restrictions that do not exist in
the classical representation associated with ©® = 1, £ = 0, and the dispersion relation (8). The restrictions



introduced by the function © account for the information that is included in the dispersion relation (6) but is
ignored in the dispersion relation (8). Specifically, the dispersion relation (6) assumes a flow that starts from
rest at time 7" = —oo, whereas the dispersion relation (8) includes no information about initial conditions.
Accordingly, the dispersion relation (8) does not yield uniquely-defined time-harmonic flows. If this dispersion
relation is used, a unique time-harmonic flow can be defined by invoking an additional consideration, called
radiation condition, that specifies that wave energy is radiated away from the flow disturbance that generates
the waves. This additional consideration, required to supplement the dispersion relation (8), is automatically
satisfied if the dispersion relation (6) is used instead of (8).

The farfield approximation (13b) yields
© = [1+ signD; signDy sign(aé+3n)]/2 (18)

in the farfield limit |a€ + 81| /o — co. The representation (16) with © given by (18) satisfies the boundary
conditions at the sea floor and the free surface, and the radiation condition. However, this representation does
not satisfy the Laplace equation. The main contribution to the Fourier integral (16a) in the farfield limit A — oo
stems from points where the phase H of the trigonometric functions cosH and sinH is stationary. Expressions
(16b) and (15) show that a point (e, 3) of a dispersion curve D(cr,3) = 0 where the phase H = af + 87 is
stationary is determined by the relation

dH/ds = éda/ds +ndB/ds =0

Here, ds is the differential element of arc length of a dispersion curve, as already noted. The vectors
(da/ds,dB/ds) and VD = (D, ,Dg) are tangent and normal, respectively, to a dispersion curve, and therefore
are orthogonal. Thus, the vector (£,7) is normal to a dispersion curve at a point (o, 3) where dH/ds =0, i.e.
at a point of stationary phase, and the relation

(§n)/VE&+n? =v(Dq,Dg)/1/D2+D} with v =1
holds at such a point. This relation yields
sign(aé +6n) =vsign(aDy +8Dg) = vsign( D)

It follows that we have
1+ signD; signDy sign(aé+6n) = 1+ vsignD,

at a point of stationary phase. This expression is null if v = —signD; . Thus, a point of stationary phase yields
a non-zero contribution to the Fourier integral (16a) if the relation
(&,n) (Do, Dg) VD

—=——=— = (cosf,sinf) = signD,

VE2+n? \/D2+D3

is satisfied. The relation (19) shows that a point («, 3) of a dispersion curve (in the Fourier plane) mostly gen-
erates waves (in the physical space) along an angle /£ = tan 8 that is orthogonal to the dispersion curve and in
the direction (signD;) VD . Conversely, farfield waves observed along a direction 6 stem mostly from the point(s)
of the dispersion curve(s) where the condition (19) holds. This well-known result, e.g. see Lighthill (1978) and
Chen and Noblesse (1997), provides a verification of the Fourier representations given by (16) with (17) or (18),
and also shows that these farfield approximations are asymptotically equivalent to the approximation (16) with
© defined as

= signD, (19)

VD]

© = [signD; + sign(éDa+1Dg)]/2 (20)
given in Noblesse and Chen (1995) and Noblesse (2001).
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l.Introduction

In recent years, efficient propulsion systems are in demand for reducing emission of greenhouse
effect gas. Among many such systems proposed so far, contrarotating propellers (CRP) are one of the
most efficient propulsors. A great deal of efforts have been made on performance predictions of CRP,
mainly based on a vortex theory or a lifting line theory[1].

On the other hand, CFD methods based on Navier-Stokes solvers are being widely used for hydro-
dynamic performance analysis of ship hull forms in a design process. For a prediction of propulsive
efficiency by CFD methods, propeller effects should he taken into account in Navier-Stokes simula-
tions. The most simplified way to do this is the use of a body force distribution representing propeller
effects. This approach has been applied to analysis of ship flows with a propeller effect[2,3] and gen-
erally showed good agreements with measured data. However, all the above body force models are
concerned only with a conventional single propeller(CP) and the applications to CRP have not heen
carried out.

The purpose of the present paper is to examine the applicability of two body force models for
Navier-Stokes solvers to CRP. One is the prescribed body force model[2] which determines a bodyforce
distribution based on the given values of thrust and torque and the geometrical information. This
model cannot take into account considered of the interaction between two propellers(fore and aft
propellers of CRP). Another body force model can cope with the interaction of two propellers of CRP.
In this model, the body force distributions are calculated by a simplified propeller theory[4] in which
a propeller thrust and torque are determined from the informations of propeller inflow and operating
conditions.

At first the numerical simulation ol propeller open water characteristics of CRP is performed, then
the numerical simulation of ship flows under self-propulsion condition is carried out. Through the
above numerical simulations, the applicability of the present model is examined.

2.Numerical Method

The basic flow solver used is NEPTUNE (5] which solves the three-dimensional incompressible
Navier-Stokes equations with artificial compressibility. In this work, the propeller effects are taken
into account in the body force term of the governing equations as

Qﬂ+a{e+eu)+c‘3(f+fu)+0(g+gv)+H:0 ()
ot oz Ay Oz
where x, y and z are the Cartesian coordinates. In Eq.(1), q is the dependent variables [, u, v, w]7,
(e,f,g) and (e, g, f,) are the inviscid fluxes and the viscous Auxes and H is the body force vectors
(0, 2 fbx, — fby, — fbz]T.

The propeller effects are represented using the body force distributions. In the present work, two
body force models are used. One is the prescribed body force distributions proposed by Hough and
Ordway(2](this is called as Modell hereafter) and the other is the body force distributions which are
calculated by a simplified propeller theory[4](this is called as Model2.



3.Results and Discussions
3.1 Results for Propeller Open Water Characteristics

The numerical simulations of propeller affects in open water are carried out. Table 1 shows the
principal particulars of CRP(MP258[fore] /259(aft]).

Table 1 Principal Particulars

CRP
MP.No. MP258 MP259
Diameter(m) 0.250 0.2399
Boss Ratio 0.220 0.229
Pitch Ratio(0.7Rp) 1.274 1.366
Expanded Area Ratio 0.482 0.518
Blade Thickness Ratio 0.053 0.047
Number of Blades el 5
Direction of Turning Right Left
Blade Section NACA66,a=0.8 | NACA6B6,a=0.8

Fig.1 is the distributions of the axial and circumferential velocity of CRP case. The computed
results show a good agreement in the axial velocity. The hoth models can simulate the large decrease
of circumferential velocity and Model2 can simulate the flow field slightly better than the prescribed
body force model(Modell), although the velocity amplitudes are under-predicted compared with the
measured data. One of the reason for this under-prediction is considered to the fact that the propeller

boss effect is neglected in the computations.

u Computed ' Ve
- :41332:; e x=0.36 Computed
Measured[1] caB | J=1.06 o mggg:;
’ CP  Measured[1]

Axial Velocity Circumierential Velocity

i 0.1 1
0 1 /Ry, 0 1 iR,

Fig.1 Velocity Distributions in the Propeller Race of CRP(x=0.36,MP258/259)

3.2 Results of Self-propulsion Condition

.
In this section, the numerical simulation of ship flows under self-propulsion condition is carried out

with the prescribed body force model(Modell). Model2 results will be discussed at the meeting.
For simplicity, free surface effect is not considered and a rudder is not adopted. Computed results
are compared with measured results[1] in terms of thrust deduction coefficient in particular because



the prescribed body force model is not able to obtain other self-propulsion factors. Also the flows
behind CP and CRP are compared and CRP effects on the wake flows are discussed.
The ship type is a container ship. The solution domain is set
=15 <2 <30,-20<y<20,-20<2<00
where (x,y,z) are non-dimensionalized by L,,. The origin of the coordinate is located at FP on the
waterplane. Fig.2 depicts the computational grid. The grid consists of 145 x 65 x 81 grids points
and the minimum spacing is 1.0 x1072,2.4 x 107% and 2.8 x10~° in streamwise, girth and normal
directions, respectively. The grids points are clustered in the boundary layer of a ship hull and near
the propeller section. The Spalart-Allmaras model is adopted as a turbulence model.

AL
L2
."”//%

-I"
L AL 7o s,
LT

i
s
T s

Fig.2 Computational Grid(Only a half side is shown)

Table 2 shows the principal particulars of the model propellers MP145(CP) and MP258/259(CRP)
used in this computation.

Table 2 Principal Particulars of MP145 and MP258/259

CP CRP
MP.No. MP145 | MP258 | MP259
Diameter(m) 0.256 0.250 0.240
Boss Ratio 0.180 0.220 0.229
Direction of Turning | Right Right Left

In the present work, self-propulsion condition is determined by thrust-identity method which changes
the propeller thrust value until the self-propulsion condition is satisfied. The propeller thrust and
torque are interpolated by the polynominal approximation of the measured results.

Fig.3 shows the flows behind the propeller at 2=1.0{AP) and Fig.4 depicts pressure distributions
on the aft hull surface. Comparison of the flows of CRP case with those of CP case shows the cross
flows behind CRP decrease drastically and the axial velocity distributions of CRP case are almost
y-symmetric. In Fig.4, the high pressure area with CRP is much smaller than that without propeller
because of the propeller suction effects. This area is larger than that with CP, since the longitudinal
distance between the propeller and the ship stern is larger in CRP than in CP. This leads to decrease of
the viscous pressure resistance C,, and rise in thrust deduction coefficient 1-t in CRP case(see Table
3). The values of 1-t obtained by the numerical simulations are larger than the measured results.



This is due to the fact that the computed thrusts are smaller than the measured ones since the wave

making resistance is not taken into account in the numerical simulation.

Fig.3 Comparison of Axial and Tangential Velocity Distribution(Au=0.1, x=1.0)

Table 3 Comparison of Resistance Coefficient and 1-t

w.o.prop. | CRP | CP

C, x 10° 3.200 3.440 | 3.496
Gl 5107 0.327 0.660 | 0.717
1-t(Computed) — 0.868 | 0.844
1-t(Measured[1]) — 0.836 | 0.800

4.Conclusion

The applicability of the body force models of CRP has been examined for a Navier-Stokes solver.
At first, the numerical simulation of propeller open water characteristics of CRP is performed. The
present body force models can simulate the large decrease of the cross flow velocities, although the
values are under-predicted compared with the measured data. Oue of the reason for this under-
prediction is considered to the fact that the propeller hoss effect is neglected in the computations. In
the future, the propeller boss effect must be considered to improve accuracy.

Next the numerical simulation of ship flows under self-propulsion condition with CRP is carried
out. The self-propulsion factor, thrust deduction coefficient in particular, is compared with the mea-
sured results. The computed results show a similar tendency as the measured results that the thrust
deduction coefficient of CRP case is larger than that of CP case.
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ABSTRACT

The prediction of the lift and drag characteristics of hydrofoils at high incidence angles is examined, when
transition occurs. Two turbulence models are examined i.e. the Spalart-Almaras one-equation model and the k-w — SST
two-equation model in conjunction with empirical and theoretical calculations of the laminar tlow regimes.
Computations are compared to measurements.

INTRODUCTION

In their majority, complex turbulent flow-fields are calculated by RANS solvers by employing suitable
turbulence models. Such methods have been applied with success for the calculation of lift and drag characteristics of
airfoils when the flow is fully turbulent. However, if transition from laminar to turbulent flow occurs, there are special
difficulties to model accurately the extension of laminar zones especially at high angles of incidence. Since the
existence of transition affects drastically the overall coefficients, the prediction of transition points remains one of the
crucial problems for this type of flows.

In many cases there are experimental data providing information about the location of transition and the
corresponding calculations are made to compare numerical predictions to measured quantities for this kind of flows.
Needless to say that there is no need, then, to adopt a transition model. However this is not the case for required 2D and
3D applications where the transition zones must be calculated implicitly by the numerical method. Since this problem is
still open, empirical physical models are often applied to determine transition and their success depends, as for the
turbulence models, on the geometry and the situations considered. The purpose of the present study is to examine the
influence of such models on the prediction of flows past airfoils, mainly near stall.

Two methods are examined to predict the transition point. The first one (T1) is based on experimental data
from airfoils according to the empirical proposal of Schlichting-Granville [1]. This approach involves the integral
boundary layer parameters that are calculated by the Polhhausen method, in order to compute the location of the point
of instability and the point of transition. The second transition model (T2) is the theoretical “n-factor” based on Falker-
Skan two parametric velocity distributions. In both cases, the external velocity at the edge of the boundary layer is
calculated implicitly through the pressure distribution along the foil that is derived from the overall solution of the
RANS equations.

In order to investigate also the significant role of the turbulence modeling two turbulence models have been
employed, i.e. the Spalart-Almaras (SA) [2] one equation model and the k- SST two-equation model (SST) [3]. In all
tests, a RANS solver developed at the School of NAME, NTUA has been applied.

Two test cases were examined. In case A (typical wind generator section, Table 1) the lift and drag coefficients
were calculated using both turbulence models in low and high angles of attack, with fixed transition. Since the k- SST
showed better behavior in case A, this model was exclusively used in case B (NACA 63-415) for fully turbulent or
with-transition calculations, employing both transition models. The numerical results are compared with experimental
data.



2-D RANS SOLVER

The governing RANS equations and the turbulence model equations are expressed in orthogonal curvilinear
coordinates. They are solved according to finite volume approach using a staggered grid. The fluid domain was covered
by an orthogonal C-type mesh, which was extended 6 chords downstream and 5 chords in the transverse direction
(Fig.1]. The grid was produced by the conformal mapping technique [4] and had a density of 1200x150 points (NI x NJ)
where the first number shows the nodes along the foil contour.

The code uses the hybrid, first-order scheme for the convection terms and a pressure correction, SIMLE-like
procedure [5] to calculate the pressure field together with the velocity components. To be able to include transition
predictions, the method also includes a boundary layer prediction in order to estimate the momentum thickness, which
1s necessary to apply methods T1 and T2.

With regard to the turbulence modeling, the one equation SA model was used in test case A with specific
treatment of diffusion terms according to [2], which, however, did not show any remarkable differences in the results.
The model requires an initial value of the employed variable, which was introduced by a k-g so lution for the first
iterations of the convergence procedure. The k- SST two-equation model was applied in its standard form or in
conjunction with the one-equation k-model for eddy viscosity calculation close to the wall. In this approximation, the
mixing length is determined by the simple Van-Driest formula.

BOUNDARY CONDITIONS

The employed 2-D RANS solver leads to an elliptic form of non-linear algebraic equations, so it requires
boundary conditions on every boundary. The velocity components on the external boundary of the C-mesh are
computed assuming the flow undisturbed (Dirichlet conditions) while for all other variables Neummann conditions are
applied. At the exit plane non-reflecting conditions have been employed and the pressure is calculated by linear
extrapolation

On the wall the velocity components are set equal to zero, the pressure is calculated assuming zero normal
gradient, while, as mentioned above, two kinds of boundary conditions are imposed when the SST model is used.
According to the first condition, the @ value on the wall is computed through:

meé—v, as  y—0 (D

B
whereas, in the second approach, this value is implicitly approximated by finding the corresponding value of the eddy
viscosity according to the one-equation k-model.

TRANSITION MODELS

The empirical method T1 uses the Schlichting-Ulrich diagram to define, first the instability point and, then, the
Granville experimental results on airfoils to find the distance between the instability and the transition to fully turbulent
flow The method requires the calculation of the momentum thickness which is calculated according to the Pohlhausen
laminar-boundary layer method, where the potential velocity is calculated from the pressure field.

