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Application of a RANS-Method to Investigate Scale Effects on the
Performance of Modern Propulsion Systems

M. -Abdel-Maksoud

1. INTRODUCTION

The prediction of the full scale performance of propellers is of major interest to propulsion system
manufacturers. The available experience of scale effects for open water tests is not sufficient for
the safe prediction of the performance of modern pod propulsion systems. Experimental
investigations of scale effects require full scale tests, which are not only too expensive but also in
many cases not available. Furthermore, the results are less informative due to variation of the
environmental conditions during the tests. Therefore, the interest of employing viscous flow
methods for the analysis of the full scale performance of propulsion systems has increased during
the last years. -

Improvement of the efficiency of a pod propulsion system requires detailed information on the
flow around the propeller and the pod as well as on the interaction between them. The inflow of
the propeller is affected by the geometry of the pod. This is not only true for the case where the
pod is located in front of the propeller but also, in the reverse arrangement. The thrust distribution:
on the propeller blades is directly influenced by effect of the inflow velocity distribution caused
by the pod. The induced velocities from the propeller change also the flow around the pod. The
most important aspects of the interaction between the load distribution on the propeller blades, the
propeller inflow and the flow around the pod can be investigated by using a viscous flow method.
The application of the fully three-dimensional Reynolds-Averaged Navier-Stokes (RANS)
techniques for analysing the flow around ship propellers for open water test conditions was
successfully applied by many research groups [1-4]. The propeller flow behind a ship form was
investigated by [4]. The calculated effective wake field of a propeller was presented for different
angular positions of the propeller blades also in [4].

Many numerical investigations were presented for the application of CFD-methods for computing
the full scale flow field around ship forms and propellers.In practice, computations of full scale
ship flows are still limited for special applications such as naval and large passenger vessels. The
effect of the Reynolds number on the viscous flow around ship forms has been investigated by
many scientists, see [5]. The scale effect on a 3 and 5 bladed propeller has been investigated in
[6]. The calculated numerical thrust and the torque coefficients of the propeller at full scale were
higher than the calculated values for model scale.

The scale effect on the flow around a twin propeller pod system of the SITEMENS SCHOTTEL
Propulsor (SSP) is investigated in the framework of the Reynolds-Averaged Navier-Stokes
(RANS) equations. The purpose of the present study is not to present a grid converged solution
for the propulsion problem, but to demonstrate the applicability of a numerical method for the
solution of pod propulsion systems (technology demonstrator).



2. Numerical Method

The numerical computations are carried out for a pod system with two propellers. The calculation
domain is divided into one stationary and two rotating parts. The stationary part includes the
inflow and outflow areas and the flow around the gondola and the strut. The rotating parts located
in front and behind the pod include the blades and the hubs of the propellers. In the stationary part
a Cartesian co-ordinate system is employed. The flow around the propellers is computed in a
rotating co-ordinate system attached to the propellers. The two rotating parts have the same
rotation speed and axis. The RANS equations in a rotating co-ordinate system involve additional
terms compared to those in an inertial system. The effects of turbulence are modelled by the
standard k-€ model. Wall function boundary conditions are used. :

The solver method is based on the conservative finite volume method CFX-TASCflow [7]. The
code has been optimised and intensively tested for propeller in uniform, homogeneous flow and
in so called “behind ship condition”. The investigations are carried out within a joint research
project between the Potsdam Model Basin GmbH and AEA Technology GmbH, and is funded by
the German Ministry for Education, Research and Technology [4].

The numerical method includes fully conservative stage capabilities to simulate the interaction of
the pod and the propeller. The space discretisation is based on a block-structured finite volume
grid around the propulsion system and the blades of the propeller. A non-matching sliding grid
interface is applied at the interfaces between the numerical grids in the rotating and the stationary
frame. The next chapter demonstrates the application of the numerical method for the simulation
of flows around pod propulsors.

3. Numerical computation

SCHOTTEL GmbH & Co. KG and SIEMENS AG, Marine Engineering have developed a new
podded azimuthing system, which is called SSP. The improved efficiency of the SSP pod systems
is achieved by reducing the thrust loading of the propeller. The required thrust is distributed on
two propellers, one in front and the other behind the pod. Another advantage of this solution is the
reduction of the required propeller diameter. The development of the SSP pod system is
supported by extensive numerical and experimental investigations. The aim of the numerical
investigation is the computation of the flow around the full scale propulsor. The computations are
carried out at model and full scale with different grades of grid refinement (precision). The
numerical computations are carried for quasi-stationary (one angular position) and instationary
cases. Some of the results of the quasi-stationary case are discussed below.

A 3D solid CAD model was used for the grid generation. Special attention was given to surfaces
at the connection between pod and fins as well as between gondola and strut. For model and full
scale, a rough and a fine grid was generated. The detailed geometry of all propeller blades was
used without any simplification. The coarse numerical grid for the model scale consists of 75
blocks and 530000 control volumes. A high grade of resolution is employed for the full scale
numerical grid especially near the wall area. Therefore the number of blocks of the numerical grid
were increased to 115} which contain 560 000 control volumes. The fine grid of model and full
scale consist of around 90 blocks and more than one million control volumes. The numerical
computations of the presented results were carried out using the coarse grid for model and full
scale. The Reynolds numbers for model and full scale are 4 x 10° and 2.98 x 107 respectively.



4, Results

The investigation was carried out for one angular position and one operation condition J= 0.633.
As shown in Figure 1, one blade of the front propeller is located directly in front of the strut. The
rear propeller is running in phase with the front propeller. Therefore, the blade of the rear
propeller passes the strut later than the front propeller. As shown below, many details of the flow
can be captured by the numerical results in spite of the inadequate grade of refinement of the

applied grid.

The calculated thrust coefficient of the full scale for the front and rear propellers are higher than
for the model scale. The scale effect of the front propeller is much higher than for the rear
~-propeller due to the intense interaction between the strut and the propeller blades. The calculated
thrust coefficient of the rear propeller is 3.5 % higher for the full scale in comparison to the model
scale for the operation parameters of this example. The torque coefficient is about 4 % lower than
the related value of the model. The total resistance coefficient of the gondola and the strut of the
full scale is about 9 % lower than the model value. The stream lines around the SSP model show
the effect of the front propeller on the inflow of the rear one, see Figure 1. Figure 2 shows the
contour of the axial velocity component in model and full scale in the cross section of the rear
propeller. The results show the different thickness of the boundary layer on the gondola and the
different velocity distribution between the propeller blades and in the tip vortex area in model and
full scale.
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Figure 1: Stream lines around SSP Propulsor
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Parallelization of a panel method
in SMP environment |

Giorgio Amati * Federico Massaioli Sergio Parisi

1 Extended Abstract

We present some results concerning the parallelization of a panel method code in a SMP (Symmetric Multi
Processor) environment using OpenMP directives. 7

Panel methods give rise to heavy computational kernels.- They are O(n?) models where n is the number of
unknowns, as a consequence it is practically impossible to use a great number of panels on a serial machine.
Furthermore in sea-keeping simulations we have to look at different combinations of parameters like Froude
number, initial conditions and various time steps. So arises the need to minimize turn around time of every
computation. ,

In the following a very short description of the computational kernels is presented, with a brief description of
SMP parallel computing. After that we present a simple way to parallelize a panel method and some results
about speedup and efficiency. Finally some concluding remarks will be done.

1.1 Panel method: main computational aspects

Panel methods are numerical schemes used in naval idrodynamics for the simulation of free surface - hull
interaction. For a complete description of the scheme used see [1]. A panel method is essentially built from two
different computational kernels

e Assembly of the mutual interactions matrix in which the interaction between each panel and the other
n — 1 panels has to be computed.

e Solution of a n x n linear system. -

Both kernels have a O(n?) computational costs, where n is the number of panels and are apllied to compute
source densities and their derivatives for each panel. Table 1 shows how the computing time grows with the
number of panels. Moreover a typical sea-keeping problem requires different simulations with various initial
conditions and Froude numbers to be completed. Each simulation can lasts about 20-40 hours on a serial
machine. This justifies the need of parallel computing in order to reduce elapsed and turn-around time.

1.2 SMP and OpenMP

Symmetric Multi Processors are Shared Memory parallel machine, i.e. each processor can access to every
memory location. Technological evolution makes such kind of machines widely available, even in the form
of commodity multiprocessor PCs. Moreover this architecture does not require explicit data movement from
a processor to an other like in message passing architectures (e.g. cluster of workstation), thus allowing for
significant code simplification, better performance and more sophisticated algorithms. On the other hand,
technological and economical issues limit the number of available processors (usually less then 32 — 64) and .
care have to be exercised to manage simultaneous accesses and modifications to the same memory location by

*CASPUR - University of Rome La Sapienza - e‘-maii g.amati@caspur.it
tCASPUR - University of Rome La Sapienza — e-mail f.massaioli@caspur.it

IINSEAN - Italian Ship Model Basin - e-mail sergios@rios5.insean.it

1



different processors (read-write conflicts). It is the programmer’s responsibility to correctly sinchronize data
access between processors. '

For the present work we adopted OpenMP directives (2], an industry standard that hides in an effective manner
the complexity of managing more than one independent thread of execution in the same application, simplifies
debugging, allows for seamless portability from system to system. The parallel directives are in the form of
fortran comments (e.g. CSOMP), so that the parallel code can be used also for serial computing: a standard
compiler reads a directive as a comment, while a parallel compiler is able to detect it and to produce parallel
a executable. It is important to carefully cathegorize variables, to distinguish between data that are local to
each processor (local variables: a private copy for each processor) and those common to all processors (shared
variables: a single copy accessed by every processor).

We also tested a different approach, namely the use of parallel numerical libraries from a serial program. When
a program heavily relying on numerical algebra operations calls a standard BLAS routine, a special parallel
version can be transparently used if the executable has been linked to a vendor supplied parallel library. Usually,
these libraries don’t present a good speedup (l.e. the increase of velocity execution using more then 1 processor)
but they are very easy to use, even if they actually present some problems of compatibility with OpenMP
directives.

Of course, all the burden of parallelization makes sense and is profitable only when applied to a previously
optimized code. . -

1.3 Parallelization in SMP environment

In this section we present and discuss the performances exhibited by two parallel codes. The first one was
dominated by the assembly of the interaction matrix, and the parallel version was developed with OpenMP
tools. The second code was dominated by the solution of the linear systems, making a “quick and dirty”
parallelization using a parallel numerical algebra library appealing. For parallelization with OpenMP KAP/Pro
ToolSet from KAI has been used (3] :

1.3.1 Code A

In this code the forces between two bodies, moving along a predefined path are computed. At each time-step
the matrix of mutual influences must be computed. The routine where the matrix is computed amounts t0
~ 95% of the total elapsed time. This routine has been easily parallelized with OpenMP.

Resulting speedup (S(n) = t(1)/t(n), where t(n) is the elapsed time using n processor) and efficiency (E(n) =
t(1)/(n *t(n))) are shown in table 2, together with the theoretical speedup (S (n)t*). The efficiency decrease
with more than 4 processors: this depends on the increasing weight of the serial part of the code as processor
number of processors goes up (i.e. Amdahl law). In fact the the serial part, that is essentially the solution of
a linear system, becomes more important in a linear way with the number of processors used. Should we need
more then 4 — 6 processors, we'd have to parallelize also this part, negligible using less processors, spending
more time on programming and optimizing. : -

1.3.2 Code B

In this code we compute separately Pitch, Heave and Surge movements of a hull in plain water in order to
calculate the forces acting on it. Here the mutual influences matrix is computed only at the beginning of the
simulation and between 85 —95% of the elapsed time is spent now on BLAS routines (essentially GEMV) solving
a linear system. This routine can be parallelized using parallel BLAS or in a »hand-made” way using OpenMP.
Using parallel BLAS 95% of elapsed time is spent in GEMV (both using DEC and SUN SMP machine), while
with OpenMP we have used n SAXPY routines instead of one GEMV, dispatching them between the different
processors; this section takes about 85% of the elapsed time. The results are shown in tab. 3. It is evident that
the speedup tends to saturate for more then 4 processor and in this case vendor GEMYV performs better than
the our first attempt to a "hand-made” parallelization.

More effort, however, has to be spent in that direction. In fact, present parallel numerical libraries are in-
compatible with use of OpenMP directives, thus empairing parallelization of the remainder of the code, whose
weight on the total elapsed time grows significantly when more processors are used.



n. of panel | time (s) | Ratio
256 32.66 -
1024 584.08 | 18.2
4096 10490.41 | 17.9

Table 1: Code A: time spent using different number of panels

n. of Processor 1 2 4 6 8
time 38 57" | 21705 | 117 19" | 8 06" | 7' 027
S(n) - 1.85 3.4 4.8 5.5

S(n)t < 1.90 348 | 480 | 5.92
E(n) - 0.92 0.86 0.80 0.69

Table 2: Code A: experimental speedup (S(n)), theoretical speedup (S(n)t*) and efficiency (E(n)) for a test
case with 8192 panels. It was executed on SUN Enterprise 3500.

1.3.3 Code B: physical results s

In order to show the gain of using parallel computing, the code B has been used to compute Pitch, Heave and
Surge forces on a hull at three different resolution (690 + 713 panels, 690 + 2852 panels, 2668 + 2976 panels),
at tree different Froude number (0.2-0.3-0.4) with fixed and moving hull. A simple snapshot of the results is
shown in fig. 1.4. The simulation of the 54 combination of parameters, plus some tests for different d¢ in order
to validate convergence, costs about 3000 hours on a cluster of 4 processor DEC-SMP machine in one month.
The same computation on a single processor machine need more then 3 months of sustained computations,
showing a very good turn-around time.

1.4 Conclusion

SMP parallelization presents good results on this kind of application. In the present application the need for
parallel computing is to reduce elapsed and turn-around time between the simulations and thus can be obtained

successfully also with a few processors.

OpenMP directives proved effective, as only 80 directives needed to be added to the original 2000 FORTRAN
lines of code A. Moreover using OpenMP we are still able use the new parallel code to produce serial executables.
The parallel library approach too demonstrated its effectiveness for codes dominated by numerical algebra
operations, giving a parallel application atthe cost of a linking phase.

Both approaches are fast and effective, freeing time from software development to concentrate on the physical
problem. Unsatisfactory speedups are obtained for more than 4-6 CPUs, depending on the approach. This is
due to the fact that some computational steps are intrinsically serial and parallel libraries aren't yet mature.
But if we parallelize both kernels, we can reach a better speedup as shown in tab. 4. More work has to be
profused on these issues, from programmers, library developers and standardization committees.
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n. of Processor 1 2
time 10° 02" | 5 40” | 4’ 15" | 3’ 25"
S(n) (DXMLP) - 1.77 2.67 2.94
S(n)** (DXMLP) - 1.90 273 3.48
~ time 10’ 427 | 6" 54” | 5’ 19" | 4’ 467
S(n) (SP) - 1.55 2.01 2.24
S(n)** (SP) - 1.90 2.73 3.48
time 9’ 09” | 5'26” | 4’ 25" | 4’ 06”
S(n) (OMP) - 1.68 2.07 2.23
S(n)t* (OMP) - 174 | 230 | 2.75

Table 3: Code B: experimental Speedup, theoretical Speedup and efficiency for a test case with a 1200 x 1200
matrix (~ 150M B) on a Compaq 4100 using DXMLP libraries (DXMLP), on a SUN Enterprise 3500 using
Sunperf libreries (SP), and “Hand made” parallelization with OpenMP (OMP).

n. of Processor 1 2 - 4 6 . 8
time ag gy | 20083 | 10743” | 7729" | 8 017
S(n) ' . 1.89 3.63 5.27 6.50
E(n) - 0.95 0.91 0.88 0.81

Table 4: Code A: the same for table 2 using “hand made” parallelized BLAS.

Figure 1: Wave pattern due to the interaction of a ship with an incident wave packet at Fr = 0.2 using two

different grids.
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INTRODUCTION

Free surface flows can be computed by a number of methods if no breaking waves occur;
in those situations the methods based on potential low theory are often quite satisfactory.
.However, there are many practical situations in which the free surface deforms so severely
that classical methods for predicting free-surface flows fail. Examples are breaking bow
waves in flows around ships and breaking waves above submerged hydrofoils.
~ In order to compute free-surface flows with breaking waves, one has to use one of the
interface-capturing methods. Examples are: (i) the classical VOF-method [1], which com-
putes the flow of water only but allows severe deformation of the free surface, (%) level-set
methods [2], which compute the flow of both liquid and gas and use a level-set function
which describes the distance from the interface to track the motion of the interface, and (i)
methods which consider all fluids involved as one effective fluid with variable properties and
solve additional equations for volume concentration of all but one constituent fluid in order
to define the composition at any point in space [3,4,5]. The first two classes of methods have
problems with situations of non-unique free-surface shape and enclosed pockets of one fluid
within the other. The last named class of methods is the most general one as it represents a
kind of multi-phase flow model; however, it requires a special care in discretizing and solving
the conservation equations for species concentrations.

We describe below briefly the interface-capturing scheme and the underlying finite-volume
method used in the present study, followed by examples of computations of flows with wave
breaking.

MATHEMATICAL MODEL

The conservation equations for mass, volume concentrations and momentum describe the
behavior of a multi-fluid system: :

%LpdV—}-/Spv-ndS——-O, &
%/‘/qdv+[9qv-nd5;0, (2)
‘ %vadv+[gpvv-nd5:[E;T'Ilds-i-];fbdv- (3)

V is an arbitrary control volume bounded by a closed surface S, p is the density, v is the
fluid velocity vector, n is the unit vector normal to the surface S and directed outwards, ¢;
is the volume concentration of the sth fluid component, T' is the stress tensor, and f, is the

resultant body force.



The mixture of fluids is treated as a single effective fluid, with physical properties ex-
pressed as a function of the volume concentrations and the physical properties of each fluid

component:
g=S a1 p=Y ok, Y m=1 (4)
i i i

p; and u; are the density and dynamié viscosity of the ith fluid component, respectively.
One should notice that the mathematical formulation of the problem is not limited to
any specific number of fluids.

NUMERICAL METHOD

In order to solve the governing equations, the solution domain is first subdivided into an
arbitrary number of contiguous control volumes (CVs) or cells. Control volumes can be of
an arbitrary polyhedral shape allowing for local grid refinement, sliding grids, and grids with
non-matching block interfaces. More details about this finite-volume FV discretization can
be found in [6]. Here only the interface-capturing features of the method will be presented.

A successful scheme for interface capturing must exploit the interface sharpening nature
of the downwind scheme, it must prevent over- and underflow of cells (it has to be bounded),
and it should have a mechanism to avoid alignment of the interface with the numerical grid.
The High Resolution Interface Capturing (HRIC) scheme [5] achieves this by a non-linear
blend of the upwind (UD) and the downwind (DD) scheme. The UD scheme approximates
the cell-face value by the value at the upstream cell center (Fig. 1). It is unconditionally
stable and always produces a bounded solution. On the other hand, the DD scheme is an un-
conditionally unstable scheme that introduces negative numerical diffusion. It approximates
the cell-face value by the value at the downstream cell center. The way of blending UD and
DD can be analyzed in the Normalized Variable Diagram (NVD) [7]. The local normalized
volume fraction & in the vicinity of the cell center C is defined as follows:

_ elryt) ~en (5)

N Cp — Cy '
where subscripts U and D denote the respective nodes upstream and downstream of the cell
center C, and r is the position vector. The HRIC scheme computes the cell-face value of the
normalized volume fraction according to the following expression (Fig. 2):

i if éc < 0
£ 2% if 0 < & < 05 (6)
? 1 if 05 < &

éc if 1 < &

In order to prevent an alignment of the interface with the numerical grid because of the
use of the downwind discretization [5] , the HRIC scheme corrects the & value according to

the following expression:
& =¢gVeosl +&c(1 — VeosH) . (7)

where 6 is the angle between the normal to the interface (defined by the gradient of the
volume fraction Vc¢) and the normal to the cell face (Fig. 1).