The theoretical “n-factor” method T2 is based on Falker-Scan two-parametrical velocity profiles. The transition
occurs when the Tollmien-Schlichting wave in the boundary layer increases with a factor of €" = ¢” = 8100. The Falker-
Skan profiles define “n” as the solution of the differential equation:

dn dn_ d Re,

= 2
ds  dRey, ds *
where,
Rey= 214 = fjﬁ is the critical Reynolds number
K, v

0 is the momentum thickness and
s is the curvilinear direction tangential to the wall

The integration of equation (2) provides the n-factor in each s-location on the wall. The gradient dRey/ds is
calculated by the velocity distribution and the gradient dn/dReg is approximated by the empirical equation:

0]



dn
dRe,

4

=0.01((2.4H - 3.7 + 2.5 tanh(1.5H — 4.65))" + 0.25]"* (3)

with H = 8/0, where
6  is the thickness of boundary layer

RESULTS AND CONCLUSIONS

To assess the selected turbulence models the code has been applied firstly to airfoil A in a wide range of
incidence angles. The results for the lift and drag coetficients are compared in this case with the obtained by well
documented potential-boundary layer methods (FOIL2W [6]), Figs. 2 and 3. In both cases the transition was fixed
according to the FOIL2W results with the n-factor. While the SA model gives practically equal results with the SST and
FOIL2W up to 10 deg. incidence, the two-equation model produces better results near the stall region, i.e. 15-20 deg.
incidence. Besides, calculations with the RANS solver show that solutions can be obtained at very high angles of attack.
.€.g. at 40 deg. With the SA model, while FOIL2W gives convergent solutions up to 22 deg., roughly.

Next, the k- SST turbulence model with the two empirical transition models was tested on airfoil B for which
experimental data are available. When the flow-field is treated as fully turbulent, the lift coefficient is over-predicted
by, about, 20% in the range of stall incidence angles of 10-20 degrees, Figs. 4 and 5. When transition is taken into
account, the n-factor method gives almost the same results with the fully turbulent computations, while the application
of the Schlichting’s proposal produces substantially better results at 14 and 16 deg. incidence. It should be noted here
that the fulfillment of the transition criterion is made independently of the appearance of the leading edge separation.

It is remarkable that the leading edge separation, due to the existence of the laminar flow region, leads to quite
different pressure distributions on the foil, as shown in Fig. 6. The predicted pressure values with the transition model
show a surprisingly close agreement with the measured values at 16 deg. incidence. No matter how the transition point
has been calculated, it is obvious that the leading edge laminar separation affects the whole suction region, which can be
also established by comparing the different sizes of the separation area, Figs. 7 and 8. The Schlichting — Granville
empirical method with Pohlhausen calculations for the momentum thickness predict better the lift coefficient at 16 deg
angle of attack where the transition occurs towards the stagnation point. Also the calculated with transition model
pressure coefficient corresponds to the experimental results in the same angle of attack (fig 6).

Consequently, the present investigation demonstrates that the correct estimation of transition is of major
importance and it is necessary for obtaining reliable results for the integrated coefficients. The work is continued for
predicting unsteady and 3D flows past wings.
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Table I
Test cases definition
Airfoil Re
Case A l 3 x 10°
Case B NACA 63-415 1.6 x 10°
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SUMMARY

This article describes a finite difference method for numerical modelling of non-linear waves in two dimensions. It uses explicit free
surface tracking and adaptive hierarchical Cartesian grids. Massless particles called surface markers are used to define the surface
profile. Attention is focused on the calculation of velocities at the surface for which a novel approach is presented using tangential
and normal velocities. A multigrid scheme is applied to improve the speed of convergence of the solution. Preliminary results are

presented for waves of moderate amplitude.
1. INTRODUCTION.

Potential flow theory may be used in the description of
free surface wave flow provided the principal dimensions
of the marine structure are comparable with the
wavelength, in which case the forces on the structure are
dominated by inertia effects and the viscous drag
component may be neglected.  Simulation of large
amplitude wave motions requires a fully non-linear
approach, in which the «calculation grid deforms
throughout the simulation to fit the moving free surface.

The principal difficulty in calculating such a flow resides
in the accurate advection of the free surface after each
time step. The shape and position of the interface are not
known prior to the solution of the governing equations
and must be determined as part of the solution. Surface
capturing techniques view the free surface as the
interface of a two-phase flow, but are prone to numerical
diffusion that results in the sharpness of the advancing
phase front being blurred. Examples of surface capturing
methods include volume-of-fluid (Hirt and Nichols
(1981)) and level-set (Osher and Sethian (1988))
approaches.

By contrast, front tracking methods (Glimm et af.
(1981)) use a calculation grid that is attached to the free
surface and deforms with it throughout the simulation, as
is the case in this work. This provides two main
advantages: a) the interface remains sharp throughout the
solution in time; and b) the governing equations need
only be solved in the fluid part of the domain. This gain
in computer storage can then be used to refine the grid to
provide increased accuracy in areas where the velocity
potential has a higher gradient.

This paper describes a moving boundary finite difference
solver for two-dimensional fully non-linear time-
dependentawave flows. The velocity potential is found
by solving Laplace’s equation as a boundary value
problem with a non-linear free surface boundary
condition. The grid is automatically regenerated at each
time step once the surface has been moved. A Cartesian
quadtree grid is chosen to provide variable refinement
since its inherent structure lends itself to fast automatic
grid generation and adaptation.

2. FINITE DIFFERENCE FORMULATION.

The numerical problem is to solve Laplace’s equation for
the velocity potential in the fluid domain at each time
step using Neumann boundary conditions on rigid
boundaries and a Dirichlet condition at the free surface.
A two-dimensional Cartesian system, O-xy, is used with
v pointing vertically upwards and the origin being placed
at the bottom left hand corner of the domain.
Additionally, the surface elevation, 77, is defined as the
distance in the y-direction between a point on the surface

and the mean water level, A. The problem is hence
defined by,

V=0, (1)
where ¢ denotes the velocity potential. At rigid
stationary boundaries, Neumann conditions are used,

d¢

£=0, @)

on

where n is the direction normal to the rigid boundaries
pointing out of the fluid domain. At the free surface,
y=b+n, the dynamic and kinematic boundary
conditions written in Lagrangian form are, respectively,

dg ! R
H——g"f"'gvﬁﬂ'véﬁ, (3)
dx  d¢ dy d¢
— T — T 2 —_— ==YV, 4
i e W dy ' @

At time ¢ = 0, the initial conditions are given as,

$lx,y=h+&t=0)=-g&; nlx,t=0)=£(x), (5)
where &(x) is a function describing the initial shape of
the surface in terms of surface elevation. Once equation
(1) has been solved at ¢ = 0, the velocities of the surface
markers are calculated from equation (4) and the surface
is advected using, for example, a first-order forward
ditferencing scheme,

’T|:+A1

dx

= _‘c] +— Af
toode,
(6)
dy
de],
The velocities at the surface are also used in equation (3)
to obtain the time derivative of @ which is subsequently
updated using,

y|:’+.’)f = yl.‘ T Al

¢|.‘+Ar = t?)lr +%l At (7)




Alternatively higher order schemes may be used to
increase accuracy, such as the second order Adams-
Bashforth method (used in the results herein) or the
fourth order Runge-Kutta technique.

3. QUADTREE GRID GENERATION

Having initially been developed in the field of image
processing (Samet (1990)), quadtree grids have found
their way into studies of a wvariety of physical
phenomena. Due to their ability to produce variable
refinement across the domain whilst preserving an
inherent tree structure, quadtree grids have often been
employed in the field of computational fluid dynamics
(Yiuet al. (1996) and Yang et al. (2000) for example)

In this work, the surface is defined by a series of
massless particles, called surface markers, whose

positions at =0 are defined by function &(x). The

surface markers are used as seeding points of the
quadtree grid, together with additional seeding points
placed on the rigid boundaries. The quadtree grid is
generated by recursive subdivision of cells containing
seeding points until a prescribed maximum division level
(LM) has been reached (a minimum division level, LB, is
also set).  Samet (1990) provides details on the
generation of quadtree grids. As a result higher grid
refinement is achieved along all boundaries of the fluid
domain. The fluid part of the domain is identified from
the position and shape of the free surface and cells empty
of fluid are disregarded for the purposes of computation.
Figure 1 is an example of a quadiree grid, LM=6 and
LB=4, for a rectangular tank containing water with a
sinusoidal free surface elevation.

Laplace’s equation is discretised for each of the twelve
different neighbour arrangements possible in quadtree
grids plus additional configurations at rigid boundaries.
Additionally, for certain cells near the surface it is
necessary to use surface markers in the discretisation of
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Figure 1. Quadtree grid

equation (1). As the markers are allowed to move
arbitrarily during the solution, a general discretisation
method is required for these cells. This is achieved using
the method of unknown coefficients as detailed in
Fletcher (1988).

4. FREE SURFACE VELOCITY CALCULATION

Preliminary attempts to model the motion of quasi-linear
and non-linear waves show that the accuracy of this
method is strongly dependent on the method employed
for calculating velocities at the free surface, in particular
the wvertical velocity, v.  Several techniques were
attempted as described in the following.

4.1 CALCULATION OF v AT CONSTANT x

This technique, presented by Turnbull (1999), requires
that the surface markers be kept at known values of x
throughout the solution. After each time step, once the
surface marker positions and potential values have been
updated, the markers are returned to their original x
values and new values of y and ¢ are assigned using
linear interpolation on the updated solution. This ensures
that each surface marker will have a grid node vertically
beneath it with the same x co-ordinate. For example, in
Figure 2 surface marker, SM,, has the same x co-ordinate
as node, N,, and surface marker, SM,, has the same x co-
ordinate as node, N.. This allows a first-order
approximation to v to be available from the nodal value
of @, , using

- gﬁf_ - Pspr =Py . (8)

Y Ysu ~ Yy

The technique can be extended by imposing conditions
on the grid generation algorithm to enforce that a second
grid node lies underneath the marker, allowing for the
use of a second-order accurate approximation.

4.2 LEAST-SQUARES APPROXIMATION

An alternative method of calculating velocities at the
surface, also discussed by Turnbull (1999) consists of
using a least squares approximation to velocities u and v
from the neighbouring nodal values of @ This is

SM, free surface
Ay P SM,

Ay‘)

-
|

£

O
N,

)f
Lﬁ“

Figure 2: Velocity calculation at constant x. Surface
markers, SM,, and grid nodes, V,.




achieved by minimising the expression,
/ 8¢J2
ull +vill —— (9)
3oty o1, - 2

where /' is the position vector of neighbouring node i
with respect to the surface marker, the x and y subscripts

denote the horizontal and vertical components of /', and
Iis the total number of nodes used in the approximation.

43 NORMAL AND TANGENTIAL VELOCITY
CALCULATION

The techniques described above both suffer from severe
inaccuracy under certain configurations of the free
surface and underlying quadtree grid. This occurs when
there is a marked difference in Ay for consecutive
markers, as shown in Figure 2 where Ay, << Ay,. This
causes a discontinuity in the v-velocity field at the
surface and a consequent step in the surface profile once
the surface is advected. The error accumulates and soon
leads to the calculation breaking down.

A solution to this problem is to calculate the velocities
using an approximation with a constant distance
throughout the surface profile. This is achieved by first
finding velocities normal and tangential to the surface.
At a surface marker SM, the tangential direction to the
surface profile is estimated by using central differencing
between markers SM,_; and SM,_,. A normal vector i
is then used to locate a submerged point P, located at a
distance from SM, equal to the edge length of the
smallest cells in the grid, as shown in Figure 3.

The value of the velocity potential is calculated at P by
discretising equation (1) using the method of unknown
coefficients with the surrounding nodal values of ¢
Because P always lies inside a polygon formed by known
values of ¢@this calculation is much less susceptible to the

free| surtace

SM, o Sivlwl /

Figure 3: Calculation of normal and
tangential velocities

distances between P and each of the surrounding nodes.
The normal velocity, g, , is then estimated using a first-
order differencing expression,

g, = op _j‘?SMJ ’ (10)
Il

positive in the direction of the fluid. The tangential
velocity, ¢,, is calculated along the free surface using

the values of ¢ at the adjacent markers. This results in
the expression,

g P, j¢x,u,,, ’ (11
a

where 7 is the vector connecting surface markers SM,_,
and SM_, used to estimate the tangent to the surface at
SM;, . The u- and v-velocities are then given by,

u=-—g,co8&+q,sina

(12)

v=-q,sina+q, cosar’

5. MULTIGRID ITERATIONS

To improve the speed of convergence of the solver, a
multigrid solving scheme is implemented. Quadtree
grids are specially suited to the implementation of the
multigrid strategy since all cells have already been
created during the grid generation process. Using the
generated quadtree as the finest grid in the multigrid
cycle, the coarser grids are automatically obtained by
replacing the smallest cells with their larger ancestors.
As an example, the coarser grid to that of Figure 1 is
shown in Figure 4. The process is repeated for each of
the desired multigrid levels. [t follows that there is no
need to create new grid cells, as they already exist in the
overall quadtree. The algorithm simply changes which
of the existing grid cells are selected for computation at
each multigrid level. Furthermore, the numbering system
used to reference quadtree cells (see Samet (1990))
already provides a link between each of the grids and, as
a result, additional storage is not required.

Figure 4: Coarser quadtree grid
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squares) to coarse grid cell (white square)

There are two approaches to the multigrid strategy. The
first involves solving the system of discretisation
expressions for a number of iterations, », on the coarsest
grid to obtain a rough solution to fand transferring this to
increasingly refined grids iterating » times at each grid
until the finest grid is reached (¢correction). This
provides a good initial guess and reduces the number of
iterations required to reach convergence on the finest
grid. The second consists of solving the residual
equation on the coarser grids, to take advantage of the
more oscillatory nature of the error when transferred to
larger cells (error correction). The error is then
prolonged to the finer grids and added to the existing
solution of the potential.

The discretised version of (1) in matrix form is
AD =0, (13)
where A contains the coefficients of discretisation
expressions and @ is the vector with the numerical
solution of the velocity potential. The residual is then
obtained from,
p=0-Ad , (14)
where p is a vector with values of the residual error at

each grid node.
obtained from

The convergence error can then be
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Figure 6: Solution transfer from coarse (white
squares) to fine grid cells (black squares)

Ae=p, (15)

where e is a vector of nodal values of the convergence
error.

5.1. RESTRICTION

The residual is transferred from fine to coarse cells using
the following restriction operator,

+ )+ Py +
pfzu.hpa_m, (16)

where p, are the nodal values of the residual, the roman

numeral denotes the coarse cell, and Arabic digits
represent the fine grid cells as illustrated in Figure 5.
Equation (16) is equivalent to a bilinear interpolation of
the fine grid values of the residual calculated at the
centre of the coarse grid cell.

Alternative interpolation schemes are used when one or
more of the fine cells contained in the coarse cell are not
submerged under the free surface and hence do not hold
a value of the potential at their centre nodes.

5.2. PROLONGATION

Conversely, the solution of the residual equation is
transferred from coarse to finer grids using the following
prolongation operator,

9¢; +3e, +3e;; +e;y

16

where ¢, are the nodal values of the convergence error,
and the subscripts refer to the cell arrangement of Figure
6. The convergence error is then added to the existing
solution of ¢ on the fine grid. Equation (17) is obtained
by discretising Laplace’s equation at node 1 for the
distribution of coarse grid cells shown,

; (17)

e =

Alternative expressions are used if one or more of the
surrounding coarse grid cells are not computational cells
because they contain an insufficient amount of fluid.

To provide an initial guess to the solution at each time
step, the multigrid strategy is used in a different way. A
reduced number of iterations (usually 3) are perfect at
each multigrid level starting at the coarsest grid and
prolonging the coarse grid solution to the more refined
grids until the top multigrid level is achieved. In this
case, equation (17) is applied instead to values of the
velocity potential.

6. RESULTS

Sinusoidal standing waves of varying amplitude in a
square container are used to compare the numerical
results with first and second order analytical predictions.
The second-order analytical solution is obtained using a
Stokes perturbation expansion of the velocity potential as
detailed by Wu and Eatock Taylor (1994).
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Simulations are produced for a wave length, 1, equal to
the unit length of the container, 4". The mean water
level, A", is equal to 0.5 Results are non-
dimensionalized as follows,

L= Lh

t=0g'lh (18)
w=w'\h'lg

where L is any length, g is the acceleration due to

gravity, t is time and @is the wave frequency. The prime
denotes dimensional values.

The spatial grid convergence of the numerical scheme is
investigated by simulating a wave of dimensionless
amplitude @=0.005 on two grids of uniform size
(LM = LB). Grid one contains 2048 cells and grid two
contains §192 cells and the elevation history at the centre
of the tank for each is illustrated in Figure 7. The
theoretical wave period for this wave is T =3.55; the
numerical wave period calculated using grid 1, 77 =3.70
and using grid 2, 7'=3.62. It is clear that the numerical
solution is closer to the analytical solution as the grid is
refined, and so the method is grid convergent.

A finer grid would improve the accuracy of the
simulation presented in Figure 7; however using a
refined uniform grid is expensive in terms of grid storage
and CPU time. Quaditree grids have high resolution
where required combined with a low overall number of
grid cells. Figure 8 shows the results obtained on a
quadtree grid, LM =6 and LB =4 (shown in Fig. 1)
which contains 602 cells, plotted together with the results
obtained on the uniform grid, LM = LB =6 which
contains 2048 cells, for comparison. The results show
excellent agreement and the calculation time on the
quadtree grid is approximately half of that on the uniform
grid.  Thus, by using a quadtree grid, savings in
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computing costs are achieved whilst the same numerical
accuracy is accomplished.

In Figure 9, preliminary results for a wave of moderate
amplitude, «=0.04, are shown. This case is
investigated to test the ability of the method to model
non-linear behaviour. A relatively coarse grid
of LM = LB =35 is used. As would be expected, the
non-linear numerical solution agrees with the first plus
second order analytical solution more closely than the
linear analytical solution. However, a finer grid at the
free surface is required to simulate the wave more
accurately.

The effect of using multigrid to obtain an initial guess on
the fully refined grid is illustrated by the following

Wave History at x = b/ 2
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Figure 9: Elevation history of wave a = 0.04



values.  For the quadtree solution of Figure 8
(LM =6.LB=4), each time step typically requires
around 450 iterations and a CPU time of 3.5s on a
450MHz PC processor. The use of the multigrid method
to obtain an accurate initial guess (¢ correction), using
LM =6,LB=4 at the top multigrid level and
LM = LB =2 at the bottom multigrid level reduces the
number of iterations to 250 and the corresponding CPU
time to 2.45s, a reduction of 30%.

7. CONCLUSIONS

In this paper, a method for the simulation of fully non-
linear waves using adaptive quadtree grids has been
described. A novel technique of calculating the free
surface velocities and results for simulations of standing
waves of small and moderate amplitudes have been
presented.  Preliminary values on the effect of the
multigrid method in obtaining a good initial guess to the
solution have been shown that quadtree grids are ideal
targets for a multigrid strategy.

Planned improvements to the method also include a
second-order approximation to the normal velocities at
the surface and a higher order time-stepping scheme,
such as the fourth order Runge-Kutta method. Work is
under way to investigate the effect of applying the
multigrid scheme to the residual equation and consequent
error correction.
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Investigation of Two-Dimensional Transom Waves Using
Inviscid and Viscous Free-Surface Boundary Conditions
at Model- and Full-Scale Ship Reynolds Numbers

Juha Schweighofer!

Ship Laboratory, Helsinki University of Technology, Espoo, Finland

1 Introduction

A ship moving in water always creates a wave system. When computing such a wave system, the
kinematic and the dynamic boundary conditions are applied on the free surface. Usually, several
simplifications are introduced in viscous flow simulations leading to the same free-surface boundary
conditions as for potential flow. However, there is vorticity at the free surface, Choi and Stern (1993),
Dabiri and Gharib (1997), Longuet-Higgins (1997), Lundgren and Koumoutsakos (1999), Ohkusu
(1996). In consequence, the velocity gradients are non-zero. Also, the pressure is non-zero due to
the viscous terms appearing in the dynamic boundary condition in the normal direction to the free
surface. The error associated with the application of the inviscid free-surface boundary conditions
may be unacceptable, Stern et al. (1996). The application of the physically correct viscous free-
surface boundary conditions seems to be desirable. Even for identical analytical formulation of the
free-surface boundary conditions, computed wave profiles differ depending on the numerical scheme
used. Publications usually give the analytical formulation, but unfortunately often not the numerical
scheme employed.

Detached transom flows over a large range of Reynolds numbers up to full scale have not been
treated so far using the viscous free-surface boundary conditions including the influence of turbulence.
Most ships have a transom, and the stern induced resistance is significant, Saisto (2000). Vanden-
Broek (1980) and Saisto (1995,2000) investigated 2-d detached transom flows as potential flow past a
semi-infinite flat-bottomed body. Respective viscous flow evaluations are given in Tahara and Twasaki
(1998), Funeno and Yamano (2001) and Yamano et al. (2000,2001). In transom flows, the boundary
layer of the hull is convected into the transom waves. There, the velocity gradients and vorticity
become stronger compared with the case where the boundary layer is not existing. Therefore, the
application of the viscous free-surface boundary conditions seems to be appropriate in such cases.

The investigation is performed in two dimensions to keep CPU times reasonably short. This
simplifies the problem, allowing to evaluate the pure influence of the free-surface boundary conditions
on the computed transom waves. The conclusions should be valid also for three dimensions. A more
detailed description of the investigation is given in Schweighofer (2001a,2001b).

2 Numerical Method

The computations used the RANSE solver FINFLO. The Reynolds-averaged Navier-Stokes (RANS)
equations are iteratively solved by a cell-centered finite-volume method until the steady state is
reached. Incompressibility of the flow is considered by an artificial compressibility approach. An
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FIN 02015 Espoo, Finland, e-mail: juhaschw@nefer.hut.fi, phone: +358 9 451 3503, fax:
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upwind-type spatial discretization of third-order accuracy without flux limitation is applied to the ap-
proximation of the convective terms. Incompressible flux-difference splitting is used as Aux-splitting
method. The viscous fuxes are evaluated according to a thin-layer approximation which is activated
in all coordinate directions. Here, the central differencing scheme is used for the calculation of the
velocities at the cell surfaces. The solution of the discretized equations is obtained using a diagonally
dominant alternating direction implicit (DDADI) time integration method with time stepping adjus-
ted depending on a parameter based on local velocities and cell sizes. Chien’s low-Reynolds number
k-¢ turbulence model is applied. No wall functions are used. The boundary layer is resolved till the
wall. The free surface is evaluated by a moving-grid technique.

2.1 Free Surface

The kinematic boundary condition is given by

%zw=%+ug—§+v%. (1)
B (z,y,t) is the local wave elevation. u, v and w are the components of the velocity vector V in the -,
y- and z-directions of a right-handed Cartesian coordinate system, respectively. The z-axis is directed
upwards from the free surface. t is the time. The kinematic boundary condition does not contain any
approximations. Integration of Eq. (1) with respect to time gives the shape of the free surface. Having
reached the steady state, 93/9t will be zero.
The dynamic boundary condition states that the normal and tangential stresses must be equal on
both sides of the free surface. Neglecting surface tension and shear stresses of the air, the dynamic
boundary condition in tensor notation is, Ferziger and Perié (1999):

a i du; T
(Dsms g = 0; - (Tt =0, Tij = —pbij + (8: + Bz‘j) — puu; . (2)
27 1

T;; is the stress tensor, 7 = (71,1.,112,713)T the outward unit normal vector on the free surface, ¢ =
(1, tg,tg)T is the unit tangential vector on the free surface, p the pressure, and p is the molecular
viscosity. d;; the Kronecker symbol. Using the Boussinesq approximation, Anderson et al. (1984), the
Reynolds stresses are:

X a“j) = Eiokiiy (3)

—pusu; = i =
PY J 2 (dwd, aﬂii 3
pr is the turbulent viscosity, derived from Chien’s low-Reynolds number k-e turbulence model. p is
the density, & the turbulent kinetic energy, and e its.dissipation rate. Eq. (3) applied to Eq. (2) yields

du;  Ouy 2
Tij = —1)5-;'_-]‘ + (p =+ pr) (% + 8:1,1) — gpkdij . (4)
J T

2.1.1 Inviscid Free-Surface Boundary Conditions

For inviscid flow, the molecular viscosity p and the Reynolds stresses vanish. The dynamic boundary
condition becomes simply

£

P=Dair =0, % =pgf. (5)
1 is the corresponding piezometric pressure, and g = 9.81 m/s?. For the calculation of the velocities
on the free surface and in the ghost cells, a zero-gradient condition is applied

du v Ow
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For viscous flow, it is common to use the same free-surface boundary conditions as for inviscid flow.
Additional conditions for the turbulence quantities must be introduced:
ok 0Oe
on ~ on
Eqs. (1), (5) to (7) are the "inviscid free-surface boundary conditions”.

=0. (7)

2.1.2 Viscous Free-Surface Boundary Conditions

The investigation described in this work is carried out for a 2-d case, Fig.1. All quantities in Y
vanish. The kinematic boundary condition is given by Eq. (1). On the free surface, the flat-surface
approximation is applied.

The tangential-stress free-surface boundary conditions are obtained from Eqs. (2), and (4) with

tangential stresses set to zero:
du ow

et 8

0z Oz (8)
The continuity equation yields

dw  Ou (9)

0z 9z

The pressure p and the piezometric pressure ¥ are obtained from Eq. (5). Eq. (7) is applied to
the turbulence quantities. Eqs. (1), (5), (7) to (9) are the "tangential-stress free-surface boundary
conditions”.

The Reynolds-stress free-surface boundary conditions are obtained from Eqs. (2) and (4). The
tangential and normal stresses are set to zero. The velocity derivatives in z-direction are calculated
from Eqgs. (8) and (9). The pressure on the free surface is not equal to zero anymore. It contains a
contribution resulting from the molecular viscosity and the Reynolds stresses. The order of magnitude
of the appearing Reynolds numbers is 10® and 10°. Therefore, the influence of the molecular viscosity
in the dynamic boundary condition is negligible, yielding:

p= QMTG.C)—L: = %pk = -2uTg—z 85 %pk ; Y=p+pgl= —2u:r~~g-§ - %pk +p9p . (10)
Egs. (1), (7) to (10) are the ”Reynolds-stress free-surface boundary conditions”.

2.1.3 Alternative Inviscid Free-Surface Boundary Conditions

Appart from the inviscid mirror free-surface boundary conditions, three alternative approaches re-
garding the inviscid free-surface boundary conditions were implemented and investigated.

For irrotational flow, the vorticity vector ¥ is zero giving

. sy du  Ow
F=VxV=0 = EPiali (11)
V is the nabla operator.

In this work, Eqgs. (1), (5), (7), (9), and (11) are the inviscid irrotational free-surface boundary
conditions”.

Using a flat free-surface approximation and the assumption that the normal and tangential gradi-
ents of the normal velocity are negligible, the inviscid flat free-surface boundary conditions are ob-
tained, Choi and Stern (1993):
ou_ By, (12)
dz Oz
Egs. (1), (5), (7), and (12) are the "inviscid flat free-surface boundary conditions”.

Taking the continuity equation into consideration, a physically more correct relation for the inviscid
flat free-surface boundary conditions may be obtained, Stern et al. (1996):

‘ ou 0 dw  Ou
9z~ 9z oz
Eqgs. (1), (5), (7) and (13) are the "inviscid flat-continuity free-surface boundary conditions”.
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2.1.4 Realization of the Dynamic Free-Surface Boundary Conditions

In the two ghost-cell rows, the pressure is obtained by a linear extrapolation of the respective values
on the free surface and the ones of the first cell row below the free surface. The flow quantities in the
ghost cells are needed for the bulk-flow solution.

Similar to the realization of Eq. (7), using the inviscid mirror free-surface boundary conditions,
the velocities on the free surface are obtained by a second-order extrapolation setting the velocity
gradients to zero. The velocities in the two ghost-cell rows are equal to the ones of the first two cell
rows below the free surface, respectively.

In all other cases, a liner extrapolation is applied to the evaluation of the velocities on the free-
surface and in the ghost cells using the respective values of the first cell row below the free surface.

In the cases where the velocity gradients in the z-direction are calculated from the ones in the
z-direction, the gradients in the z-direction are calculated from the velocities in the cell centres of the
first cell row below the free surface using a two-point upwind scheme of first-order accuracy.

3 Computations

The model is assumed to be infinitely wide in the y-direction (Fig. 1). The shape of the bow is
a circle segment with radius R and the bottom is flat. The transom is located at the origin of the
global Cartesian coordinate system. At the bow, the formation of the bow wave is suppressed. At the
transom, the wave height of the free surface is set equal to the draught T. Behind the transom, the
free surface may be deformed arbitrarily. The geometrical dimensions of the investigated model are
length overall L = 2.000 m, length between perpendiculars Ly =1.529m, R=1450m, T = 0.100
m. The geometrical dimensions are scaled to full scale using the scaling 40.

R

1
Uco
" BL2 BL3 BL4 BL1

Fig.1: Computed case, subdivision of domain.

The computations are carried out at Fp = Us/(v9T) = 2.1, 2.2, 2.3 and 2.8. The Reynolds
numbers, R, = Uy - Lyp/Voo are 2.8x10%, 2.933x 108, 3.066x10° and 3.732x 10°%, respectively. The
full scale computations are carried out for F,r = 2.8 and R,, = 9.442 x 108. U, is the free stream
velocity, and v is the free-stream kinematic viscosity.

At model scale, the grid consists of four blocks, Fig.1. The blocks are composed of 64 - 64, 48 -
64, 48 - 64 and 384 - 64 cells. Side 1 is located 20 m upstream from the origin. The grid height from
the still water level is 5L = 10 m. The expected wave length is about 2.5L. Side 6 is located at 40 m
downstream from the origin. The waves are resolved by at least 45 equally distributed cells per wave
length. The resolution of the boundary layer is continued in BL2 and BL1, but becomes coarser in
BL1 farther downstream. The grid is very fine at the bow and at the transom. The nondimensional
distance of the first node from the wall remains always y* < 4. Almost everywhere at the wall,
y™ ~ 0.7. The blocks are connected with matching interfaces.

At full scale, the grid and its geometrical dimensions are similar to the ones at model scale. It is
composed of 64 - 96, 48 - 96, 48 - 96 and 384 - 96 cells. Almost everywhere at the wall, yt a2

At model scale, the initial values of the turbulence level and the nondimensional turbulence coeffi-
cient are set to 0.02 and 10.00 in the computational domain and to 0.001 and 0.01 at the outer bound-



aries (sides 1 and 6). At full scale, the same values are applied but the nondimensional turbulence
coefficient is set to 16.5 at the outer boundaries. The turbulence coefficients are made nondimensional
with the free-stream molecular viscosity.

Side 1 is the inflow boundary, side 6 the outflow boundary. Here the flow quantities are simply set
to their free-stream values. Sides 2 and 7 are defined as symmetry planes. Sides 3 and 4 are defined
as solid walls. The no-slip condition on the wall is fulfilled by setting the velocities to zero instead of
the use of wall-functions. Side 5 is defined as free surface.

4 Results

In Fig. 2, the significant effect of the numerical realization of the free-surface boundary conditions on
the computed transom waves is shown. The different inviscid free-surface boundary conditions give a
more or less dampened wave profile. The damping is due to numerical damping and the modification
of the flow field close to the free surface caused by the respective boundary conditions. The assumption
of Ow/dz = 0 should be avoided, and, instead, the continuity equation should be used. The viscous
and inviscid irrotational free-surface boundary conditions give almost no difference at model and full
scale. Therefore, in this case, the influence of the turbulence on the free surface through the dynamic
free-surface boundary conditions may be neglected at model and full scale, although the turbulent
viscosity and the velocity gradients are very high close to the transom at full scale. At model scale,
the application of the Boussinesq approximation to the free-surface boundary conditions gives a correct
result with respect to the wave profile.