The blending of upwind and downwind schemes is dynamic and accounts for the local
distribution of the volume fraction. However, if the local Courant number Co is too large,
the dynamic nature of the scheme may cause convergence problems. In order to prevent.
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Figure 1: Notation and values used for Figure 2: NVD diagram and
NVD diagram and HRIC scheme. ~ the HRIC scheme.

this, the HRIC discretization also takes into account the value of Courant number, yielding
the cell-face value of the volume fraction according to the following expression:

& if Co<03
& =1 i i 0.7<Co (8)
&c + (& — &c) ¥=28 otherwise

Finally, the HRIC cell-face value of ¢ is computed according to Eq.(5) as follows:

‘ 1-— Ef*)(CD i CU) i
M=y cc+ (1 -7, y= 28 : 9)
ép — C¢

EXAMPLES

The first example is the flow around the Hamburg Test Case (HTC). The HTC is a
container ship which has been selected by ITTC as a standard test case. The ship’s geometry
is typical for a modern ship hull, with bulbous bows and sterns, and a transom stern. Work
is in progress and analyses are expected to be finished by early 2000. Figures 3 and 4 present
some preliminary results. Figure 3 shows the distribution of water and air around the ship.
Figure 4 shows the elevation of the free surface. Insufficient grid resolution especially in the
rear part of the ship causes relatively fast dissipation of waves. At present, new grids with
considerably higher resolution are in preparation.

Elevation [m]

Volumae Fraction
5 1.3150+01

1.000e+00

9.0008-01 B8] 1.2600.01
8,0000-01 5] 1.2056.01
7.0008-01 1.1500+01
6.000e-01 1.0950+01
5.000e-01 1.04004+01
4.000e-01 9.8550+00
3.0000-01 9.3070+00
2.0000-01 21 87590400
1.000e-01 B 82108400
4.9820-28 7.6820+00

Figure 3: Distribution of air and water Figure 4: Free-surface elevation

along the ship

‘The second test case is the flow around the NACA0012 hydrofoil with chord length 1 m
and submergence depth of 0.14 m (measured from the mid-point on the profile nose). The
hydrofoil moves at a constant velocity of 1.5 m/s. Figure 5 shows free-surface shapes and



velocity distribution at six time instants during the simulation. One can observe first the
buildup of one steep wave (top-left figure). The splash caused by the overturning wave
hitting the free surface is seen in the second-left figure. At later times, violent wave breaking
with air entrainment takes place in a region extending from the trailing edge to about half
chord length behind the foil. Also, the crest of the wave that forms above the leading edge
starts breaking at the later stage of the simulation. This case is documented extensively by
8].

Figure 5: Computed velocity vectors and free-surface shapes at six time instants about one
second apart ’
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Wave pressure computations for a VLCC in regular waves

Volkeerertram, INSEAN
Hironori Yasukawa, Mitsubishi Heavy Industries

Bertram (1998) described a fully three-dimensional ship seakeeping method that considers the
steady flow contribution completely (within the framework of potential flow) and linearises the
unsteady flow contribution with respect to wave height around the steady flow (including steady
wave system, steady trim and sinkage of ship). The theory is also briefly described in Bertram and
Yasukawa (1999).

The Rankine Singularity Method (RSM) employs special elements for the seakeeping computa-
tions. 'Jensen panels’ are used on the hull which allow the evaluation of first-order panels using
only point source evaluation. Desingularised point source clusters are used for the free surface. The
radiation condition (waves propagate only downstream) is enforced using the shifting technique,
Bertram (1990). This technique is simple to implement and free of numerical damping (shown
for steady linear free-surface problems and plausibly assumed for quasi-steady seakeeping compu-
tations). However, theoretically for 7 < 0.25 it is not applicable, as then also significant waves
may propagate upstream. Iwashita and Ito (1998) concluded that for seakeeping computations in
the frequency domain a practical limit appears to be 7 = 0.5 as then results for added mass and
damping began to disagree noticeably with experimental values in a benchmark test.

So far, applications of the present RSM were shown only for relatively high Froude numbers, which
for most angles of encounters and wave lengths of interest result in sufficiently high 7 values. For
these cases, good agreement with experiments for motions was demonstrated, Bertram (1998). Nu-
merical studies showed that the influence of the steady flow on the results for motions is significant,
for moderate wave lengths, but negligible for short and long waves. This was explained by purely
numerical investigations of local pressures. A research cooperation allowed now to investigate local
pressures for a VLCC, Table I, at F,, = 0.131. The exact geometry of the test case is confidential.
The pressures are the amplitudes of the pressure fluctuation, i.e. pressures without hydrostatic and
steady hydrodynamic pressures.

The tanker was discretised using 495 elements. First the steady fully nonlinear wave resistance
problem was solved. The grid on the free-surface was generated using the 'cut-out’ technique.
This technique generates a structured grid consisting of rectangular elements. Elements which are
partially or totally inside the hull are then eliminated and then the shifting technique is applied.
This technique is known to give better results for full hulls than streamlining a grid around the
hull. The fully nonlinear method used 3 iterations which reduced the error at the free surface by 4
orders of magnitude.

The same grid for the hull was employed for the seakeeping computations (at the dynamic trim
and sinkage). Pressure integrations considered only the area submerged in the steady case. The
free surface in the seakeeping computations was discretised with typically 1400 elements. Again
the 'cut-out’ technique was employed and the steady results interpolated from the ’steady’ grid
to the 'unsteady’ grid. Test computations for two wave lengths with free-surface grids involving
approximately 4200 elements yielded results that were only 5% different. This may be interpreted
as that the coarser discretisation is sufficient.

- The computational results are compared to measurements of Tanizawa et al. (1993) and MHI strip
method results. The strip method is a standard STF method with Lewis section representation.
The results include motions and pressures on the hull at a location = —0.078 Ly, (23.95m behind
amidships). The motions agree rather well for both head sea and oblique sea with u = 150°,
Figs.1 and 2. However, strip method also predicts heave and pitch motions well. In fact, for long
waves strip methods gives better results than the RSM. This is not surprising. Strip methods are
known to predict heave and pitch motions well for usual ships and ship speeds. The present RSM



uses- the shifting technique which deteriorates in performance for 7 < 0.4...0.5. Sway and yaw are
also well predicted, the maximum of the roll motion is underpredicted. This may be due to the
deterioration of the shifting technique, as for a fast containership with Fj, = 0.275 Bertram (1998)
obtained significant overprediction for roll resonance as expected for a method that does not include
empirical corrections for nonlinear roll damping. '

Figs.3 and 4 compare pressures. Starboard is the weather side. For head waves the computed
pressures are of course symmetrical to the midship plane (90°). One point on the port side was
then plotted on its corresponding position on the starboard side. Pressures computed by the RSM
agree well with measured pressures for A\/L < 1.25 for u = 180° and A\/L < 1.0 for p = 150°.
These limits correspond for the investigated low Froude number to T-values around 0.35...0.4. For
short waves, the computations underpredict the pressures at the bottom of the ship compared
to measurements. However, as the pressures should decay exponentially with depth like all wave
effects, for short waves the near-zero values of the computation appear to be more plausible and we
assume that they reflect in this case reality better than the measured values. For waves of moderate
length 0.5 < A\/L < 0.75, measured and computed pressures at the ship bottom agree well. The
strip method results for pressures are significantly worse, especially for short waves A\/L = 0.3
where diffraction effects are stronger than radiation effects.

In summary, the RSM predicted pressures and motions well, the strip method predicted pressures
badly, but motions well. The RSM is currently limited in practice to approximately 7 > 0.4. Unless
techniques are developed to extend it to smaller 7-Values, the RSM will remain a research tool of
limited functionality. We see hybrid methods matching an inner RSM solution to an outer Green
function method or Fourier-Kochin solution as most promising approach to extend the method to
low T-values, but at present no such research is planned due to lack of funds.

Table I: Test case VLCC

Ly, 307.00 m |KG 1517 m |k, 19.193 m

(5 5400 m |z, 10.045 m |k, 73.987 m

T 19.50 m | z4 4333 m |k, 76750 m

Cg 0.813 kz Kz 0 m
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Added Resistance for a Fully Three-Dimensional Ship Seakeeping Method

Volker Bertram, INSEAN
Hironori Yasukawa, Mitsubishi Heavy Industries

Bertram (1998) described a fully three-dimensional ship seakeeping method that considers the
steady flow contribution completely (within the framework of potential flow) and linearizes the
unsteady flow contribution with respect to wave height around the steady flow (including steady
wave system, steady trim and sinkage of ship). The formula for added resistance given in Bertram
(1998a) contained an error in the contribution of the line integral term. This will be corrected here.

The theory for the determination of the linear RAOs for motions is only very briefly outlined here to
the extent necessary for understanding the added resistance formula. Details are given in Bertram
(1998a).

We consider a ship moving with mean speed U in a harmonic wave of small amplitude A with
T = Uwe/g > 0.25. w, is the encounter frequency, g = 9.81m/s2. All coordinate systems here are
right-handed Cartesian systems. The inertial Ozyz system moves uniformly with velocity U. =
points in the direction of the body’s mean velocity U, z points vertically downward. The Ozyz
system is fixed at the body and follows its motions. u; (: = 1...6) denotes the body motions.
o; = ujr3 (1 = 1...3) denotes just the rotational motions. '

A perturbation formulation for the potential is used: ¢%* = 9 + ¢ L hot.