In Fig. 3, with decreasing Froude numbers and Reynolds numbers, the waves become steeper
and the curvature is increased. Their shape approaches the one of an overturning wave for the lower
Froude numbers. With decreasing Froude numbers, the viscosity effects are increased and, at the lower
ones, it makes already a difference whether the inviscid or viscous free-surface boundary conditions
are applied, although the Reynolds numbers are still rather high (about 3 x 10°).
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Study of three RANS body force propeller models

Claus D. Simonsen, John Cross-Whiter

Introduction

When RANS is used to study rudder, propeller
and hull interaction in connection with manoeuvring it is
important to use a propeller model which both gives the
right amount of suctien on the hull upstream of the
propeller and the right velocity distribution over the
rudder located downstream of the propeller. The most
complex model includes the propeller geometry directly
in the RANS model. This model of course gives very
detailed information about the flow, but it also
complicates the grid generation considerably and
increases the size of the model and the computational
time. For some applications it is not required to get the
detailed information about the flow over the propeller
itself, so a more simple approach is to replace the real
propeller by a body force field that reflects the time-
averaged influence of the propeller on the flow field in
the propeller region. However, in order for the method to
work it is essential to use a body force distribution which
reflects the local loading on the propeller and therefore
gives a good description of the flow field upstream and
downstream of the propeller. Several methods with
different levels of complexity can be used, but the more
details that are required the more effort needs to be put
into model. The methods range from simple prescribed
models to lifting line type models, to panel models in
which the propeller is represented by its real geometry.
The first type of method works on the nominal wake
field, whereas the other two take the effective wake field
into account, by running interactively with the RANS
solver.

Depending on the type of applied propeller
model the involved work will vary, so it is important to
know how each model performs in order to select an
appropriate model for the flow problem. The present
paper focuses on a comparison between three different
body force propeller models to gain knowledge about
their performance. The present study is carried out for
the Series 60 ship without any appendages.

Numerical method

The computations are performed with the
Reynolds Averaged Navier-Stokes (RANS) solver
CFDSHIP-IOWA developed at IIHR, [I]. The code
solves the RANS equations on a regular grid by means of
finite ditferencing. For the steady state calculations
performed in this context the temporal discretization is
based on a first order backward Euler difference. The
spatial discretization is performed by a second order

upwind scheme for the convective terms, while all other
first derivatives and viscous terms are discretized by a
standard second order central difference scheme. The
pressure and the velocities are coupled by means of the
PISO method. Closure of the Reynolds stress problem is
achieved by means of the one-equation Baldwin Lomax
turbulence model, which does not apply wall functions.
The propeller effect is implemented in the CFD-code by
additional body force terms included in the source terms
of the momentum equations.

Three different propeller models are considered.
The first model is based on a radial varying body force
field, which follows the variation of a theoretically
derived circulation, [2]. It is prescribed by means of the
ship speed based advance coefficient J, and the
propeller coefficients Cp, and K,. The model is

integrated in the CFD-code, where the axial and
tangential force components are given by

jbx =Axf'*\|l_f'* 1_"‘*

fop=Ag——— (1)
(=r)r +n

Here the non-dimensional propeller and hub radii are

defined by r"=(r-r)/(1=r,) and 1, =R,/R,.

Finally, with Axbeing the longitudinal extension of the

disk divided by the ship length, the coefficients A, and

Ay are defined by

Cn 108 5
Y Ax 16(4 +3r, Xl =iy )
K
A, Q 105 3)

VR R (v

The second model is suggested by Yamasaki [3]
and has later been used for potential based rudder-
propeller-hull calculations in [4]. The method. referred to
as the simplified propeller model, represents the
propeller by a thin disk, in which the finite number of
propeller blades is neglected. It is based on a potential
theory formulation, in which the propeller is represented
by bound vortex sheets on the propeller disk and free
vortices shed from them downstream of the propeller.
Unlike the first model this model calculates the body
forces based on the effective wake field, which means



that the propeller solver, which is implemented in the
CFD-code, is run interactively with the RANS solver.
The body forces are calculated from

A
fo.=—[ pVIUr. &)V, (r, 6)-

a )
— Cpp Ne(r)y 1+ (r) Vy (W (1) ]
4
A
by = [ pVIir,0)Vx(r,6) -
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where o, V, Cpp, N and ¢(r) are water density, ship
speed, blade section drag coefficient, number of
propeller blades and radial cord length distribution,
respectively. The constant A is used for bringing the
forces into CFD-code format

1
T 12pV R (L-1y)

(6)

Vi(r,0) and Vy(r,8) are the axial and tangential
propeller inflow velocities, respectively, and V,, (r) and
Vg (r) are the axial and tangential circumferentially
averaged inflow velocities. All 4 velocity components
are total velocities interpolated from the RANS solution,
so before using them for the propeller solution, the
propeller induced velocities are subtracted. I' is the
strength of the vortices on the disk and /i is the effective
propeller pitch, which is defined by

r K V.(r,0do
a(r) + (7)
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where €2 is the angular velocity and 2w a(r) is the
effective pitch ratio.
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The vortex strength ["is found from (8), which can be
solved for [1r,8) when the propeller inflow field and

the number of propeller revolutions are known. Finally,

«(r, 1) represents Prandtl’s tip correction factor and &,
is a correction for the finite width of the propeller blade.
Both factors are defined in [4].

Finally, the third propeller model is based upon
the external propeller code ProPulse.  This is an
unsteady, potential-based surface panel code, similar to
that described in [5]. The surface of the key blade on the
propeller is represented by quadrilateral panels. At each
time step, the potential at each panel / is given by the
solution of the linear system:

M-N M-N Z M-N
Z a9 = 2 be FEO Z Z i-jvkqjj-k

Z M Nw " (9)
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where Z is the number of blades, M and N are the
spanwise and chordwise number of panels on the blade,
respectively, N, is the chordwise number of panels in the
trailing wake, @ is the panel-panel dipole influence
function, & is the panel-panel source influence function,
W is the wake-panel dipole influence function, ¢ is the

local potential and ¢ is the local source strength.

The local source strength ¢ is dictated by the
local onset velocity, which is derived from the input
axial, radial and tangential harmonic wake components.

The potential and source strengths are assumed
to be constant over each panel, but the panels are not
assumed to be flat. The near-field dipole and source
potential influence functions are given by the
hyperboloid panel functions detailed in [5]. The far-field
influence functions are given by point singularity
influence functions. The wake is assumed to have
constant geometry, with A¢ given either by the Kutta

condition at the current time step or the circulation at
previous time steps, as appropriate.

On the propeller blade the tangential velocities
are derived from the numerical differentiation of the
panel potentials in the spanwise and chordwise
directions. For field points outside of the blade the

velocities are derived from the analytic differentiation of

the potential influence functions.

The propeller force is the summation of the
unsteady inviscid pressure forces, acting normal to the
panel centroids, and the viscous friction forces, acting
parallel to the local flow at each panel.

To convert the panel forces into body forces for
the RANS calculations, a polar disk grid is defined, with
radial panel distribution given by the radial distribution
of panels in the propeller blade grid, and circumferential
distribution  given by equal angular increments
corresponding to the number of time steps in the
unsteady propeller calculation. At each time step, the
centroid of each blade panel is located in a unique
Ard@sector at &), to which the total force vector on



that panel 1s assigned. The sector forces are then time
averaged, divided by the sector volumes ArdéAxand
interpolated onto the RANS cell locations to derive the
body forces.

The propeller-induced velocities are computed
at field points on a polar grid, with equal angular
increments and radial distribution given by the radial
distribution of control points on the propeller blade grid
to minimize the singular influence at panel edges. These
velocities are then interpolated onto the RANS cell
locations.

The procedures for running the models are as
follows. First a converged solution is calculated for the
hull alone and then the propeller is turned on. If the
prescribed model is wused, the solver is run to
convergence and the resulting solution is the with-
propeller solution. If one of the two interactive models
are used, wake information is extracted from the RANS
solution and the propeller model is used to calculate the
body forces. The body forces are then applied to the
RANS model, which again is run, until a converged
solution has been obtained. Then a new set of wake data
is extracted and the procedure is repeated once more.
When the propeller coefficients show convergence the
calculation is stopped and the with-propeller solution is
found.

Ship condition and computational grids

The study is carried out for a 4.0 m model of the Series
60 ship without any appendages. The model speed is 1.0
m/s, which corresponds to a Froude number equal to
0.16 and a model Reynolds number equal to Re=3.96
million. However, since the free surface is neglected, the
Froude number is set to zero and a mirror image is
applied instead of the free surface. Ship and propeller
data can be seen in Table (1) and more data can be found
in [6]. Concerning the grid, the computations are
performed with a block-structured O-H grid consisting of
approximately 0.64 million points including both sides of
the ship. The grid is shown in Figure (1). Finally, since
no wall functions are applied, the near wall spacing of
the grid on the no-slip hull surface satisfies y™=I.
Concerning verification and validation it will not be
carried out in this context, since the study only is based
on a qualitative comparison. Though, in [7] it is shown
that systematic grid refinement with the present grid
results in grid convergence.

Model Propeller

L, [m | 40 | R, [m]]0.14564

B [m] | 05333 | R, [%R,] | 02
T [m] | 02133 | N [blades] 5
S [m°] [2.7189 [n  [rps] 7.8

Cy -] 0.6 Ax [m)] 0.03
Table (1). Hull and propeller data.
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Figure (2). Convergence history of propeller solution.

Convergence history

Since two of the propeller models work based
on the effective wake field, it is necessary to find the
solution by means of an iterative procedure, as described
above. Figure (2) shows the convergence history of the
two interactive solutions. For both propeller models it is
seen that both thrust and torque converge. It appears that
Kyand K, decrease between the nominal wake

solution (iteration 1) and the first effective wake solution
(iteration 2) and that convergence is obtained relatively
quickly during the next one or two iterations. According
to [8] the decrease in thrust and torque is explained by
the fact that the propeller works harder in the
undisturbed nominal wake field than in the effective
wake field, where the magnitude of the inflow velocities
are higher.

Results for propeller quantities

The propeller quantities calculated with the
three propeller models are shown in Table (2) together
with experimental data from [6]. It should be noted that
it has not been attempted to estimate the self-propulsion
point of the model, but rather to calculate the propeller



characteristics for fixed propeller settings that are
equivalent to the settings used in the experiment. From
the table it is seen that K and K, from the prescribed

-model match the experimental values. However, this will
always be the case since the model is based on the two
quantities. For the two interactive methods the agreement
between calculation and experiment is fair. The
simplified method predicts the thrust within 3.4% of the
measured value, while the torque is predicted within
6.6%. Both quantities are predicted lower than in the
experiment. The panel method predicts the thrust and
torque within 4.7% and 5.6% of the measured values,
respectively. The thrust is over predicted, while the
torque is under predicted.

Two other quantities that are relevant to
consider in connection with the hull-propeller
configuration are the wake fraction, w and the thrust
deduction factor, r defined by

Ja (1-1)= X (10)
Jy X

(l-w)=

W

where J,and J, are the advance coefficients based on
advance and ship speeds, respectively. X, and X  are
the ship resistance for the without and with propeller
conditions, respectively. J, is estimated on the basis of
a thrust identity on the open water curve.

wer

Ky | 10K, | (1-w) | (1-0)
Exp. 0.234 | 0411 | 0.75 | 0.86-0.87
Prescribed | 0.234 | 0.411 0.865
Simplified | 0.226 | 0.384 | 0.760 0.869
Panel 0.245 | 0.388 | 0.717 0.860

Table (2). Measured and calculated propeller quantities.

Concerning (1-w) the results in Table (2) show that the
agreement between experiment and calculation is fair for
both interactive models. The simplified model seems to
over predict (1-w), but this is expected since the thrust is
under predicted. The panel method under predicts (1-w),
which is in agreement with fact that the loading is over
predicted. With respect to the thrust deduction, (1-f), the
agreement for all three models seems good when the
results are compared with the experiment. This indicates,
that all models do give the right amount of suction on the
hull upstream of the propeller.

Results for flow field

Ship rudders are usually located in the
slipstream of the propeller, so it is important to predict
the right flow features downstream of the propeller when
calculating rudder forces. Therefore, to investigate the
quality of the computed flow tield in the slipstream, the
U, Vand W velocity components obtained with the three

propeller models are studied at AP, X =L, and the

e

results are compared with experimental data, [6]. Figures
(3) and (4) on the last page of the paper show the
measured U-contours and cross flow vectors in the
propeller slipstream, and, with reference to the four
numbered quadrants shown in Figure (3), the slipstream
flow can be described as follows. In the lower part of 1
and 4 and in the top of 2 and 3 the wake deficit is
strongest, which means that the inflow velocity to the
propeller is low. This leads to relatively large local
angles of attack, which means that the local propeller
loading is high in these regions. Consequently the flow is
accelerated, which explains the high axial velocity in the
considered regions. Moving to the outer positions of 3, 4
and 1, 2, the axial inflow is higher, which should
decrease the loading, but then the cross flow components
of the inflow field start to play a role. With a right-
handed propeller as used in this case, the propeller blades
move towards the surface in quadrant 3 and 4, while they
move towards the bottom in 1 and 2. It this is put in
relation to the fact that the wake flow consists of two
inboard and counter rotating bilge vortices, it is found
that the cross flow components of the inflow field in 3
and 4 have the same direction as the propeller rotation,
whereas they have the opposite direction of the rotation
in 1 and 2. The result is that the angle of attack decreases
in 3 and 4, while it increases in | and 2. Again this
influences the local propeller loading, which leads to less
acceleration of the flow in 3 and 4 compared to | and 2.
Returning to the computations, the velocities calculated
by means of the prescribed model are shown in Figures
(5) and (6). Comparison of the calculated U velocities
with the experiment shows that the numerical model
gives U velocities of the same magnitude as the
measurement, but that the shape of the contours are
different. The reason is that the prescribed model applies
constant body forces for fixed radii in the disk and
theretore just accelerates the fluid in the propeller region
without taking the local loading on the propeller into
account. The asymmetry is caused by the swirl in the
flow, which rotates the flow field in the same direction
as the propeller rotates. With respect to the cross flow
field in Figure (6), the overall features of the vectors
appear to be in agreement with the experiment, but a
closer study of the magnitude of the vectors shows that
the computation and the experiment differs for the same
reasons as described above. Moving to the simplified,
but interactive model, the picture is different, since the
overall features of the U-contours in Figure (7) are in
better agreement with the experiment in Figure (3). In
the outer part of quadrant 3 and 4 the axial velocity
appears to be in fair agreement, but at the top and bottom
of the slipstream, the computation under predicts the
velocity. This is also the case in the outer part of 1 and 2.
With respect to the cross flow vectors in Figure (8) the
computation again gives overall flow features that are in
agreement with the experiment in Figure (4). The cross
flow seem to be a little weaker than for the prescribed



model, which makes it agree better with the experiment.
With respect to the panel model results, they are shown
in Figures (9) and (10). When compared with the
experiment in Figure (3), the computed axial velocity
contours are in closer agreement than was the case for
the other two models. Except for the regions in the top
and bottom of the slipstream, the distribution and
magnitude of the axial velocity shows fair agreement
with the experiment. Concerning the cross flow vectors
in Figure (10), they show the same characteristics as was
found in the experiment and the other two propeller
models. With respect to the magnitudes, they are
approximately the same as for the prescribed model.

It must be noted that for both of the interactive
models, the solutions are sensitive to the positions where
the induced propeller velocities and total velocities are
evaluated. Work is still ongoing to study this further.