#(© is the part of the potential which is independent of the wave amplitude h (Solution of the steady
wave-resistance problem determined in fully nonlinear wave-resistance code.) #1) is proportional
to h. Terms proportional to higher powers of h are neglected. The potential and the free-surface
elevation ¢ are then: '

ptotel (o y 2i1) = () (z,y,2) + ¢ (z,y,2;t) = 6O (z,y,2) + Re(dV(z,y, z)e™h) (1)
¢total(z yt) = C(O)(x:y) + (W (z,y:t) = ¢O(z,y) + Re(fil)(x,y)eiwct) (2)

Correspondingly the symbol " is used for the complex amplitudes of all other first-order quantities,
such as motions, forces, pressures, etc. w, = |w — kU cos y| the frequency of encounter. k is the
wave number. w = 1/gk is the frequency of the incident wave. The superposition principle can be
used within a linearized theory. Therefore the radiation problems for all 6 degrees of freedom of the
rigid-body motions and the diffraction problem are solved separately. The total solution is a linear
combination of the solutions for each independent problem. The harmonic potential »() is divided
into the potential of the incident wave $¥, the diffraction potential #%, and 6 radiation potentials.
It is convenient to divide ¢¥ and ¢¢ into symmetrical and antisymmetrical parts (@ 2 fof &
@7 + ¢ for #%) to take advantage of geometrical symmetry:

6
§M) = ¢ + ¢+ Y Fui+ 7 + ¢ (3)
i=1

The linearized potential of the incident wave is:

Y = Re(iiﬁe—ik(r cos p-ysin p)—kz giwet) — Re(fWelet) (4)

The following abbreviations are useful: &% = (Ve V)Ve©®, 79 = g —{0,0,9}7, B =
—fg{%(qu{G) @9). The linearized free-surface condition at z = ¢ (0 is:
3
(=2 + Biwe)d® + ((2iw, + B)V4® + 30 + @) VD) + VO (veOV) VgD =0 (5)
The linearized tim&harmoﬁic free-surface elevation is:

(1)
& + VO ve) E (6)

ag, -

C(l) =




The hull boundary condition at average steady hull position S(Z) = 0 is:
AV + G — iwedl) + G(E X (1T — twet) + A x VD) =0 (7)

7 is the inward unit normal vector. The m-terms are m = (BV)Ve(0)

Diffraction and radiation problems for unit amplitude motions are solved independently in a col-
location scheme using first-order panels and the same hull grid as for the solution of the fully
nonlinear wave-resistance problem. All relevant quantities on the free-surface are interpolated from
the ’steady’ grid to the ’time-harmonic’ grid. After the potential ¢* (i = 1..8) have been de-
termined, only the motions u; remain as unknowns. These are determined in principle from the
'ansatz’ F' = m - a (as vector equations in 6 degrees of freedom). This yields a system of equations
in 4; which is quickly solved using Gauss elimination.

Following a similar approach as for the first-order forces, a formula for the added resistance can
be derived that uses only quantities computed so far. The added resistance is the negative time-
averaged value of the z-component of the second-order force. If t; and ¢ are time-harmonic
quantities, the time-average of ¢1t; is ZRe(t1t2) where 3 is the conjugate complex of ta.

One contribution to this force is the pressure integral over the average wetted surface where only
. second-order terms of the integrand are retained: -

T = f [p® + VpO (G x £ + @) (& x f)1 + [pP + VpM) (& x Z +T)] 0y dS (8)
5(0)

pl® = —p (l(ws ()2 - U2 - g2), Vo = —pa?, pV = —p (V4O V1 + ),

p® = — (v¢(1))
(A term conta,mmg the time-derivative of the second-order potential vamshes in the time-average.)

The first part of the integral yields:

/ [P + VpO) (G x & + )] (& x 7)1 dS = (9)

1 . s BEE . R 5
5 Re{mgén & — mws (85(ds — Gazy) — &3 (g + Gsz, — 612,))}

Vph) = (V) + V(v veh)) (10)
The second derivatives of the potential on the hull are neglected (due to ’desperation’ rather than
physical insight.)

Another contribution to the longitudinal time-averaged pressure force stems from the difference
" between average and instantaneous wetted surface AS:

z
T = ff +p(1 + VpO)(& x Z + )] ny dz’ de (11)
0
C is the vertical pro;eomon of the steady wave profile. This modified waterlme contour accounts
also for steady trim and sinkage and differs usually somewhat from the still waterline contour. z' is

a vertical coordinate with origin at the height of the steady surface. Z is the first-order difference
between average (steady) and instantaneous wave profile on the hull:

Z =¢W — (u3 — UL + ugy) = 7(12)



with ¢(1) = p(1)/(pad). Developing the pressure about the steady (mean) position, using that the
pressure is zero at the free surface, and retaining only second-order terms yields:

1
T = f (?’@Zz + [pW) + VpO (@ x £ + ﬁ)]Z) ny dc (13)
(o

The added resistance is accordingly found with (8) and (13) as Raw = —(T1 + T2):

Raw = —3Re{ [ (372 +p0 + VpO(& x £+ @) Z*ny de
C
[ [FoVEWVHD + VH0(E x g+ D) my dS (14)
500

+mgby & — mw(&3(ls — ozy) — &3(h2 + Gazy — d12y))}

All pressure integral are evaluated numerically over the starboard half only and multiplied by 2
for symmetrical/symmetrical and antisymmetrical/antisymmetrical pressure-normal combinations
only. (Antisymmetrical/symmetrical combinations yield zero contributions.)

We show here applications to the ITTC standard test case S-175 containership in head seas. Com-
putations are compared to experiments of Mitsubishi Heavy Industries. Fig.1l shows results for
F, = 0.25 and Fig.2 for F, = 0.3. For all three motions the agreement is very good. In fact,
the computational results for heave for long waves appear to be more plausible, as they tend as
expected monotonously to 1. The slight overshoot in the maximum of heave motion could be due
to nonlinear damping effects in the experiments. For F, = 0.275, Bertram (1998) showed that the
phase information is also correctly captured, at least for wave lengths where the RAOs are not
approximately zero. The added resistance, however, is computed completely wrong for the high
Froude number. For F, = 0.25, the agreement appear better, but the added resistance for longer
waves is several orders of magnitude larger than measured. There are various possible explanations:

1. The mathematical formulation may be wrong. We detected one error in the formulation given
in Bertram (1998). Perhaps there are other errors?

2. The coding of the mathematical formula may be wrong (programming mistake).

3. The pressure integration may react very sensitively to errors in the input data. We found e.g.
that setting the second derivatives of the potential in the surface integral to zero produces
changes in the results of up to 200%! We know from wave resistance computations that the
pressure integrals frequently produce errors of up to 100%.

It will take more collective research to determine the true problem. It is our hope that despite the
disappointing results, the formula may prove to be valuable as more research groups follow similar
approaches and may then eventually also try to compute the added resistance of ships.
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NU'\/IERICAL PREDICTION OF WAKE I\/IPROVEMENT
BY VORTEX GENERATOR NEAR STERN USING OVERLAPPING GRID TECHNIQUE

Shiu-Wu CHAU
United Ship Design and Development Center
Keelung, TATWAN, R.O.C.

ABSTRACT :

In order to deal with complex geometry, an overlapping grid
technique is developed and incorporated with the USDDC RANS
solver. In the overlapping grid technique, the numerical grids o
different zones can overlap with each other in the computational
domain. More flexibility and ease in generating numerical grids can be
obtained. Grid skewness can be better improved, and therefore the
numerical diffusion can be also reduced. The demonstrated case shows
the numerical prediction of wake improvement of a container ship by
installing a pair of vortex generator on ship hull near stem. The
numerical results agree well with wind tunnel measurements. The
overlapping grid technique is proven to be an effective means to
compute flow for complex geometry with required engineering
accuracy.

KEYWORDS: Overlapping grid, RANS computation, ship flow
calculation

INTRODUCTION

In engineering applications few problems can be modeled
only with one-block structured grid for complex geometry.
Different kinds of grid techniques.have been developed to
handle complex geometry [1],[2],(3]. Unstructured grid
approach [3] seems to offer good flexibility to deal with such
problems. Unstructured domain decomposition [2] is an
alternative way to reduce the effort for managing the inter-zone
connectivity and, still to maintain the advantage of effective
grid distribution. Two groups of grids can be further divided
according to the topological relationship of zonal boundaries.
In the first group, zonal boundaries are shared and, hence
coincided between different zones [1]. Conservation between
zonal interface is clearly defined, and can be easily achieved.
Overlapping grid [4], which allows grid overlapping between
different zones, belongs to the second group. Unlike the grids
in the first group, the consistence of flux calculation for
overlapping grids at zonal boundary is not implicitly insured.
However, different zones can be more economically, easily and
flexibly arranged in the computational domain. This will help
to improve the skewness problem of numerical grids. In the
past years a Reynolds Averaged Navier-Stokes solver [5](6] has
been developed using domain decomposition method in United
Ship Design and Development Center. In order to meet the
increasing need in analyzing flow around ship with complex
geometry, the available RANS solver should be upgraded to be
able to deal with those challenging geometries. Two most
important requirements for engineering applications are the
ease of creating an adequate grid within reasonable time and
the sufficient accuracy of flow solution. Furthermore, grid
skewness should be reduced to avoid causing excessive
numerical diffusion. After surveying present. numerical
methods and the structure of our RANS solver, overlapping
grid approach seemed to be the best candidate.

OVERLAPPING GRID APPROACH

_ Here the overlapping grid approach, mainly following the
method proposed in [7], is briefly discussed. Two types of grids
are employed in the overlapping grid system: foreground and
background grid. Both grids are structured grids. The
background grids are applied to cover the whole computational
domain without considering local geometry. The foreground
grids are designed to take care of the local regions, where
complex geometry or high gradient of physical variable exists.
Hence, the grid quality and density are more easily controlled.

1

After the foreground and background grids are created in the
computational domain, the second step is to remove the some
cells of background grid, which reside inside foreground grids,
from solution process. The removed cells in background grids
are known as hole regions. However, in order to have enough
coupling between two overlapping grids, sufficient overlapping
region must be given. Besides, the cells of background grids
can fall inside the body, which is not physically necessary, and
should be also excluded from the numerical calculation. The
hole regions define new inner boundaries (hole boundaries) of
background grids. The value of field variables on hole
boundaries is interpolated from the neighboring cells in
foreground grids. The value of field variables on outer
boundaries of foreground grids is, in the same way, interpolated
from the neighboring cells in background grids. Hence the flow
solution is obtained by alternatively solving background and
foreground grids.

HOLE GENERATION

A typical overlapping relation between foreground and
background grid is shown in Fig.l, where FG denotes
foreground ground grid, BG background grid, OR overlapping
region, HB hole boundary, HR hole region, and HCB hole
creation boundary. The hole region in background grid is
defined by the hole creation boundary. The hole creation
boundary is often chosen as inner grid surface of foreground
grid for simplicity, but there is no other limitation in choosing
this boundary, when sufficient overlapping region is insured. A
simple two-stage procedure is used to decide the relationship
between a given point and a given boundary, Fig.2. The first
step is to collect all grid points P, defining the hole creation
boundary and to calculate their outer normal vectors. The
second step is to compute P, by averaging all Py. If the position
vector R, between the given point P and P, is larger than R,
which denotes the maximum distance between P, and Py, P is
clearly outside the boundary. If R, smaller than R,,,, further
test is required. The third step is to find the point Py, which is
closest to P, and the corresponding position vector rp (using Py
as the base point) between them. The last step is to compute the
dot product rp + N. If rp » N<O, the point P is located inside the
boundary. Otherwise, it will be outside the boundary. This
scheme is quite efficient, but the boundary shape should be
always convex to insure the correct hole detection. When
boundary is partially concave, it should be divided into several
convex boundaries. All points are successively checked through
all these sub-boundaries. The cell outside hole region means
that its cell center must be outside all these boundaries.
Following the above procedure, cells inside the given hole
creation boundary can be found. Because the USDDC RANS
solver is based on a finite volume formulation, the cell centers,
instead of grid vertices, are used to decide whether a cell is
inside the hole creation boundary or not.. The hole boundary is
then defined as the grid lines shared by cells inside and outside
the hole creation boundary.

INTERPOLATION STENCIL

For background grids the boundary conditions for the
outer boundary are already specified by the user. The boundary
conditions for inner boundary, ‘which are defined by the hole
boundary, should be interpolated from' the foreground grids.



For foreground grids the outer boundary, in most cases, lies
inside the background grids. Numerical interpolation is also
required to determine the value of field variables on the outer
boundary. The numerical interpolation consists of three basic
steps. The first step is to search the interpolation stencils P; for
boundary cell centers stated above. The interpolated point, say
point P, should be typically surrounded by eight interpolation
stencils P, Fig.3. The search of interpolation stencils of P starts
from finding its nearest cell center point P in the interpolating
grid. Then the hexahedrons using P, as one edge vertex are
sequentially checked to identify the hexahedron, which the
interpolated point P lies inside. The eight edge vertices of this
hexahedron are the interpolation stencils P; for point P. The
~ second step is to compute the corresponding interpolation
coefficient a;, which is a function of the offset (£,5,¢) in the

parametric space. The parametric offset (& p,¢) is calculated

using an iterative procedure based on an isoparametric mapping
[7]. At last, the trilinear interpolation is applied to calculate the
interpolated value V, where V, denotes the corresponding field
variable of point P, The interpolation of boundary values
actually builds an indirect coupling between overlapping grids.
The degree of coupling depends on the size and location of
overlapping, the grid size in overlapping region, and the
interpolation scheme etc. According our experiences, some
guidance should be followed in order to get good numerical
predictions.

RANS SOLVER

The USDDC RANS solver is based on a finite volume
discretization. Artificial compressibility model [8] is applied to
calculate the steady state solution. Thin-layer approximation [6]
is used to simplify the govemning equations. A body-fitted
coordinate system with matching interface and multi-block
structure is employed to model complex ship form. All grid
points must be aligned at block interface. The turbulence model
proposed by Boldwin-Lomax[9] is incorporated to calculate
Reynolds stress tensor. Besides, some modifications for this
zero equation model are also implemented. More details of this
RANS solver are discussed in [6].

MULTI-BLOCK VERSUS OVERLAPPING GRID

Multi-block grid is widely used to decompose
computation domain for complex geometry, Fig.4. For the sake
of simplicity, it is always applied together with block-structured
topology and grid alignment at block interface. For flow solver
only few efforts and simple numerical schemes are required to
make the numerical algorithm for one-block capable of dealing
with block-structured grids. It seems to be easiest way to create
numerical grids for complex geometry. However, the increasing
number of blocks often make the grid generation no more
straight forward, and the connectivity between different blocks
is sometimes very confused. Some grid points are not
efficiently distributed in the computation domain due to the
matching block interface. Fig.5 give a typical example of
overlapping grid system. Less time for creating numerical grids
with better grid quality are obtained in practical cases. More
accuracy of flow solution could be, hence, obtained due to the
more reasonable grid distribution and less skewed grid.

VORTEX GENERATOR )

For ships with unfavorable wake distribution at propeller
plane, some problems like noise, vibration may occur. If the
ship is still in design stage, local modification of sten shape
will help to solve this kind of problems. For existing built ships
suffering from such problems, an external device is often
installed to change stern flow pattern and, hence to get a better
wake distribution. Vortex generator is one of the possible
devices, and it can can produce a wide range of substantial
change in flow field. Here, a 145 m container ship is computed

in bare hull condition and with the installation of a pair of
vortex generators near stern to investigate the improvement of
propeller wake at design speed. Due to the symmetry, only half
ship is calculated. Double model is used as the boundary
condition for design waterline. Fig.6 is the wake comparison
between the measured [10] and the calculated results in bare
hull condition. Good agreement is easily observed. However,
this ship suffers from a non-uniform wake distribution due to a
deep low-speed region near 180°. Fig:7 shows the velocity
vectors near hull surface near stern. The red region near ship
bottom is the bilge vortex owning flow with high velocity. The
green region in the middle is caused by the local hull curvature,
and explains why a deep region near 180° with low-speed axial
component appears. After the vortex generator is installed,
some part of the bilge vortex is redirected to the middle region,
Fig.8. A strong vortex with high velocity is then generated This
introduces high velocity flow into the propeller plane and
improves wake distribution. Fig.9 shows the streamline tracing
result from the wind tunnel experiment. The form, location and
orientation of vortex generator used in wind tunnel experiment
are slightly different from the one used in the numerical
computation. Numerical calculation in Fig.10 shows good
location agreements of reattachment lines and separation lines.
Fig.11 is the wake comparison for vortex generation
arrangement. The wake prediction is not qualitatively
satisfactory, but quantitatively correct. The prediction has a
low-speed region under the hub, which is physically incorrect.
But the high velocity components penetrate into the region
above hub, where low-speed components early exist, is well
reproduced.

CONCULSION

An overlapping grid method is developed and
incorporated with a RANS solver. In the studied case, the
prediction of the wake improvement at propeller plane by
vortex generator is in good agreement with the measurement.
The overlapping grid method is proven to be an effective means
to compute flow for complex geometry, e.g. flow around ship
with appendage, with required engineering accuracy.
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Validation of Panel Methods for Propeller Flow Analysis

Mario Caponnetto, Rolla SP Propellers, Switzerland

Panel methods are considered a mature tool for propeller analysis and design. This is relatively true
if comparing with other fields of marine application of panel methods, such as for predicting wave
resistance or sea keeping. One physical reason is the relative smoothness of the flow that is
achieved on marine propeller, compared with the complicated flow on the rest of the hull. From the
numerical point of view, force computation using pressure integration is less sensitive of errors on
the propeller than on the hull. But this accuracy is obtained mainly in open water conditions and
around the design point. Results are in general less satisfactory when computing propellers at off
design point, and even more unpredictable when including the effect of cavitation. In the present
work a systematic comparison between open water measurements and computations is presented at
first. The possibility to predict sheet cavitation is then discussed.

Open water computation

The capabilities of numerical tools in predicting propeller performances are very attractive for
propeller manufacturers when the kind of application doesn’t allow the validation of the design with
experimental methods, such as the towing tank or the cavitation tunnels. This is particularly true for
small and medium size propellers, due to the obvious time and money constrains. Lifting line and
lifting surface methods have been successfully used for a long time. Panel methods should represent
an improvement with respect to lifting surface, due to the possibility to properly model the effect of
blade thickness, as well as the presence of other thick bodies (hub, duct, and portion of the hull).
While the computation of the global forces (and moments) should have an accuracy comparable
with lifting surface, panel methods should allow a better determination of the pressure distribution,
especially at the leading edge, and this is a valuable improvement for predicting cavitation
inception. In its classical Morino formulation [1], panel methods are relatively easy to implement
numerically, are fast and stable. The program developed in house at Rolla SP Propeller is a low
order panel method, that uses a constant distribution of sources and doublets distributed over non-
planar panels (PANAIR); a pressure Kutta condition is enforced at the geometrical trailing edge of
the blade; the trailing wake is iteratively aligned to the local flow; viscous drag and viscous pitch
reduction are implemented using empirieal formula. The method has been extended from the
original steady and non-cavitating original version to.deal with the unsteady and cavitating cases.
Moreover it is used as kernel of the design program currently used at Rolla SP Propellers for
submerged propellers design [2].

It has been claimed that panel methods for propeller analysis are mature tools, namely can be
applied for practical applications with accuracy comparable with experimental methods. It is true
that, for a number of lucky coincidences, the accuracy for propeller analysis is much higher that for
other marine applications, such has wave resistance and seakeeping computation. When facing the
real life one have to be aware about this statement. A first attempt to validate systematically panel
method for open water has been presented by the author in [2]. A total number of 36 B-series
propellers, with different blade number (2=4, 5, 6, 7), expanded area ratios (Ae/A0=0.6, 0.8, 1.0)
and pitch ratio (P/D=0.6, 1.0, 1.4) have been computed with the panel code in the whole range of
advance ratios (J), for a total of 324 runs. The computed results have been compared with the
experimental data and are presented in figures 1 and 2. While the scattering of the results is quite
high, the most obvious trend is that the thrust is in general better predicted then the torque and
particularly the torque is highty under-predicted at high loads (low J).
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The B-series propellers have been used for this analysis since they represent the most complete and
systematic series for propellers. As known, they have very simple blade geometry, with a constant
pitch distribution, standard blade outline and skew, and “old-fashion” sections. In particular the
profiles are quite different from those normally used nowadays to face cavitation problems, such as
the NACA profiles, or even better those customised using for example the Eppler code [3]. It could
be expected that for more complex geometries, typical of recent and sophisticated propellers, results
should be worst then for the simple B-series; but may be that simple geometry doesn’t mean
necessarily simple flow. Indeed several propellers with more complex geometries have been
analysed with the panel method, obtaining excellent comparisons with the experiments. As an
example, this comparison is presented for propeller AO-177, designed for the US Navy. This 5
bladed propeller has 40 deg of skew, NACA profiles and a variable pitch and camber distribution
designed to reduce the circulation near the tip and the hub. In figure 3 open water results for the Kt
and Kq are compared with computations obtained with 3 different meshes.
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The finest mesh (30X50) consists of 30 spanwise equally spaced panels and 50 chordwise
cosinusoidally spaced panels on both sides, for a total of 3000 panels per blade. The agreement with
the experiments improves rapidly with the number of panels. The results obtained using a state of
the art lifting surface program (VLM) is also shown in the figure. The results obtained with the-



panel method are extremely good in the range of advance ratios J=0.4/1.0; thrust and torque is
slightly under-predicted only at J=0.2. -
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Another good result is presented in figure 4. The propeller is again a B-series, 4 bladed, with
Ae/A0=0.6 and P/D=0.6. At the opposite the propeller of the same family but 6 bladed, with
Ae/Ao=1.0 and P/D=1.4 shows disappointing results for the torque below approximately J=0.7. In
this case at J=0.28 the torque is under-predicted of about 24% and the thrust of 10%.