Concluding remarks

Three different body forces propellers were applied to a
hull-propeller configuration and the results were
compared with experimental data. With respect to the
effect of the propeller on the hull, it appears that all three
models give approximately the right amount of suction
on the hull in order to determine the thrust deduction.
Concerning the propeller thrust and torque, the two
interactive models were able to capture the thrust within
5% and the torque within 7% of the experimental data.
With respect to prediction of the flow field down stream
of the propeller it can be concluded that the axial
slipstream velocity obtained with the prescribed model
has approximately the right magnitude, but the
distribution is ditferent from the experiment. If a more
accurate prediction is required it is necessary use
interactive calculations. The simplified method gives an
axial velocity distribution that reflects the local propeller
loading, which means that it gets closer to the real flow
field. However, it tends to slightly under predict the
velocities when compared with experiments. Finally, the
panel model gives an axial slipstream velocity
distribution that agrees better with the experiment than
for the simplified model. The magnitudes of the
velocities agree with the experiment and that the
distributions agree except for the regions in the top and
bottom of the slipstream. Concerning the swirl in the
propeller slipstream, all three methods seem to capture
the flow features, though the magnitudes vary slightly.

Future aetivities

More work is put into a closer study of the positions for
evaluation of the total and propeller induced velocities.
Afterwards, the propeller models are to be applied to the
appended tanker hull configuration described in [9]. The
goal is to study the effect of the different propeller
models on the quality of the calculated rudder forces and
to study the interaction between the hull, rudder and
propeller.
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Planing Boats in Waves
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1 Method

The motions of high-speed planing boats in
head waves are computed by applying a modified
Wagner (1932) method to simulate the hydrody-
namic forces F, and F, and the pitch moment
M,. Details about the hydrodynamics in still wa-
ter were given by Shigunov et al. (2001). However,
the method can be simplified for planing boats:
1. corrections for blunt bodies are not required;
2. substantial negative pressures which could
cause cavitation and/or ventilation were not ob-
served.

The motion integration was performed by an im-
plicit Euler method, with a time step of 1ms ex-
cept for a few tests using smaller time steps. The
added mass matrix was determined and updated
by the method of Séding (2001). Regular waves
were modeled as 3rd order Stokes waves; however,
for the small wave steepness of the following exam-
ples linear wave theory would have heen sufficient.

2 Test case

Here I compare own simulations with measure-
ments by Katayama et al. (2000). The shape of
their small model (Table 1, Fig. 1) is described for
the simulation by offsets at 100 sections (Az =
6.25mm) and 150 waterlines (Az = 0.667mm),
which was proved to be sufficiently fine.

Table 1. Model data

length Loy 0.625m | breadth B 0.250m
length L,,  0.600m

depth D 0.106m | draft d 0.059m
deadrise 3 22° | mass m 4.28kg
KG 0.111m | LCG—transom 0.285m

-5 . ship sections 10 9

Fig. 1. Body plan of model

The model was towed with constant speed U at
the centre of gravity G; thus at G the surge motion
was suppressed. The same applies to the simula-
tions. The heave motion refers to G. Whereas
in the experiments the model, floating initially in
equilibrium, was accelerated within a very short
time to the test speed, in the simulations the
model was dropped from slightly above the wa-
ter with its final forward speed; drop height and
initial trim angle were varied.

3 Results

Fig. 2 compares the natural pitch period T,
in still water after the acceleration phase (experi-
ments) or the drop phase (simulations) depending
on F,. The coincidence appears reasonable. Not
shown is the damping which seems to be higher in
the simulations than in the experiment.

O Simulation @ Exp. Katayama et al.

[Tn[s]
0.69—
I o)
0 ®|®
0.4¢
o)
L o)
® o0 4 o
0.2
F
0 g
0 1 2 3 4

Fig. 2. Natural pitch period over F, = U/v/gLo 4

Fig. 3 shows nondimensional heave (maximum
- minimum heave Z(t) over wave height H, =
2 - wave amplitude) for a regular wave of length
A = 1.556m at the moderate model speed 3m/s
over wave height made non-dimensional by divid-
ing it by draft at rest d = .059m. For the same
case Fig. 4 gives nondimensional pitch = maxi-
mum - minimum pitch angle 7}, divided by the
(linear) wave slope K H,,/2 where K is wave num-
ber. The results apply to the stationary oscillation
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Fig. 3. Nondimensional heave over wave height:
MLoa =249, F, = 1.21.
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Fig. 4. Nondimensional pitch over wave height;
NfLgg =249, B, = 191,

(limit cycle) of wave encounter period after the
transients have died-out.

Corresponding results for the same wave length
1.556m but much higher speed U = 9m/s are
shown in Figs. 5 and 6. Here the ship motions
converge to a stationary oscillation of wave en-
counter frequency only for low wave height. For
somewhat larger wave height the motion repeats
after twice the encounter period. According to the
experiments the transition from single- to double-
period motions seems to occur below Hud = 1,
whereas in the simulations single-period motions
were found until about H,/d = 1.4 but not be-
yond. Bgtween Hy/d = 1.2 and 1.4 both single-
period and double-period responses were found as
limit cycles, depending on the initial drop condi-
tions of the model. According to the simulations
there is no smooth increase of the nondimensional
motion transfer functions with wave height; in-
stead, if two-period motions occur as the limit cy-
cle, they have much larger amplitudes than the
single-period responses. Occasionally also two dif-
ferent two-period limit cycles are found for the
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Fig. 5. Nondimensional heave over wave height;
ALos =249, F, = 3.93.
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Fig. 6. Nondimensional pitch over wave height;
AL = 249, B = 365

same wave and speed conditions but different ini-
tial conditions. Further, the distinction between
one-period and two-period limit cycles is not al-
ways clear: sometimes even and odd cycles of
wave encounter period differ only slightly from
each other. Further, the transition from an ini-
tial near-periodic response to the limit cycle may
appear after long times and may be too long for
the experiments (Fig. 7).

For the experiments Katayama et al. reported
irregular motions for H,,/d > 0.7. That could be
understood as chaotic motions. In the simula-
tions, however, two-period responses were found
up to about H,/d = 1.35, and chaotic motions
appeared only for H,/d > 1.63. Because in
some experiments the wave tracks shown by the
authors are far from sinusoidal, I investigated
also a slight perturbation of the regular wave by
superimposing a wave of 0.283m length (avoiding
a simple length ratio) and 1/6 of the height of the
main wave (Fig. 8). This small irregularity, which



Fig. 7. Simulated heave motions in regular waves
of 1.556m length for wave heights of 7.1cm (bot-
tom), 7.55cm (middle) aud 8.25¢m (top). Differ-
ent time scales (abszissa).

appears much smaller than that shown in the
experiments, produced, e.g. at H,/d = 1 (Figs. 5,
6), dramatic changes in the responses, and it
lowered the range were double-period responses
were found. Thus the irregular measured motions
are probably influenced by irregularities of the
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Fig. 8. Wave track with perturbation

All the above referred to waves of a single
length A = 2.49Lp4. Figs. 9 and 10, on the
other hand, show measured and simulated non-
dimensional heave and pitch for variable (greater)
wave length for a single wave height of 2cm. The
large measured responses near \/Loa = 5.5) oc-
cur for an encounter period 7, = 0.30s which is
not far from the natural pitch period measured
for the same F,, = 3.63 (Fig. 2). In the simula-
fions no sharp peak response was found, neither
with regular nor with the disturbed waves. For
dem wave height the experiments showed a peak

at a shorter wavelengh A\/Lp.a = 3; also that peak
was not found in the simulations (Figs. 11, 12).
In all the simulations of Figs. 9-12 the responses
were periodic with the wave encounter period.
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Fig. 9. Non-dimensional heave over nondimen-
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Fig. 13 shows average trim angle and stan-
dard deviation of pitch angle in natural long-



crested head seaways containing wavelengths be-
tween about 0.95m and 2.3m, with maximum en-
ergy at about 1.6m wavelength. Here both the
average trim and the standard deviation of pitch
change continuously with significant wave height.

4 Conclusions

1. A simple Wagner-type method for forces on
planing boats in head waves results in motion re-
sponses which compare moderately well to exper-
iments by Katayama et al. (2000).

2. Panel methods, and even more Ranse meth-
ods, would have been too slow to detect many of
the interesting details of the strongly nonlinear re-
sponses. Thus fast methods are required besides
more accurate, slow-running methods.

3. Due to the sensitivity of the responses to
wave irregularities, and due to the many oscilla-
tions which are required frequently until the limit
cycle is attained, reliable measurements in regular
waves appear unusually difficult.

4. Different limit cycles for the same model
and wave conditions make hoth measurements and
simulations, to a certain degree, a matter of ran-
dom.

5. The difficulties 3 and 4 are avoided if tests
and simulations are performed in natural irregular
SeAways.
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1.Introduction

For designing a lower delivered horse power ship, it is necessary not only to reduce hull resistance,
but also good performance in self-propulsion factors. Self-propulsion factors represent propeller-hull
interaction which are closely related with stern hull form. In the past, the designer optimized the hull
form by iterating the model test in basin and redesign the hull form. In the present, CFD is used as
a numerical tank and it contributes to saving costs and time.

The progressive study on predicting the sell-propulsion factors was taken by Hinatsu et al 2. It
is called NICE method. This method solves RANS equation around hull and rudder for zero Fn, and
propeller effects are incorporated by the body force approach and propeller performance computation
are based on infinitely-bladed propeller theory. This method can predict propeller-hull interaction
and self-propulsion factors for low speed ship. In this method, free-surface effects are not considered.
Then application of this method is restricted to low speed ship.

For free surface effects with propeller, Tahara et al » show good agreements in flow field with
propeller for container ship without rudder using infinitely-bladed propeller theory. Real propeller
geometry is not considered in infinitely-bladed propeller theory.

A study to generate grid considering real propeller geometry and solve directly flow field around
hull and rotating propeller by using RANS-Solver has been taken. Abdel-Maksoud,M. et al ¥ applied
this method to container ship for zero Fn. However it takes much time for computation and grid
generation. And it is difficult to use this method in the design procedure.

In the present study, for solving above problewns, the simulation method of free surface viscous flow
around practical hull and rudder with propeller effects has been developed.

For propeller performance computation, UQCM(Unsteady Quasi-Continuous Method) * based on
lifting surface theory is used. And propeller effects are included in RANS-Solver by body force
approach.

In the following, an overview is given of present numerical method, and the results for applied
to container ship are discussed through comparison with measurements about flow field around ship.
Finally the present method is applied to a modern full ship with rudder. The computed self-propulsion
factors are verified by experiments.

2.Computational Method

In the present study, FS-MINTS is used as RANS-Solver. It has been developed by one of the
authors, Takada . For application to complex hull form, multi-block grid technique is used. And
"BJ-SGS” ™ which is the method of updating boundary conditions on block interfaces is incorporated
in the present code. The numerical algorithm to solve RANS equations at each block is adopted
the similar method of "NEPTUNE” developed by Hirata et al ® shown as follows. The artificial
compressibility form of the three-dimensional incompressible Navier-Stokes equations is solved using
an approximate Newton relaxation approach. A cell-centered finite volume approach is used for spatial



discretization. The nonlinear free-surface condition are implemented and the re-gridding technique is
used to treat the free-surface deformation. The multi-grid scheme and local time stepping method are
applied to accelerate the convergence of the solutions. See ® for more details. For turbulence model,
modified Baldwin-Lomax model * ' presented by SR222 Research Committee is used.

For propeller performance calculation, Unsteady Quasi-Continuous Method (UQCM) is used. UQCM
is based on QCM that is a kind of lifting surface theory in incompressible potential flow. QCM is
extended to UQCM for unsteady propeller lifting surface problems by one of the authors, Hoshino .
UQCM is able to consider propeller geometry (mean chamber surface). UQCM can reproduce pro-
peller performance well in quantity. Then it is expected that flow field with propeller is well predicted.
Additionally, there is the possibility to optimize not only hull form but also propeller geometry suited
for the hull form.

Propeller effects are included in RANS equations by body force approach. In the present method, we
do not solve unsteady flow, but mean flow during one revolution. It is enough to predict self-propulsion
factors.

3.Comparison of calculation and experimental results in flow field

3.1 Model ship and calculation condition

At first, The validation of flow field around stern region with and without propeller conditions is
carried out. Model ship is KRISO container ship (KCS). This model ship is tested on KRISO and
NMRI'™. See Table 1 for dimensions of model and calculation condition. In this section, computations
are taken for hull without rudder and without/with propeller conditions.

3.2 Results

Fig.1,2 compare the present results for axial velocity and cross plane vectors with those for the
measurements for without/with propeller conditions at x/L=0.4911. In both cases, axial velocity
contours and cross plane vectors agree well with the measurements.

Fig.3 compares the velocity components for the computations and measurements at x/L=0.4911
along #/L=-0.03 for without/with propeller conditions. For without propeller conditions, the compu-
tations and measurements are in good agreement. For with propeller condition the present results are
someliow over or under predicted near the center line. The reason is that hub rotating effects is not
cousidered in the computations. Then near the hub, cross flow vectors on propeller plane are under
predicted, see Fig.2.

Fig.4 shows contours of surface pressure differences between with and without propeller. These
contours are given by subtracting surface pressure with propeller from that without propeller. Pressure
decrease on stern region is well reproduced in quantity. The computations show pressure differences
are positive(pressure increased by propeller acting) on above propeller region. Measurements are not
taken on this region. Though we don’t know it is true or not, the positive pressure on this region
decreases thrust deduction factor. It is interesting to investigate the relationship between slope of hull
on this region and thrust deduction factor. This phenomenon is due to a decreased flow caused by
propeller suction. See Fig.5, this figure shows computed velocity field contours and vectors on center
plane. Actually, on above propeller region, flow is decreased.

4.Validation of self—bropulsion factors on full ship with rudder

In the present study, experimental data for full ship is used for validation. Because self-propulsion
factors have a high influence on delivered horse power especially for full ship. This experimental data
is measured on Nagasaki R&D Center in Mitsubishi Heavy Industries, LTD. Model ship length is 7.3
1m.



4.1 Conditions of computation

Computations are on 4 ship speed (Froude number= 0.16, 0.18, 0.20, 0.22). In order to make
comparison exactly of computed results with the experimental data, the Reynords number in the
computations is set the same as the experiments, and propeller revolution is set the same, too. See
Fig.14 for reference grid of full ship. In this grid, multi-block grid technique is used. This grid is divided
into 2 part. One is under-water part and another is upper part. Upper part includes free surface, and
the re-griding technique is used on this upper part. The under-water part includes Bottom, Propeller
and Rudder block (See Fig.6). Even if it is possible to compute these three blocks as 1 block, Propeller
block is made including propeller . Because smaller block is advantageous to computational time for
interpolating inflow velocity and body force . Then this grid includes 6 blocks and 0.4 million points.
In this topology, there are two restricts on geometry for free surface computation.

e There is no gap between hull and rudder.
e Connection point of rudder leading edge and hull must be under free surface.

4.2 Results

Fig.7 compares the residual resistance coefficient between measurements and computations on tow-
ing condition. The computations agree well with the measurements and are well reproduced the
influence of ship speed.

Fig.8 to 10 shows the comparison of self-propulsion factors(t: thrust deduction, w,,: wake fraction,
ne: relative rotative efficiency). For analyzing wy,, and n,, propeller open characteristics predicted by
UQCM and thrust identify method is used.

Each self-propulsion factors are in good agreement. An error in prediction is less than 10 % in each
cases. In measurements, wake fraction is decreasing slightly with ship speed increasing. Such tendency
appears in computations, too.

5.Conclusions

In the present method, CFD code which is able to estimate hull form resistance and self-propulsion
factors for various kind of ship through full ship to fine ship has been developed.For applying present
method to container ship, flow field near propeller and hull surface pressure on stern region which
are closely related to self-propulsion factors are well predicted in quantity. Moreover, it is applied to
calculate the flow around modern full ship hull and rudder without/with propeller. Consequently, its
resistance and self-propulsion factors are accurately predicted.