One of the possible explanations about the different accuracy of the panel method for different
propellers could be explained with the effect of leading edge vortex separation. In the panel method
the trailing vortex detachment is imposed at the geometrical cusped trailing edge of the blades. This
hypothesis is reasonably satisfied as long as the angle of attack of the flow remains confined in a
range of angle of attack above the ideal one. For swept leading edges, above a given angle of attack
the flow may separate from the leading edge forming a free shear layer. This shear layer rolls up in
a concentrated vortex (leading edge vortex) that flows over the suction side of the blade. The low
pressure in the core of the vortex generates an extra lift that cause an increase of the propeller thrust
and an even higher increase of torque. In principle, when operating at low J, a propeller with a
reduced pitch at the tip, such as the AO-177 or the B-4-60 with P/D=0.6, should experience a lower
angle of attack at the tip and consequently less leading edge separation with respect to the propeller
with an high pitch (B-6-100 with P/D=1.4). In theory, knowing the position of leading edge
separation, the effect of the leading edge vortex could be implemented in the frame of a potential
flow method. A tentative approach has been proposed in [4] for a vortex lattice method. While this
approach could be explored, it must be pointed out that, from a practical point of view, when the
propeller is operating at J lower then the design point cavitation is quite always experienced, further
complicating the local flow pattern.

Cavitating propellers

Marine propellers in almost any kind of applications experiences cavitation. For large ship it is
important to predict the cavitation pattern and volume variation, in order to predict noise and
vibrations. For fast vessels it is mandatory to predict the variation of performances (thrust and
torque), experienced by the propeller mainly due the inclination of the shaft. Panel methods can
deal with stationary and non-stationary sheet cavitation; an outline of the method can be found in
[5] and [6]. While the mathematical formulation of the problem is not particularly difficult, it has
been pointed out that the computation of the cavitation pattern is very sensitive of the location of
cavity detachment point, not easy to predict. In order to have an idea of the capability of the method
for fast propellers, a comparison between computations and experiments performed in the cavitation
turmel is presented. In figure 6 the computed and observed cavity pattern is shown for the propeller
operating at a fixed J and varying the cavitation number. The agreement is generally good. In figure



7 and 8 the computed and measured forces can be compared for two different J. The cavitation
number of thrust breakdown is quite well predicted in both cases, but below this point a quite large
discrepancy of the value of the forces can be observed.
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Another major problem experienced by-fast propellers is cavitation and erosion at the junction
between the blade and the hub when opérating with a large inclination of the shaft. This
phenomenon is difficult or impossible to model with a potential flow code, since the local flow is
strongly influenced by the viscous flow coming from the brackets and the shaft. Moreover subtle
changes in the geometry, such as leading edge or fillet radius, can have a large influence in this
phenomenon. A few literature exists on this subject [7]; for this reason the author is trying to
increase the knowledge using a Navier-Stokes solver and full-scale observation of the phenomenon.

Conclusion

In this work a validation of panel codes for open water propellers has been attempted. A large
number of propellers have been computed and compared with the available experimental data. It
can be summarized that the results are in general satisfactory, for engineering purpose, for
propellers working close to the design point, while noticeable discrepancies may exists at off design
point. Most of this discrepancies could be probably ascribed to the difficulty of predict leading edge
separation at large angles of attack. For what concerns cavitating propellers, the panel method used
is generally capable to predict the condition of thrust breakdown, very useful for fast propeller
design. The author suggests more research in the field of root cavitation for fast propellers.
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RANS simulations for manoeuvring
G. Delussu, M. Mulas and E. Pillosu
Area of Fluid Dynamics and Combustion, CRS4
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Abstract

In the this work, numerical mmula,tlons of flow past a Series 60 hull are presented.
Two situations have been analysed: the steady drift flow with 10° angle of attack, and
the steady turning. The calculations have been carried out with a novel numerical
formulation for numerical towing tank simulations: the fully compressible Euler and
Navier-Stokes equations are marched in time with a Jameson-like method, namely an
outer multi-grid acceleration algorithm, and an inner multi-stage Runge-Kutta explicit
scheme. Beside a preconditioning matrix, to allow for incompressible flow simulations,
the present method makes use of an arbitrary equation of state and high order TVD
schemes based on Roe’s approximate Riemann solver. The arbitrary equation of state
used in this work is given in terms of water compressibility coefficients 8 and x (respec-
tively at constant pressure and at constant temperature). Despite the use of inviscid
approximation on a rather coarse mesh, the preliminary calculations presented show a
good convergence capability of the method as well as a good evaluation of sideforces
and moments.

The numerical problem -

The code Karalis solves the fully compressible Euler and Navier-Stokes equations
where all couplings between dynamics and thermodynamics are allowed. This is the
most general mathematical model for all fluid flows. The code solves the coupled system
of continuity, momentum and full energy equation for the velocity components, pressure
and temperature. Once u, v, w, p and T are updated, arbitrary thermodynamics
is supplied and the iterative numerical procedure can continue. The second order
Roe’s upwind TVD scheme is used to compute convective fluxes through the Finite-
Volume cell interfaces. A V-cycle Coarse Grid Correction Multi-Grid algorithm is used,
together with a 5-stage Runge-Kutta explicit time-marching method, to accelerate
convergence to a steady state. This formulation, typical of aerodynamic flows, shows an
eccellent efficiency even for incompressible flows, once equipped with a preconditioner.

It is in fact well known that, in order to efficiently use a time-marching method to
drive incompressible flow solutions to steady state, the acoustic wave speeds need to be
considerably reduced, and made comparable to the entropy and shear wave speeds, by
means of a suitable preconditioner of the Navier-Stokes system of equations. Merkle’s
preconditioner [1] has been chosen because it can be easily formulated for arbitrary
equations of state given as:

dp Op Oh Ok

"0p’ 0T 9p’ 0T

where p and T represent pressure and temperature. Density p and static enthalpy &, as

well as their derivatives with respect to both p and T are given by arbitrary functional
relations, or even in tabular form.

Inv1sc1d calculations have been carrled out for both the steady drift and for the
steady turning on a rather coarse and rude O-H type mesh with 113 nodes on the

:f(P,T)



hull in the streamwise direction, and 41 nodes in the crosswise direction, with some
150,000 nodes total in 5 blocks. The mesh does not resolve the boundary layer, and
only inviscid calculations have been performed at this stage of the work.

Results _
The table below shows the available references for the S60 steady-drift (8 = 10°)
and steady turning cases, with the measured and computed nondimansional sideforces

and moments:

| reference | [2] | [2] | [3] f (4] | Bl 1 B ]
Re number n.s. 1.S. 1.5 x 107 | 2.67 x 10° | 2.0 x 10° | 5.3 x 10°
Fr number 0.32 0.10 0.32 0.16 0.0 0.32
motion . SD SD SD SD Sh ST
mesh none none 1,180,000 | 480,000 400,000 | 430,000
Sideforce 0.027 0.021 0.026 0.018 0.0184 ~ 0.0
Moment | -0.00184 | -0.00103 | -0.00187 | -0.00100 | -0.00119 | -0.00030

All of the numerical works (references 3] to [6]) made use of highly stretched grids
on the solid walls and turbulence models (RANS simulations). The Reynolds number
is not specified in the experimental work [2], and some uncertainty still remains on
which the "correct” Reynolds number is. Experiments also show that below F'r = 0.15
effects of free surface become negligible. Ref.[3], with Re = 1.5 x 107 gives the best
agreement of computed sideforce and moment, however using the finest mesh. Ref.[5]
is the only computational work at F'r = 0.0 and no free surface. Finally, ref.[6] is the
only computational work available with the steady-turning case for which there is no
experimental evidence. It remains unclear whether the better agreement of ref.[3] is
due to a finer mesh, to more accurate numerical methods, or to the higher Reynolds

number employed.
The following table summarises the present results (with no free surface F'r = 0.0):

fluid alr alr water alr water
motion SD SD SD ST 5L
Vs 26.2 2.6 1D 26.2 1.5
Re number o0 = ol o) (o) o)
F o 9.5 9.5 10.0 0.0 0.0
Sideforce 0.0196 0.0196 0.0203 ~ 0.0 = 0.0
Moment -0.00090 | -0.00080 | -0.00096 | -0.00024 | -0.00024

Three cases have been run for the Steady-Drift motion, employing water at V,, =
1.5 m/s, and air at Voo, = 26.2 and V,, = 2.6 m/s. All 3 cases have the same exact
convergence history showing that the preconditioner is doing his job correctly. The
computed sideforces and moments are about 10% lower than the experimental results
at Fr = 0.10. Small differences between air and water can be due to the slightly
different angle of attack employed. The Steady Turning case shows identical results
for water and air, with a calculated z-moment about 20% lower than that of ref.[6].

In principle, an inviscid external flow simulation represents the limit Re = co of
a fully turbulent flow simulation, provided that the boundary layer remains attached
throughout. If this is the case, the presence of an attached thin boundary layer does not
change the overall pressure field, which both the sideforce and the z-moment depend



upon. From ref.[2] there is no evidence of streamwise boundary layer separation. There
is however boundary layer separation on crosswise sections. This separation generates
x-vorticity and x-moment, but apparently does not affect too much the z-vorticity and
the z-moment.

Fig. 1 shows the vertical velocity component w isolines in an horizontal plane
below the ship (z = —0.08). In the steady-drift case there is a downward fluid motion
starting at the front-pressure side of the ship (negative w on the left of the picture),
which becomes upward at the rear-suction side. It is a large vortex motion generating
x- and y-component of vorticity. Details of the small separations in crosswise sections
(y — z planes) are obviously missed by the coarse mesh and by the inviscid (slip) wall
boundary conditions. The same plot for the steady-turning case indicates that the
main vortex motion has essentially a y-component only of vorticity due to the fact
that there is no angle of attack. '

Fig.2 shows the pressure isolines at the free surface (z = 0.0) together with a few
streamlines. The two pictures make sense and wouldn’t probably differ too much from
those obtained with a fully turbulent simulations with no-slip wall conditions.