Future works include adding the function to adjust the propeller revolution to ship point automat-
ically and expanding to multi-screw ship and pod propulsion system.
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Table 1 Condition of computation

Model : KCS

Lpp(m) | 7.2786 Fn 0.26

Re 1.4 x 107 || np(rps) | 9.5
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Fig. 1 Axial-velocity contours and cross plane vectors at x/L =0.4911, without propeller,

Fn=0.26, Re=1.4x107
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Fig. 2 Axial-velocity contours and cross plane vectors at x/L=0.4911, with propeller, Fn=0.26,
Re=1.4x107
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Domain decomposition with implicit coupling
and non-matching grids
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1 Introduction

MARIN has developed the PARNASSOS code to
analyse the viscous flow around a ship. If the geo-
metry permits, the flow domain is covered with a
single-block, boundary-fitted grid of H-O topology.
However, for some ship forms the partitioning of the
domain into two or more grid blocks makes grid ge-
neration a lot easier. An example is the class of so-
called twin-skeg or twin-gondola ships. Maintaining
the H-O grid lay-out, we can operate for those ships
with a two-block grid, one on either side of the skeg,
possibly further subdivided as in Fig. 1, which shows
a velocity field in a cross-section of a 4-block grid.
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Figure 1: longitudinal velocity around a skeg computed
by T’S\RN.‘-\SSOS, showing a partitioning in 4 domains
with a small overlap.

The aim of this paper is to report some of our ex-
periences with domain decomposition and its effects
on the solution and on the solution process. The
main features of the numerical method are briefly de-
scribed in Section 2. Section 3 deals with the twin-
skeg hull problem, while Section 4 concentrates on
the flow around an 8 degrees inclined shaft protrud-

ing from a flat plate. The latter case has been chosen
because the block interface is at the same time a
symmetry plane so that we can compare the results
of the multi-domain code with those of a single-block
computation that uses the symmetry explicitly as a
houndary condition. Also the convergence speed can
be compared.

2 Numerical method

PARNASSOS [1] is a RANS-code that is currently in
use at MARIN as a tool for quality assessment of hull
designs on request of shipyards, navies and other cus-
tomers. It solves the discretised partial differential
equations that describe the viscous flow near a ship.
The equations considered are the Reynolds-averaged
Navier-Stokes equations for a steady, incompressible
flow in three dimensions. PARNASSOS solves the
fully coupled steady momentum and continuity equa-
tions in their original form, without resorting to pres-
sure corrections or artificial compressibility. The
grids are assumed to be regular and body-fitted, but
may be generally non-orthogonal. They are stretched
towards the hull in order to resolve the gradients in
the boundary layer.

At the solid walls, the no-slip condition is applied.
The boundary conditions imposed on the external
and inlet houndaries are derived from a potential
flow solution. Symmetry boundary conditions are
applied at the water surface, and at the outlet boun-
dary, the streamwise pressure gradient is set to zero.
The governing equations are integrated down to the
wall (no wall functions used) even for full-scale Rey-
nolds numbers. The inherently very high aspect ratio
of the cells near the hull puts high demands on the
solver for the linear systems, which is one of the rea-
sons to maintain the coupling between the equations
in the iterative solution.

For the grid metric terms and for the diffu-
sive terms we use second-order, central difference
schemes. For the continuity equation and the gra-
dients of the pressure we use a third-order four-point
scheme. For stability reasons, the bias of the lat-



ter has to be opposite to that of the 'correspond-
ing’ derivative in the continuity equation. For the
derivatives of the velocities in the convective terms
a second-order upwind scheme in longitudinal direc-
tion is used, and a third-order upwind scheme for the
normal and girth-wise direction. A detailed descrip-
tion of the mathematical model, the computational
grid and the PDEs in curvilinear coordinates is given
in [1].

The solution procedure in PARNASSOS has been
set up in such a way that memory requirements can
be very low. Reduction of the size of the equa-
tion system is obtained by dividing the computation
domain into regions that consist of several stations
("planes” with constant streamwise coordinate). It is
possible to choose these regions in the range from one
station to even the complete domain. In a downwind
sweep the eddy viscosity, the velocities and the pres-
sure in one region are updated, before going to the
next region. We use preconditioned GMRES [3] to
compute a correction for the pressure and the velo-
cities in each region. More details about the solution
strategy and preconditioning technique can be found
in [4].

2.1 Coupling of the domains

The current multi-domain version of PARNAS-
SOS can deal with non-matching grids at the domain
interfaces. Over the domain interfaces, bi-linear in-
terpolation has been used. This is illustrated hy
FFig. 2, which shows two non-matching grids near an
interface between two boundaries, together with the
computed pressure distribution.
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Figure 2: Computed pressure distribution in the neigh-
bourhood of an interface between non-matching grids.

As mentioned above, PARNASSOS solves the fully
coupled steady momentum and continuity equations.

Therefore, we have chosen to make the conpling
between the domains also fully implicit: the sys-
tem of linear equations that is solved by precondi-
tioned GMRES includes the discretised and linea-
rized RANS-equations of all domains. The matrix
includes the weights corresponding to the bi-linear
interpolation. Every time a matrix-vector multipli-
cation is performed, communication is required to
obtain data from all neighbouring domains.

As a result of the implicit coupling, the splitting
of the computational domain hardly influences the
convergence behavior of the 'global’ iteration that is
required to make the coupling between the separate
regions and to deal with the non-linearity. From nu-
merical experiments it appears that also the number
of iterations of GMRES increases only slightly when
the number of domains is not larger than 8. If the
number of domains hecomes significantly more, it is
likely that the preconditioning technique for GMRES
has to be adapted.

3 A twinskeg geometry

An example of a geometry in which the struc-
tured grid requires domain decomposition is shown
in Fig. 3. It displays a single plane of the grid around
one symmetric half of a twin-skeg afterbody. One
station further downstream the skeg disappears. As
a result, the extensions of the inner and outer side
of the skeg (hoth having a wall-normal coordinate
j = 1) now coincide and form a sort of near-vertical
plane, as illustrated in Fig. 4. It shows that there is
still a strong refinement in wall-normal direction to-
wards this 7 = 1-plane. The grid has several features
that are not present in a grid without such a plane.

1. There is a singularity in the middle of the do-
main, at the bottom of the j = 1-plane.

2. Quite near this plane the cells have a very high
aspect ratio. Usually, such cells are only located
near a boundary of the domain.

3. The direction along both the wall-normal and
girthwise direction is reversed when passing this
plane.

These features severely complicate the computation
of the flow around a twin skeg. To deal with these
complications, the domain is split into two parts,
such that the plane extending aft of the skeg is the
block interface: both domains share the j = 1-plane
right behind the skeg, in addition to a plane with
constant girthwise coordinate k. A schematic view
of the grid transformed to the computational domain
together with the required communication is shown
in Fig. 5.



Figure 3: Grid around a skeg. Last station (‘plane’ with
constant streamwise coordinate) containing the skeg.
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Figure 4: Grid in a station behind the skeg.
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Figure 5: Schematic two-domain grid in computation
domain.

3.1 Continuity of velocity, pressure
and eddy viscosity

Across the common j = 1 plane, the Cartesian velo-
city components and pressure should be continuous.
Mathematically, however, we can impose only three
boundary conditions. From several numerical exper-
iments it appeared that, in order to obtain a pressure
that is continuous, the velocity component in normal
(normal to the common plane)-direction has to follow
from a linear combination of both momentum equa-
tions in normal direction. Therefore, we impose both
momentum equations in this direction, and hence
also any linear combination of both. The continuity
equation is replaced by the momentum equation in
normal direction from the other domain. The longit-
udinal and girthwise velocity components can follow
from the momentum equations in longitudinal and
girthwise direction. However, the convergence is ex-
tremely slow in that case, and from numerical exper-
iments it appeared that it is not possible to obtain a
fully converged solution. '

Several possibilities have been studied to improve
the convergence behavior. Adaptation of the grid
hehind the twin skeg by using a uniform mesh size
in a small region instead of reducing the mesh size
in normal direction towards the common plane (in
the wake of the skeg a strong mesh refinement is not
required) led to a slight improvement. The following
combination of measures improved the convergence
much more:

e Both momentum equations in normal direc-
tion mentioned above are applied fully impli-
citly instead of explicitly: the linear system
solver GMRES takes care of the communication
between both domains.

o Obtain the velocity components in longitudinal
and girthwise direction on the common plane
from an interpolation that uses points which are
located symmetrically about this plane. From
numerical experiments it appeared that this in-
terpolation has to be at least third order ac-
curate to obtain a converged solution. This is
implemented using Newton divided differences.

e The speed of convergence is strongly influenced
by the distance between the points in the above-
mentioned interpolation and the common plane.
If these points are chosen too close to this plane,
convergence is extremely slow. Therefore, these
points are located at a distance hpe, 2hige,
3Mioe,... from the common plane, in which hy,e is
approximately 10% of the meshsize in girthwise
direction.

e Not only velocity components in points of the
common plane itself, but also the velocity com-
ponents in longitudinal and girthwise direction
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e The quantities on the common plane that are
solved in the transport equations of the turbu- Figure 7: Detail of the grid around the shaft.
lence model are obtained from a linear interpo-
lation using points in the direct neighbourhood

(j = 0 and j = 2). From numerical experi- [ 51|
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this interpolation fully implicitly, otherwise the
convergence of the global iteration stagnates.

4 Flow around a shaft

In order to study the effect of domain decomposition
on the numerical solution and the convergence he-
havior, we compute the flow around a shaft inclined
with respect to a flat plate from which it protrudes
at an inclination angle of 8° (Fig. 6). We compute
the flow on two grids. The first, relatively coarse grid
consists of 73 x 81 x 113 nodes and the second grid
consists of 145x 161 x 225 nodes in longitudinal, wall-
normal and girthwise direction, respectively. Even
for the coarse grid, the nodes closest to solid walls
has y* values less than 0.7.

For one of the last stations containing the shaft,
denoted by 4B in Fig. 6, part of the first grid is
shown in Fig. 7. Below the flat plate, and above
the shaft there is again a common j = 1-boundary
as described in the previous section. The Reynolds
number based on the shaft diameter is 1.8 x 105.
Menters one-equation turbulence model is used [2].
Fig. 8 shows that the computed solution is continu-
ous over the interface boundary. Since the discret-
isation of derivatives in the direction normal to the
common plane is not symmetric, we can expect de-
viations from a symmetric solution of the order of
the discretisation error. From the results of Fig. 8 it
appears that the deviations from symmetry become
indeed smaller with grid refinement.

In this special case, the block interface is also a
symmetry plane. Hence we can also compute the flow Figure 8: Computed longitudinal velocity on a relatively
in only half of the domain and impose the symmetry coarse grid (above) and a fine grid (below) for the same
directly as a boundary condition. part of the domain as shown in Fig. 7.



4.1 Influence on the convergence be-
havior

In the single-domain computation we require
GMRES to reduce the 2-norm of the residual with a
factor of 0.05. When this same stopping criterion is
also used in the 2-domain computation, the conver-
gence behavior of the global iteration is much worse
than in the single-domain computation. The systems
of linear equations are twice as large, and GMRES
has to compute the coupling between both domains.
Therefore, in the 2-domain computation we use a
more strict stopping criterion for the inner iteration:
GMRES has to reduce the 2-norm of the residual
with a factor 0.005. As a result, in each step of the
global iteration, the number of GMRES iterations is
approximately twice as much as in the single-domain
computation. For the 2-domain computation on the
relatively coarse grid, the wallclock time required
on two SGI MIPS R12000 processors, working on
400 Mhz, for one step of the global iteration is 100
seconds. The single-domain computation requires 60
seconds for one step of the global iteration, using
only one processor.

The convergence behavior of the global iteration
for the relatively coarse grid is shown in Fig. 9.
These pictures show the maximum (Ls)-norm of
the change in the pressure, eddy viscosity and lon-
gitudinal velocity between two consecutive steps of
the global iteration. The other velocity components
show a similar convergence behavior. Although the
convergence hehavior of the 2-domain computation
is more irregular, the number of global iterations
in both compurations is comparable. The largest
changes in the solution occur at the singularity be-
hind the shaft and below the common j = 1-plane.
In the rest of the computational domain, the changes
between two consecutive iteration steps are signific-
antly smaller. We like to point out that the more
common La-norm of the residual would have sugges-
ted a much smoother convergence behavior, and that
in most practical cases it is sufficient to get the max-
imum differences below 1079,

4.2 Influence on the computed solu-
tion

As mentioned hefore, we can expect deviations from
a symmetric solution of the order of the discreti-
satioh error, Other differences between the two-
domain computation and the single-domain compu-
tations are caused hy the fact that in the neigh-
bourhood of the common j = 1-plane not all dis-
cretised PDE’s can be imposed. For example, only
the momentum equation in normal direction is im-
posed. However, from numerical experiments it ap-
pears that at the first stations the computed results
of the multi-domain version of PARNASSOS and
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Figure 9: Maximum differences between two successive
sweeps of the pressure, longitudinal velocity and eddy
viscosity. Above: single domain. Below: two domains.
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domain.



the single-domain version are very similar. Further
downstream and near the shaft the deviations from
symmetry tend to increase, which is illustrated by
the results shown in Fig. 8.

Fig. 10 shows the transverse velocity vectors in
the neighbourhood of the shaft, computed on the re-
latively coarse grid. These results are again shown
for the station denoted by AB in Fig. 6. The left
side is the solution of the left-most domain from the
multi-domain version, the right-hand side the solu-
tion of the single-domain version of PARNASSOS.
The differences become smaller when the grid is re-
fined. This is demonstrated by Fig. 11, which shows
the contour lines of the longitudinal velocity com-
ponent from both the 2-domain and single-domain
computations on hoth the relatively coarse grid and
fine grid.
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Abstract
Methods for numerical verification of CFD results are
discussed and evaluated. The Richardson Extrapolation,
the generalised RE described in the ITTC Quality Man-
ual and a curve fitting approach are considered. The
methods are applied to the results from an analytical test
case. Conclusions about the suitability of the methods
and their valid range are drawn.

1 Introduction

The use of CFD in practice requires methods for quan-
tifying the error and uncertainty of the results. We
distinguish between wverification of the result (or the
code), which concerns estimation of the numerical er-
rors (iteration-, truncation- and round off errors), and
validation of the same, which also deals with the mod-
eling errors. This work investigates methods for verifi-
cation of Navier-Stokes solutions.

In practice, the verification procedure may be carried
out in different ways. Several alternative methods have
been described and discussed in the literature over the
last few years. The ITTC Resistance and Flow Com-
mittee has recently produced a Quality Manual (1] in
order to establish a standard error quantification pro-
cedure for ship hydrodynamics. Those guidelines are
based on an advanced version of the Richardson Ex-
trapolation (RE) [6], as described by Stern.ct.al. in [8].
There has been some discussion about the suitability
of this method for verification work, for example by
Eca and Hoekstra in [4]. In [5] and [2] they suggest an
alternative approach based on a curve fitting method.
The purpose of the current work is to study the men-
tioned verification methods by using an analytical test
case: the flow field of a laminar flat plate boundary
layer. The Navier-Stokes equations are applied to the
flow field and the resulting residuals are compared with
analytical results. The residuals are computed on a set
of geometrically similar, uniform Cartesian grids with
varying cell density. This approach enables us to iso-
late the spatial truncation errors from other possible
numefical or modeling errors.

The investigated verification methods are based on the
assumption that the analysed results are in the vicinity
of this asymptotic range, where the higher order terms
in the truncated series are negligible. By using the an-
alytical test case we want to investigate the valid range
and how the size of the higher order terms influence on
the verification result.

2 Verification methods

Suppose that we have a number of results ¢; ;=1 ~
from numerical solutions of the Navier-Stokes equa-
tions on grids with grid sizes h; ;=1 n. By replacing
the continuous equations with discrete difference equa-
tions we have introduced an error corresponding to the
truncated terms in the Taylor series. For a numerical
method of formal order py, this error equals

Si=¢i—¢e= > ashi,

J=Den

(1)

where d¢, is the exact solution and e; are real con-
stants that are independent of h.

If all the terms in the sum (1) of higher order than py,
are negligible compared to the first term the solution
is said to belong to the asymptotic range. The error
can then be approximated as

di = ¢i — ¢ = ahf. (2)

A verification procedure normally involves establishing
of the order of accuracy p. As the grid size h decreases
p should approach the theoretical order of accuracy
pen of the numerical method. The order of accuracy
is used to compute an estimate of the numerical error,
d”. The exact solution can be then assumed to belong
to the interval

I=[¢1 =0 +Usi¢ — 30" = Uy, (3)

where Uy is the uncertainty of the error estimation
and ¢, is the solution from the finest grid.

Richardson Extrapolation

With the Richardson Extrapolation [6] the order of
accuracy and the error estimate are found from the
solutions from three grids with increasing cell sizes.
From equation (2) the following expression can be
derived:

(4)

B\ P
(E)p: $3 — b (ﬁ) -1
hy ¢2 — ¢ (M)p_l-
ha
The order of accuracy p is found by solving this equa-
tion iteratively. If the grid refinement ratios hy /hs and
ha/hs are equal the explicit expression

da—p2
In (¢2 — )
ha
ln T

(5)

p:



may be used. The solution from the finest grid ¢ can
be corrected with the error estimate 6* to receive the
extrapolated solution,

$o =1 — gp (6)
with
- ba — ¢y
Orp = N (7)
() -1

Roach [7] suggests the error estimation to be connected
to a safety factor, so that the uncertainty of the error
estimation is

Uy = F;|07). (8)

Values between 1.25 and 3 are suggested for the safety
factor.

The ITTC Quality Manual

For grids outside the asymptotic range, the higher or-
der terms in (2) will affect the result of the Richardson
Extrapolation. In the ITTC guidelines it is suggested
that the higher order terms are accounted for by
correcting the error estimate dyp with a correction
factor C', such that the corrected error estimate is

5 = G- hm ©)
with 5
(=) =
Cr = —5H—. (10)

hy Pth
(1) -1

The extrapolated solution and the uncertainty is then

$o = 1 — 0, (11)
and
Uk = |(1 = Ci)||0RE]. (12)

If C) is "sufficiently” close to 1 it has confidence, and
0%, ¢o and Uy can be estimated. Otherwise, only the
uncertainty is estimated.

The ITTC guidelines recommend the explicit expres-
sion (3) for calculation of p. This expression requires
that the grid refinement ratios hi/hy and hs/hs are
equal. Ideally, a refinement ratio of 2 is recommended.
For most applications this is not achievable, and
therefore a refinement ratio of v/2 can, according to
the guidelines, be chosen instead.

The Curve Fit Method

Eca and Hoekstra deviate from the traditional use
of Richardson Extrapolation for grid convergence
studies. Instead, they calculate ¢o and p by fitting the
curve

o = g + ah? (13)

to the solutions [h;, ¢;]i=1...v by using the Least Square
technique. This requires at least three grids, but it
works with any number of grids N > 3. An advan-
tage of this method over the ITTC method is that it

does not put any restraints to the choice of grids. (An-
other advantage is that the method can average out
any scatter originating from modeling errors, geomet-
rically non-similar grids ete. Even though this is im-
portant for marine CFD application, it is irrelevant for
the present test case and will not be considered here.)
Eca and Hoekstra also approve of using a safety factor,
similar to the one used by Roache, so that

8" = ¢ — o (14)
and

Uy = F,|d"]. (15)

The safety factor should be based on experience and
common sense.

3 Discretisation and test case

For the evaluation of the described verification meth-
ods we use the results from a simple test case, the lam-
inar boundary layer of a 2D flat plate. The flow field in
the boundary layer can be described by Blasius equa-
tion
Ht 1 "
Fom) + 5 £ ) f"(n) =0 (16)

with 77 = y,/ gg- Uy is the free stream velocity and v
the kinematic viscosity. This flow field is divergence
free. Under the assumption that

2*u du

a2 <<V (17)

and the pressure is constant over z, it also satisfies the
incompressible Navier-Stokes equations. If assumption
(17) is not fulfilled, an application of the Navier-Stokes
equations to the flow field will result in a residual:

du  Ou Py *u
U.g;-{-‘i)a—y—u(a—y:l‘-i-@)g‘i. (18)
By rewriting Blasius equation on x-y form,
du  du d*u
e — =y 1
Y& T Vay  Vop (19)

it is clear by inspection that the exact residual equals
9%u
dx?’
The difference between the computed residual r and

the exact residual r, constitutes the total numerical
errer:

T S0

(20)

E=r—r. (21)

This error is evaluated at a point in the flow field that is
a common grid point for all grids. The computational
domain is I by [ and it starts at a distance 20« behind
the leading edge. The grids are rectangular, uniform
Cartesian with cell sizes h reaching from {/5 to 1/100.
The test case is run for five different Reynolds numbers
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Figure 1: Test case results.

Re = Yoxt,

The diﬁuusive terms in the Navier-Stokes equations are
discretised by a second order central difference scheme.
The convective terms are interpolated by a third order
upwind QUICK scheme. The resulting differences are
second order. The total order of accuracy for both
terms is hence second order.

Blasius equation is solved numerically with linear inter-
polation, where the steps size is smaller than 1/2000 of
the smallest cell size. The results are shown in Figure
1.

4 Results

Order of accuracy with the ITTC method

In order to evaluate the verification method recom-
mended by the ITTC Quality Manual the order of ac-
curacy p was calculated for a number of grid triplets
((h1,@1); (h2, ¢2); (h3, ¢3)]. p was calculated with the
recommended explicit expression (5). This expression
requires that the two grid refinement ratios hy /2 and
ha/hs are equal. Therefore, only the triplets that ful-

filled 5
0« Malh
hz/hg
were considered. Figure 2.a shows the resulting p
for Re 250 plotted against the average cell size h =
(h1 + ha + hg)/3 for each triplet. The plot for C has
a similar appearance, since C; depends on p. p is ex-
pected to approach 2 as the grid is refined. This is
clearly not the case. Eca and Hoekstra found a simi-
lar unsystematic scatter in the prediction of p and C\
when they tested the ITTC method. This was one of
the main reasons why they dismissed the method in
3].
[011 closer inspection we found that the scatter is caused
by the violation of the requirement of equal grid refine-
ment ratios. To clarify the importance of this require-
ment a sensitivity analysis was carried out. A typi-
cal convergence curve was represented by a polynomial
P = P(h) with known coeflicients. The convergence
data from the result of Re 250 was used as a template.
In this way, the triplet members could be chosen arbi-
trarily. Three triplets with increasing average cell sizes
were picked out. In each triplet, the finest grid was

<11

(22)

a 067 ar "3 a0% Y
h- average h-average

Figure 2: a) p by equation (5). b) p by equation (4)

Figure 3: Influence of the disturbance ¢ on p.

changed slightly so that the ratio between the refine-
ment ratios were disturbed by a given amount e:

il 1+e¢

hg /hg - (23)

The polynomial was evaluated at the new values of
hi23 and p was calculated. The result presented
in Figure 3 shows that even a small deviation from
the requirement results in a significant error in the
predicted p .

We observe that for ¢ = 0, i.e. when the refinement
ratios are equal, p approach its theoretical value for
decreasing average cell size h.

The initial refinement ratios hy/hs and ha/hs in this
test were 1/4/2. For a larger refinement ratio the
disturbance gets less significant and the sensitivity
curves will flatten out. This explains the scatter in
the observed p (Figure 2.a) and the results by Eca
and Hoekstra. In both cases the analysed triplets
had both varying amount of e and varying refinement
ratios. (Eca and Hoekstra also analysed triplets with
refinement ratio ratio ::;ﬁ: reaching from 0.9 to 1.1.)
The results show that care has to be taken when
using this form of Richardson Extrapolation. For
large complicated grids it might be difficult and time
consuming to make sure that the requirement of equal
refinement ratios is fulfilled in all directions. For small
grids it might even be impossible. Take for example a
grid of 20 cells and refine it twice with a ratio of /2.
The necessity of an integer number of cells implies
that the ratio ﬁ; /::2 equals 0.98, which can give a
significant error in p.

It is worth mentioning that the general expression for
p (equation 4) does not put any restraints to the grid
refinement ratio. Figure 2.b shows p calculated with




this expression for the same triplets that gave the very
scattered result in Figure 2.a. p smoothly approaches
its theoretical value. However, this expression is never
mentioned in the ITTC guidelines.

The ITTC correction factor

As described earlier, the ITTC guidelines suggest that
the error estimate from the Richardson Extrapolation
0rp (7) can be corrected by the correction factor
Cy (10) to obtain an improved prediction of the
extrapolated solution ¢g (11). By introducing this
correction the error estimate é; becomes a function of
the two finest solutions and the theoretical order of
accuracy only, (as was also pointed out in [5]). For a
second order method, this corresponds to fitting the
curve ¢ = ¢ + ah?® to the two finest data points, while
using the original Richard Extrapolation is equivalent
to fitting the curve ¢ = ¢g + ah? to the three finest
points.  (The result of a traditional Richardson
Extrapolation is always identical to the result of
the Curve Fit method for 3 grids, provided that the
iterative expression for p is used in the Richardson
Extrapolation.) Naturally, the suggested correction
approach works out if the observed order of accuracy
p equals the theoretical one. If p deviates from pyp
the higher order terms of the error equation cannot be
neglected. Knowing that the data points then follow
the curve ¢ = ¢g + azh® + azh® + a,h* + ..., and the
higher order terms are not negligible, it is easy to
realise that ¢ = ¢g + ah” is a better approximation to
this curve than ¢ = ¢g+ah?. The suggested correction
approach is not in our opinion justified unless p = py,.
Figure 4 shows an example where the method fails.
The residual error from the test case with Re 250
for three grids is analysed. By using the Richardson
Extrapolation to estimate the extrapolated solution
¢o we have improved the prediction compared to the
result from the finest grid. (The exact result equals 0.)
With the correction method the prediction is further
away from the exact result than with the uncorrected
method.

The correction factor C) is also used to calculate
the uncertainty U, (12). In the given example the
uncertainty interval for the corrected method is not
acceptable.

Figure 4: a) RE. B) corrected RE. (ITTC)

The effect of the higher order terms
All verification methods described here relate their

valid range of grid sizes to the asymptotic range,
which is normally defined as the range of cell sizes
where the higher order terms in the error series (1)
are negligible. In practice the size of the higher order
terms is not known. It seems to be common practice to
assume that the value of the observed p then indicates
whether a set of solutions are close to the asymptotic
range or not (e.g. [4], [8]). The following results seck
to clarify the relation between the higher order terms
and the observed order of accuracy p.

The described methods are based on the approxima-
tion of the entire error series (1) by the simple error
equation (2). This is equivalent to approximating
the curve v = ¢, + ahP» + HOT with the curve
@ = ¢o + ah”. If the higher order terms are significant
p must deviate from pyy, in order to approximate the
original function ¢. We suspect that there is a specific
relationship between p and the relative size of HOT.
In order to investigate this relationship a 6th degree
polynomial was fitted to the simulation results. The
Jrd order term was clearly dominant over the other
higher order terms. To include 6 terms was therefore
assumed to be sufficient for representing the full error
series. Figure 5 shows the observed order of accuracy
p plotted against the ratio between the higher order
terms and the second order term. p is calculated by
the Curve Fit method based on 3 grids close to each
other. The terms in the polynomial are evaluated at
the finest of those three. Each point in the graph
represents one curve fit calculation. (Note that the
Curve Fit method for three grids is equivalent to the
normal Richardson Extrapolation. The behavior of
the calculated p and ¢o can be seen as an effect of
assumption (2), and will be general for all methods
based on this assumption.)
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Figure 5: The effect of higher order terms on p.

The plot indicates that:

1. As the higher order terms approach zero the ob-
serve order of accuracy p approaches 2, as ex-
pected.

2. The higher order terms can be rather large. Even
for a simple flow problem as the present test case
the higher order terms can be in the same mag-
nitude as the second order terms and even larger,
even though the grids seem to be well resolved.

3. The influence of the higher order terms on p is not



symmetric about pyg,
The next question is how those higher order terms in-
fluence the extrapolated solution ¢g. To help answer-
ing that we define the exact error factor C, as the ratio
between the exact error and the estimated error:

_%_(ﬁl_(,ﬁe

Ce=—= ; (24)
0% o1 — do
where ¢; is the solution from the finest grid. Figure 6
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Figure 6: Exact error factor as function of p for results
of the test case

shows the calculated C. plotted against p. Form this
plot we can see that

1. The asymmetric behaviour is still present. When
P < pgh o is more sensitive to the higher order
terms than when p > pyy,.

2. The method is able to estimate the error well even
when p deviates from pyy,, especially for p > pyp.
This indicates that the method, by adjusting p,
take the higher order terms into account in an ap-
propriate way.

The third-order-dominance range

In a certain range of grid sizes the (pg, + 1) order
term in the error series (1) will dominate the higher
order terms. We will denote this range the third-order-
dominance range, since we in the current test case use
a second order method. (The correct name would be
the (pen + 1)**-order-dominance range). In this range
the analysed results can be assumed to lay on the curve
@ = e +ahPh +bhPh T By using the normal Richard-
son extrapolation or the Curve Fit method, we try to
approximate this curve with the curve ¢ = ¢g+ah?. It
can be shown that the resulting verification parameters
depend on the sign of the coefficients @ and b accord-
ing to Table 1. Notice that the results from the test
case presented in the Figure 5 and 6 display the same
relatio?s between the sign of ﬁ%%, p and C, as the
model polynomial ¢ does.

By using the information in Table 1 it is possible to
formulate an uncertainty interval, to which the exact
solution belongs for all 4 cases:

¢e L= [(;50--(;50 + (1 = C'S)d*] ] (25)

provided that

a b % do Q:’c P Ce“
>0 <0 <0 e | <1 | <pw | <1
<0]| <0 >0 <te | > | Zpn | > 1
<0|>0] <0 > | > | <pw | <1
>0 1 >0 >0 S | <1 | >pwm | >1

Table 1: Influence of a and b on verification parame-
ters.

Cs < C, when p < py,
Cs > C. when p > psp.

(The factor C's here plays the role of a safety factor.
What value of (s, fixed or variable, that should be
chosen is not considered here.)
The direct implication of this is that we can make the
uncertainty interval one sided and hence reduce the
width of the interval by one half, provided that we
know two things:

1. That the analysed solutions belong to the third-

order-dominance range.
2. The value of p.

Beyond the valid range

Figure 7 illustrates what happens when the cell size
h is increased beyond the range where the third or-
der term is dominant. The polynomials representing
the test data of Re 250, Re 200 and Re 100 have been
evaluated for a wider range of cell sizes. We recognise
the shape of the first part of the curves from Figure 6.
At some point the third order term loses its dominance

+ Pe25)
| Pe 20D
< Peed
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25 30

Figure 7: Exact error factor beyond the third-order-
dominance range. Data from polynomial representing
test data.

and the error factor C, deteriorates rapidly. (The same
behaviour has been observed for other test cases but
those results will not be included here.) It is impor-
tant to notice that the curve for each Reynolds number
passes p = 2 twice. There is hence a risk that a calcu-
lation of p gives the value 2 and make us believe that
the estimated error is zero, when it actually is large.