Figure 1: Fig.l: vertical velocity isolines at z=-0.08: steady drift (above), steady
turning (below). Dashed isolines for negative values.

Conclusions

" An efficient, aerodynamic-like, numerical model has been set up and tested for a
typical towing tank simulation. Preliminary results for a S60 ship in both steady drift
and steady turning motion have been obtained. Despite the use of a very coarse mesh
and the inviscid approximation, calculated sideforces and z-moments are close to those
evaluated experimentally and by other numerical simulations. More inviscid and fully
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Figure 2: pressure isolines: steady drift (above), steady turning (below)

turbulent simulations on finer and better meshes (a O-O type mesh will be created) will
be carried out in the near future in order to understand whether the main forces and
moments of interest as well as the vorticity field do need fully turbulent approximation
to be correctly resolved.
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TURBULENCE MODELS BENCHMARKED FOR STEADY SHIP YAW FLOW

A. Di Mascio and E.F. Campana
I.N.S:E.A.N., Istituto Nazionale per Studi ed Esperienze di Architettura Navale
Via di Vallerano 139, 00128-Roma, Italia
Fax: +39-06-5070619; E-Mail: a.dimascio@insean.it

INTRODUCTION

Numerical solution for the steady flow past a ship in
straight course with a yaw angle have been obtained
with a finite volume RANSE solver. Two different
turbulent models, namely the Baldwin - Lomax and
the Spalart - Allmaras models, have been applied and
the results have been validated against experimental
measurements, collected by Longo [1] for boundary
layer, wake and wave fields of a Series 60 hull in yaw
motion.

The new one-equation model by Spalart and All-
maras [2] is encountering an increasing popularity in
the aeronautical community, whereas there is little ex-
perience on the use of this model in the naval hydro-

_dynamic context. As a results of this benchmark, so-
lutions obtained with the Balwin-Lomax model agree
well for global coefficients and wave profiles, but the
contours of the axial velocity in some cross-planes re-
veal that most details of the measured data are not
caught. Results for the axial velocity contours with
the Spalart-Allmaras model are in better agreement
with experimental data.

DESCRIPTION OF THE NUMERICAL AND
TURBULENCE MODELS

The solution of the free-surface viscous steady flow
past a ship hull has been obtained as the asymptotic
solution of the unsteady pseudo-compressible Navier-
Stokes equations, [3]. A general description of the nu-
merical code used to run the turbulent model as well
as the boundary conditions can be found in [4]. _

The mathematical equations are approximated by a
discrete finite volume model. The fluid domain D is
divided into structured blocks, each with IV; - IV; - Ny
disjoint hexahedrons D;;x. Velocity and pressure at
the interface, needed for the computation of the Eu-
lerian fluxes, are evaluated by a second-order E.N.O.-
type scheme (5] while a Runge-Kutta type scheme up-
dates the numerical solution from step n to step n + 1.

A special multigrid algorythm for ENO schemes
(6] was used to enhance the convergence rate.

In the simulations two different turbulent mod-
els have been employed: the Baldwin-Lomax alge-

- braic turbulent model [7] and the Spalart-Allmaras

one equation model [2]. Both these models are based

on the eddy viscosity concept, i.e. on the assumption
that the Reynolds stress tensor (—puju}) is related to

the mean strain rate through the eddy viscosity vp

—— ou;  Ou;\ 2
uuj =vr (5Ij + (937-:) —§5ijk (D
where k is the turbulent kinetic energy.

A brief description of the Spalart and Allmaras
model. is given in the following. For the Baldwin
and Lomax models the reader is referred to [7].

In what follows, it can be noted that the Spalart-
Allmaras model is strictly “local”, in the sense that the
coefficients in the equations depends only on quanti-
ties that can be computed from the velocity field and
its first order tensor in each point, and from the dis-
tance from the nearest wall. This property renders this
model very attractive when dealing with complex ge-
ometries and therefore with multiblock meshes or un-
structured grids. On the contrary, the Baldwin-Lomax
model requires the evaluation of the wall shear stress
at the intersection of the “normal” to the wall; con-
sequently, ambiguities often arises when simulating
the flow past boundaries like, for instance, hull with
appendages.

In the Spalart and Allmaras model, the eddy vis-
c051ty v is computed by means of an 1ntermed1ate
variable o

X3

Gy

)
# is computed from the solution of a partial differen-
tial equation

T

Vngful(X)a Xi—=he=g fvl(X):

%z' = cp [l — fio] SP
2
= [Cwlfw & Cblfaz] [_] )
+ fuAU
- % [V (v +7)VD) + csa(VD)?]
where § = S + [#/(k*d?)]f.2, S is the magni-

tude of the vorticity vector, d the distance from the
wall, fi1, fe2, fuw, fu2 are functions that depends only
on x and the distance from the wall; finally, the c-
s and k are constants. The first two terms in the
right hand side represent production and destruction
of i,respectively; the third one is the so-called "trip”
term, that allows to specify the laminar-turbulent tran-
sition point (in the results shown in the next section,



this term was always turned off); the last part is a dis-
sipation term, that contains also a non conservative
portion ¢z (V)% which is responsible, together with
the non-linear part of the diffusion term V-(#V7), for
the advection of a turbulent front into non-turbulent
regions.

RESULTS

As a benchmark test for the comparison between the
two turbulence models, the flow past a Series 60
hull with ¢y, = 0.6, moving in steady motion, was
computed for yaw angles & = 0°,2.5°,5°,10° at
Fr = 0.316, Re = 5.3 - 10°. Detailed experimen-
tal data were collected by Longo et al. in [1] for the
same configuration. In both the simulation and the ex-
periments, ‘port’ is the pressure side, ‘starboard’ the
suction side.

The two turbulence models have been tested by im-
plementing the models on the same numerical code.

The fluid domain was divided into port and star-
board blocks with O-O topology, each block with
96 x 96 x 64 cells in stream-wise, normal, and girth-
wise direction, respectively. Five coarser were gener-
ated by halving the number of cells in each direction
in the previous finer grid. Although the coarsest grid
is only 6 x 6 x 4. and this mesh is too poor to get an
accurate numerical solution, it is convenient to have
such a coarse grid to speed up convergence with the
full multigrid approach.

As expected, the use of different turbulent models
has no appreciable influence on the wave pattern and
on the wave profile. Hence, the comparison between
the two turbulence models is carried out by compar-
ing the local velocity fields in four transversal sec-
tions. The analysis has been focused on the starboard
region, where viscous and wave effects are stronger.

In figs. (1), (2), the results obtained with the
Baldwin-Lomax model have been compared with the
experimental data, while in figs. (3), (4) results com-
puted by using the Spalart-Allmaras model are shown.
Contours of the axial velocity u are shown at z =
0.9, 1.0 for Fr = 0.316, Re = 5.3 - 10%, and
a = 10°.

With the Baldwin-Lomax model, although the
global trends are predicted, the strong bilge vortex in
the suction side in the numerical simulation is much
weaker than in the experiment. The Reynolds stresses
in the simulation seem to be too strong with respect
to the actual situation, and therefore the shed vortic-
ity too weak. This is illustrated in fig. (5).fig. (7), by
comparing numerical and experimental streamlines
for z = 1.0. In the experiments the vortex is ap-
proximatively located at y = 0.02,z = —0.03. The
simulation predicts a less intense vortex, located at

the same depth, but at y = 0.01. With the Spalart-
Allmaras model, glebal trends are much better pre-
dicted. In all the computed transversal sections the
agreement between numerical and experimental data
is better than that obtained with the Baldwin-Lomax
model. Furthermore, the strong bilge vortex in the
suction side is much more like the one visualized in
the experiment. This is illustrated in fig. (6),fig. (7),
by comparing numerical and experimental stream-
lines for z = 1.0. The Spalart-Allmaras model pre-
dicts an intense vortex, located at a depth of y =
0.015,z = —0.2, close to the location of the mea-
sured vortex.

As a general comment, the departure of the nu-
merical prediction obtained with the Baldwin-Lomax
model from the experimental observation should be
attributed to its simplified nature, which does not take
into account any diffusion or convection effects of
the turbulent viscosity. In fact, the Baldwin-Lomax
model is purely algebraic, and therefore connected
only to the local properties of the flow.

CONCLUSIONS

Two different turbulent models, namely the Baldwin-
Lomax and the Spalart-Allmaras models, have been
used and the results have been validated against ex-
perimental measurements for boundary layer, wake
and wave fields of a Series 60 hull in yaw motion.

Numerical results compare favourably with exper-
imental data with regards to the hydrodynamic coef-
ficients. The main features of the flow phenomena
are reproduced by the simulation and the behavior of
the two turbulence models is pointed out in the anal-’
ysis of the axial velocity contours and the transversal
streamlines in the the propeller region.

The Spalart-Allmaras turbulent model appears to
be a promising trade-off between CPU cost and relia-
bility of the results. Results obtained with the Balwin-
Lomax model agree well for global coefficients and
wave profiles, but the contours of the axial velocity in
some cross-planes reveal that most details of the mea-
sured data are not caught. Results for the axial veloc-
ity contours with the Spalart-Allmaras model are in
better agreement with experimental data.
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Figure 1: Numerical (Baldwin-Lomax, solid) and ex-
perimental (dashed) contours of the axial velocity
u. Leftz = 0.9, right z = 0.9. Fr = 0.316,
Re=15.3-10% a = 10°
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Figure 2: Numerical (Baldwin-Lomax, solid) and ex-
perimental (dashed) contours of the axial velocity
u. Left z = 1.0, right z = 1.0. Fr = 0.316,
Re = 5.3 - 109, .ce.= 10°

Figure 3: Numerical (Spalart-Allmaras, solid) and
experimental (dashed) contours of the axial velocity
w. Leftz = 0.9, right z = 0.9. Fr = 0.316,
Re= 58~ 108, & = 10° )



Figure 6: Cross-flow streamlines of the flow onto
the (y,z) plane at z = 1.0. Numerical (Spalart-
Figure 4: Numerical (Spalart-Allmaras, solid) and Allmaras) solution.
experimental (dashed) contours of the axial velocity
u. Leftz = 1.0, right z = 1.0. Fr = 0.316,
Re =5.3-108, o = 10°
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_Figure 7: Cross-flow streamlines of the flow onto the

Figure 5: Cross-flow streamlines of the flow onto the (v,2) plane at = = 1.0. Experimental data.