This demands a way of determining whether a set of so-
lutions belong to third-order-dominance range or not.
We can here use the fact that in this range, p is ap-
proaching monotonically py, as the grid is refined, as
shown in Figure & Each point in the graph represents



one calculation involving three solutions. With two
such calculations available, a linear extrapolation to
h = 0 can indicate whether the solutions are inside the
range or not. This would require at least 4 solutions.
A larger number of solutions would of course increase
the confidence in the ourcome.

a1 o2 e3 a4 o5 o6 07 ae

Figure 8: Order of accuracy p for polynomial represen-
tation of test data Re 250.

The ITTC uncertainty interval

We will now use the exact error factor C, plotted in
Figure 6 as a tool for considerations about the un-
certainty interval recommended by the ITTC Quality
Manual:

I = [go + (1= Cu)lI6"[; b0 — (1 = CL)]16°].

The factor C depends on p as well as on the fraction
ha/hy. Considering the observed relation between C,
and p, it seems appropriate to let the safety factor de-
pend on p. In this way the interval can be more narrow
than if a fixed safety factor is used. According to the
results of the previous section, the exact solution e
belongs to the interval T if

(26)

Cyr < C, when p < pyy,
Cr > Ce when p > pyy,

provided that the grids are within the third-order-
dominance range. Figure 9 shows an example where
this is fulfilled. The polynomials representing the test
data from Re 150 and Re 250 are evaluated with the
Curve Fit method for three grids with equal refinement
ratio r = hy/hy = hz/hy = 1.3. It can be seen that
Cl varies with p in the same manner as the exact error
factor C'.. However, C} is also a function of the refine-
ment ratio 7. Figure 10 shows that the slope of the
curve increases with increasing r. As a comparison the
exact error factor C, is shown for the same refinements
ratios 7 in Figure 11. Here the dependency of r goes
the opposite way: the larger the » the smaller is the
slope.

It is interesting to notice that if the fraction hafhy is
inverted in the expression for C, the effect of increas-
ing r will be more correctly modeled compared to the
exact error factor C, at least for this test case. Figure
9 indicates that the uncertainty interval with the in-
verted r in CY still would be safe, and that the interval
would be more narrow.

Whether an uncertainty interval based on the factor

Cr will always include the exact solution is still not
proved. Before this has been validated, it seems to
be safest to use a fixed safety factor set conservatively
from experience and common sense, as recommended
by Eca and Hoekstra in [4] and by Roach in [7].
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Figure 11: Influence of r = hy/hy on C.,.

5 Conclusions

Three verification methods have been tested: the
traditional Richardson Extrapolation, the generalised
Richardson Extrapolation recommended in the ITTC
Quality Manual and the Curve Fit method by Eca and
Hoekstra. The three methods are based on the same
approximation of the truncation errors.

The following conclusions can be drawn about the
ITTC method:



e If the order of accuracy p is calculated the way
the Quality Manual recommend, the two grid re-
finement ratios must be equal. In practice it can
be troublesome or even impossible to fulfill this
requirement to such an extent that is does not in-
fluence on the result.

e By using an implicit expression for the calculation
of p the requirement of the grid refinement ratios
is removed. There is no reasons not to use this
expressions instead of the presently recommended
one.

e The proposed use of a correction factor to improve
the estimation of the extrapolated solution can not
be justified from a theoretical point of view. The
method has been shown to deteriorate the error
estimate in a practical example.

e The recommended uncertainty interval depends on
the grid refinement ratio in a way that does not
model the error behaviour of the current test case
well. By inverting the grid refinement ratio in-
cluded in the expression for C, a better model is
obtained. Whether this the interval will always
embrace the exact solution has not been verified.

The valid range of the tested verification methods is
normaly related to the so called asymptotic range.
With the present results three ranges that relate to
the validity of the methods can be formulated:
The asymptotic range, where
e all higher order terms are negligible.
e p equals (or are very close to) py.
e ¢y equals (or are very close to) the exact solution
The third-order-dominance range, where
e the (py, + 1) order term (third order terms for a
second order method) dominates the higher order
terms.
e p approaches monotonically py, as the grid size is
decreased.
¢ C; > 1 when p>py and C, < 1 when p < pen.
Beyond the valid range, where
e the (py + 1)™ order term does not dominate the
other higher order terms.
e p may approach or equal py, even though the error
estimate is incorrect.

We further conclude that

e For the current test case the influence of the higher
order terms on the error estimate is smaller for
P > pep than for p < pgy, provided that the third
order term dominates the higher order terms. The
implication of this is that a smaller safety factor
can be used for p > py, than for p < pg. Whether
this is generally true still needs to be confirmed.

¢ A set of solutions can be believed to belong to the
third-order-dominance range if it can be verified
that p approaches p;y, as the grid size h tends to
zero. This requires at least four grids.

e If a set of solutions can be verified to belong to
the third-order-dominance range the uncertainty

interval can be halved, compared to the interval
that is normally related to the described verifica-
tion methods.

6 Discussion

The conclusions above are based on a simple, well be-
haved model problem. Whether the conclusions will
have relevance for practical verification problems still
needs to be investigated. With reservation for this,
some words can be said about the suitability of the in-
vestigated verification methods.

The ITTC Quality Manual need to be revised.

The original Richardson Extrapolation is identical to
the Curve Fit approach, when the latter is applied on
three grids only. Including extra (coarser) grids will
only serve to decrease the accuracy of the extrapolated
solution. For a simple flow problem there is hence no
reason to favour one of them to the other. They both
seem to manage the task in an appropriate way.

For complicated flow problems the convergence curve
may be afflicted with a large amount of scatter orig-
inating from turbulence models, flow limiters, bound-
ary conditions, non-similar grids etc. In those cases the
Curve Fit method might be favourable, since it is able
to find the convergence parameters from an “average
convergence curve”. However, nothing prevents us from
fitting a curve, with any kind of curve fitting method,
to the simulation data and perform the Richardson Ex-
trapolation on the fitted curve. In case of scatter it
would also be appropriate to use a extra safety factor
based on the amount of scatter and the number of sim-
ulations included. How these two methods and the new
safety factor would work in practice will be an issue of
future research.
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Abstract

A finite-volume method for simultaneous computation of viscous free-surface flows and flow-
induced motion of rigid bodies is presented. The RANS equations of fluid flow are solved using a
commercial CFD package "Comet”, which can employ moving grids made of arbitrary polyhedral
cells and allows sliding interfaces between fixed and moving grid blocks. The computation of the
six degrees of freedom of the floating body motion is coupled to the CFD code via its user-coding
interface. The method is used to compute the motion of floating bodies in two dimensional cases
as well as three dimensional applications and the results are compared to available experimental
data, showing favorable agreement. Simulation of the flow-induced motion of a self-propelled
ship during maneuvering operations is intended using the present method. The rudder is modeled
geometrically and arbitrary rudder angles can be set up using the technique of sliding interfaces:
the propeller is simulated by applying a body force distributed to a layer of finite-volume cells in
the propeller plane. The preliminary results of this on-going work are presented.



1 Introduction

In ship and ocean engineering interaction between fluid flow and solid bodies is of crucial im-
portance in many branches of applications, such as ship seakeeping and maneuvering. For ship
maneuvering, the interaction plays a vital role concerning safety and functionality.

Numerical methods for fluid flow are well developed. The surface forces acting on the solid bodies
can be easily integrated from solid boundaries of the fluid domain; it is true even if the boundaries
are changing their shapes and positions in time as long as they are prescribed at each time step.
On the other hand, the motion of the rigid bodies can be easily computed by solving its governing
equations of motion when the forces acting on them are known.

To couple these two procedures is not so simple since such a computation has to allow the travel
of information in both directions (the flow-induced forces control the body position and the body
position affects the flow reversely). The computational grid has to be automatically adapted to
the body motion since the body surfaces are part of the fluid domain boundaries. The time step
has to be small not only for predicting the motion in time accurately but also for the stability and
convergence of the coupled algorithm. Underrelaxation is usually necessary for both fluid flow and
motion of rigid bodies.

For application in ship maneuvers, these issues are undoubtedly important because the geometry
of a ship with its appendices becomes rather complicated and also attention has to be paid to au-
tomatic adaptation of the grid and simultaneous maintenance of the grid quality. In this paper, we
present one approach which is suitable for this purpose. The numerical method for the free-surface
flow simulation and a description for the computation of the body motion will be briefly introduced
together with the coupled scheme. The method for adaptation of the grids to the body motion will
be explained. The method is intended to be applied to the simulation of ship maneuvering in the
future. Some results of elementary steps will be presented here. First, computations with a RoRo
vessel with forward speed in head waves are compared to experimental data, showing satisfactory
agreement (for computation of motion of two dimensional bodies subjected to large waves, see
[4]). Then, the simulation of rudder and propeller is briefly discussed.

2 Coupled Computation of Fluid Flow and Body Motion

The finite volume method incorporated in the “Comet” code is used here to simulate incompress-
ible viscous flows with free surface. The conservation equations for mass, momentum, and scalar
quantities (e.g. energy or chemical species) are solved in their integral from. When the grid is mov-
ing, the so-called space conservation law (SCL) has to be satisfied. Interface-capturing method
and High-Resolution Interface Capturing (HRIC) [1] scheme have been used to simulate the free-
surface effects. In addition to the conservation equations for mass and momentum, a transport
equation for void fraction of the liquid phase ¢ has been introduced. Due to the limit of space,
these basic equations will not be introduced here; for more detail, see [1-3].

The motion of rigid body is computed using standard rigid body dynamics, which will not be
repeated here. As described before, the forces and moments acting on a floating body are obtained
from the flow. However, the flow itself is influenced by body motion and both problems have to
be considered simultaneously. For the prediction of body motion, a predictor-corrector method
which can be easily coupled with the iterative procedure for flow prediction (SIMPLE-algorithm)
has been used here.

Each of the body velocity components can be written in the following form:

dv f 1

—_— = V“:V”_]-}-—/‘fdf,_ (1)
dt  mp mp J

This equation is integrated in time using the trapezoidal rule (corresponding to the second-order
Crank-Nicolson scheme for flow computation), so that an estimate of the solution at time ¢, is
computed as:

f\n. —'()f-n.—l ]._\." . (2)
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Note that f, in Eq. (2) depends on the flow solution; so it is not known a priori. In the iterative
solution method used here, at the m outer iteration on the new time level, the value from the
previous outer iteration is used. The displacements of the body are computed in a similar manner:

fn—-l AtQ + fn - f1'.‘.—1 AtQ

Ip = -1 + Vp-1 AL +
mp 2 mpg 6

3)

The analogous procedure is also applied to compute the angular motion.
The above approach has been found appropriate and easy to implement. Also it is of the same
order as the method used to compute the fluid flow and fits well within the overall iteration scheme.

The coupled computation of flow and body motion consists of the following steps:

1. Provide the initial values for the dependent variables (at the time t).

2. Advance the time by Af and, if the grid moves due to the prescribed motion of the boundary,
determine the location of CV vertices at time t,,+Af.

3. Assemble and solve by an iterative solver the linearized algebraic equations for the velocity
components in turn, employing the currently available other dependent variables.

4. Assemble and solve the algebraic equations for the pressure correction and correct mass fluxes,
velocity components, and pressure.

5. Assemble and solve the algebraic equations for volume fraction ¢ and use the calculated values
to update the properties of the effective fluid, such as density and viscosity etc.

6. Assemble and solve the algebraic equations for turbulent kinetic energy & and its dissipation
rate € and obtain turbulent diffusion coefficients.

7. Integrate the pressure and shear forces over body surface, solve the equations of motion for
the floating body (velocity and displacement) using the predictor-corrector method described
above, and adapt the grid to the new position of the body if moving-grid is used.

8. Calculate the current estimate of volumes A1”; swept by each face over the last time step. This
completes one outer iteration.

9. Return to Step 3 and repeat until the sum of the absolute residuals for all equations has fallen
by a prescribed number of orders of magnitude.

10. Return to step 2 and repeat until the prescribed number of time steps is completed.

3 Grid Adaptation to Body Motion
Two techniques have been used to adapt the grid to the body motion:

1. The part of grid around the body is moved with it, the distant grid is kept fixed, and the grid
between these two regions is deformed, while keeping its topology the same. An example is
shown in Fig. 1 (a). This method is suitable when the body motion is not so large that the grid
in the deformed region gets too distorted.

2. The grid around the body is overlapped with the background grid, where the overlapping grid
is moved together with the body and neither block of grid is deformed, as shown in Fig. 1 (b).
Interpolation of the variables is required between these two blocks to ensure that the solution in
the overlapping region is consistent on both grids. This approach is suitable for arbitrary motion
and geometry of the body, but it is also expensive since it demands high computational effort.
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Fig. I: Adaptation of the grid to body motion.

4 Results and Discussion

4.1 RoRo vessel in head waves

The RoRo vessel designed by Flensburg Schiffbau-Gesellschaft (ESG) has been selected as one of
the test models to check the accuracy and reliability of the present method. Results are compared
to the experiments conducted in HSVA within the framework of Roll-S project.

The ship model has a length of 5.364 m between perpendiculars and a breadth of 0.765 m: the
model scale is 1/34. The self-propelled ship model runs with a speed of 1.6 m/s (F,, = 0.22) and
keeps its straight course in an incoming regular wave with 4.0 m wave length and 0.15 m wave
height. The numerical simulation has been set up in a similar way as the model test. The heave
and pitch motion are set free. Roll motion has been kept fixed in the simulation since in this case
the ship is running in head waves and the wave frequency is still far from the resonance frequency
of the ship for roll motion. Therefore the roll motion is not expected to be significant, which has
been proved by the experimental measurement.

The computed wave patterns at two time instants are shown as a top view in Fig. 2. As can
be observed, the spread angle of the wave crests at the ship bow is about 2:19.5 degree, which
coincides with the analytical prediction of the steady wave system due to forward speed of the
ship. This indicates the computed wave system is actually the superposition of this steady wave
system and the unsteady wave system due to incoming waves and resulting ship motion. Results
of ship’s heave and pitch motions in time history are compared to the experimental data. As shown
in Fig. 3, the agreement is satisfactory.

(a) time =9.75s (b) time = 10.20s
Fig. 2 Wave pattern of ship running with forward speed (F, = 0.22) in head waves.

4.2 Computation of propeller and rudder

To simulate ship maneuvering with operating rudder, rudder and propeller have to be modeled in
addition to the ship hull. The rudder of the RoRo vessel has the HSVA-73 profile, it has been mod-
eled geometrically and computed in free stream condition first. The computed force coefficients

4
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Fig. 3: Time history of the RoRo ship motion in waves.

are plotted in Fig. 4. The propeller has been simulated by a body force distribution according to
analytical prediction [S]. Computation has been conducted for the rudder in propeller slipstream,
where the propeller is located at 60% of rudder length before the rudder. The comparison of the
computed rudder forces inside slipstream and in free stream is shown in Fig. 5. As one can sce,
the rudder lift force in slipstream is about 1.5 times larger than in free stream (the thrust loading
coefficient C'ry, is 1.94). The pressure distribution on the rudder and the velocity vectors at the
planes before and behind the rudder are plotted in Fig. 6.

lift force coefficient drag force coefficient
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Figure 4: computed force coefficients for ruder in three-dimensional flow.

5 Conclusions

Finite volume method has been used to compute the viscous fluid flow with free surface. The stan-
dard body dynamics has been taken to compute the motion of the body under flow-induced forces.
A coupled method has been developed to capture the interaction between fluid flow and solid bod-
ies in time domain. Favorable agreement has been shown for a RoRo vessel running with forward
speed in incoming regular waves. The interaction of propeller and rudder has been computed
with body-force modeled propeller and geometrically modeled rudder. All results demonstrate the
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(a) velocity at 30% of rudder length in front of rudder (b) velocity at 30% of rudder length behind rudder
Fig. 6: Pressure distribution on rudder and velocity vectors at two planes in front of and behind rudder.

accuracy and applicability of the present method for the application in ship maneuvering. These
elementary steps are important for such a simulation of ship maneuvering, which will be conducted
in near future.
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