(y, z) plane at z = 1.0. Numerical (Baldwin-Lomax)
solution. :



Numerical investigation of propeller-rudder interaction

Ould El Moctar, Technical University Hamburg-Harburg?

Rudder forces and moments should be determined including the interaction with ship hull and
propeller, especially if the rudder is located just behind a propeller. My previous research activities
were limited to rudders in uniform flow [4]. Here I shall present Rans calculations for three kinds of
flows: Modern controllable-pitch propellers in uniform flow; Rudders in uniform flow; and Rudders
behind a propeller.

1 Propeller in uniform flow

The turbulent flow around free-running propellers was computed using a commercial Ranse code [6]
using the finite-volume method and the k-e turbulence model with wall functions. Grids were produced
using the commercial code ICEM-HEXA. The grid on and around the propeller blade is of O type
(Fig 2), whereas in flow direction it is of H type. The reference system rotated with the propeller to
obtain a stationary flow. Two block-structured grids of 450,000 and 650,000 cells were used. A modern
controllable-pitch propeller of the Potsdam towing tank SVA (Fig 1) was chosen because experimental
results were available for it. For the fine grid differences between the experimental and computed
thrust were < 3% (Fig. 3); also the computed and experimental thrust coincided very well for most of
the range of advance ratios. For large advance ratios leading to small K¢ values outside of the design
range differences up to 7% were found. Reasons for the larger differences may be the substantially
oblique inflow direction and the small torque to which the percentage errors refer.

2 Effects of a fixed fin on rudder force and influence of gap width

In my earlier works [4] the effects of profile shape, profile thickness and aspect ratio of spade rudders
were investigated. Here a single-blade rudder in free flow is compared with a system consisting of a
fixed fin and a rudder beneath. Such arrangements are used to reduce the shaft bending moment in
spade rudders. The total area and shape of the fin + rudder system was the same as that of the
single-blade rudder. It was found that the fin + rudder system produces hardly less lift than the
single-blade rudder, because also the fixed fin generates lift due to the oblique flow generated by the
rudder. For smaller rudder angles, the resistance of the rudder plus fin is up to 20% less than that
of the single-blade rudder, because the fin generates nearly alone frictional resistance and no induced
resistance (Fig 4). However, for larger rudder angles a pronounced tip vortex occurs between fin and
rudder, increasing the induced resistance.

The gap width between rudder and fin was varied between 0 and 10cm. Below 7cm gap width the
effects were < 3%, but for larger gap width the effects increased considerably (Fig 5).

3 Rudder behind propeller

3 methods were applied to investigé.te the influence of the propeller on rudder forces:

“1. The instationary viscous flow around a system consisting of the above-mentioned propeller and
the rudder was computed using a grid of 750,000 cells surrounding both bodies. R, was 32- 108,

2. For the same physical arrangement, the propeller was modelled by external forces only. The grid
had 300,000 cells. The Computation has been steadly performed.

3. The stationary potential flow around a rudder-propeller configuration was computed using a
panel method [7] . The influence of the propeller slipstream was modelled by seting velocities
at the inlet according to the guideline giving in [7].

'Limmersieth 90, D 22305 Hamburg; Germany



Fig.6 shows that the deviations between the results of all 3 methods are small. Results of method 1
show also that the distance between rudder and propeller has minor effects only.

4 Summary

The computed results for force and moment agree well with measurments and, thus appear accurate
enough for various practical applications. R -

The future research will concentrate on including the ship hull.
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Simulation of Free Surface Ship Flows with a VOF-Euler Code

Dieke Hafermann
Hamburg Ship Model Basin (HSVA)
Bramfelder Str.164, D 22305 Hamburg
hafermann @hsva.de

1 Introduction

Free surface flows play an important role in the design of a ship. Today potential theory methods are widely used to
analyse such flows. A drawback of the potential theory is the inaccurately predicted drag. During the past years, meth-
ods for solving the Navier-Stokes-Equations have been developed which describe the free surface by adapting the mesh
boundaries. These methods, however, do only apply to smooth free surfaces. Here the development and application of a
Finite-Volume-Code using the Volume of Fluid (VOF) method for the simulation of inviscid unsteady free surface flows
will be described. With this method, the position of the free surface is described by the void fraction in the computational
domain.

Several applications will be shown. First results show an significant improvement in the resolution of the wave field
compared to potential theory results. ; o

2 Mathematical Model

The transient flow of an inviscid and incompressible fluid is considered. It is described by the conservation equations for
mass and momentum, formulated in an inert Cartesian coordinate system, the momentum equations are written as

3] . SEony s i < :
-é?/pvdﬂ + [,oﬂ((v—vg,)n)ds = - /pndS + /pgdﬂ (1)
Q : S S Q
R - - N’ S
non stationary term convective term pressure force gravity force

where, 7 = (u, v, w)T denotes the velocity vector with its components in z, y and z direction, P the pressure, p the density
and 7 the gravity vector. Further variables are the control volume Q) ,the velocity of the control volume vy = (us, U, wy) T,
the control volume € , the surface area S and the normal vector of the control volume surface 7. The pressure p is the
sum of the dynamic and the hydrostatic pressure

. p=p+ipgr. )
The vector 7 denotes the position of the free surface, the gravity vector 7 is normal to the undisturbed free surface. For a
completely filled control volume the conservation equation for mass is’

%/pdﬂ - /p{ﬁ'—- Up)72dS = 0. (3)
Q 5

To describe the free surface, a function f is introduced with a value of either 1 denoting liquid or a value of 0 denoting
gas. The function f is a non steady function. The free surface is the boundary line where # changes from 0 to 1. Fluid
particles above the free surface will always have a value f of 0 and particles below a value of 1. This yields a conservation
equation for f which is independent of the position of the control volume

d . = s

51,; /pfdﬂ. + /‘pf(’i'f— 'Ub)n ds =0. (4)
Q S

Below the free surface this leads to a mass conservation equation (3). The cell fill ratio F'is the ratio of the cell volume

filled by the liquid to the total cell volume
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By definition this ratio has values between 0 (empty) and 1 (full). At the free surface ambient pressure is assumed: .
P = P, = const (dynamic boundary condition). This leads to

e L

F =

&)

p=pP.—pgdr  atthe free surface . ' (6)

calculata F

Figure 1: The flowchart of the algorithm

Figure 1 shows the al gorithmic scheme. At the beginning of every physical timeétep, the VOF-function F' is calculated.
The surface integral needed for the FV formulation is approximated using the product of the flux and the open cell surface
ratio. The open cell surface o is defined as follows '

[ fds
/f(f;— 3R dS = f i}—g = feoe . )
5 Se

Since the cell fill ratio F' is an unsteady function, the cell surface ratio cannot be obtained by interpolation but has to
be calculated iteratively. This leads to a description of the free surface. The velocities close to the free surface are
extrapolated using the neighbouring values. -

Afterwards the SIMPLE Algorithm is applied to solve for the velocities and the pressure. Starting with an approx-
imated solution for the pressure, the linearised momentum equations are solved. To satisfy the continuity equation the
pressure and the velocities are corrected by applying the so-called pressure correction. The two steps are repeated until

the required accuracy is reached.
In addition te the dynamic boundary condition at the free surface, several other boundary conditions must be applied:

o At the inlet, the velocity is fixed and the pressure is extrépolated,

o at the outlet, the pressure is fixed and the velocity is extrapolated,

o at the symmetry planes, fluxes are set to zer0 and the pressure is mirrored,
e at the wall, the fluxes are set to zero and the pressure is extrapolated.

The waves are damped in z-direction by applying an artificial force, which depends on the 'velocity component w and the
distance from the ship.



3 Discussion B . ' B ‘ -

Figure 2 shows a part of the coarsened grid for the 'Hamburg Test Case’, a container ship with a Froude number of 0.238.

At the beginning and.the end of the ship as well as close to the free surface the resolution is refined. The computational

results are shown in figure 3. Compared are the results for the wave distribution obtained by potential theory (bottom)

and a VOF-Euler calculation (above). The Euler calculation used about 330000 cells. It can be seen that the VOF-method
“yields a more detailed description of the free surface, in particular at the stern. The results are in good agreement with

measurements. ;

In figure 4 the details at the stern of a fast mono hull are shown. The separation at the lower edge and the development
of the waves at the sides can be seen.

Figure 3: Wave contour for the Hamburg Test case

Figure 5 shows experimental data together with the results of a numerical simulation for a series 60 ship. The Froude
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Figure 4: Flow past fast mono hull

number is 0.316. Up to 2/3 Lpp the numerical results compare well with the experimental data. Further downstream the

numerical error and viscous effects result in an less accurate description of the wave distribution.

Figure 5. Comparison of measurement (bottom) and calculation (top) for the Series 60 Ship

The development of the code focuses on the introduction of a multi block technique grid in order to ease the grid
generation process. This involves the identification of inter-block communication. On the base of the multi block approach
the code will be parallelised in order to reduce the run time. This will allow to compute more complex configurations in

the near future.

4 Literature
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Free surface flows

Hévard Holm* and Bjgrnar Pettersen’
Department of Marine Hydrodynamics
Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway

Abstract Governing equations describing flows are discretized by a finite volume method and
the method of artificial compressibility is used to step time. The resulting equations are solved using
an approximate Newton relaxation approach. A method for stepping the free surface in time in a
Navier-Stokes solver has been developed. Conservation of the volume of fluid is directly linked to the
residual of the mass conservation equation. Development of the free surface is ensured by a moving
grid. The algorithm is tested out for a light sloshing problem. The ability of the method to handle
the contact problem is studied. The code is validated against analytical results.

1 Introduction

In recent years, CFD has become a useful design tool
in several marine application areas. The increase in
computer capacity has made it possible to model more
complex physical problems, i.e. the nonlinear free sur-
face elevation around a moving ship. The goal of this
work is to study the influence of the free surface on
flows where viscous effects may be important.

The free surface is normally predicted by surface track-
ing methods or surface capturing methods. Surface
capturing methods can handle complex surface config-
urations, like breaking waves. This is important when
studying the bow-wave of a ship. It is generally hard
to implement correct boundary conditions for surface
capturing methods.

Free surface tracking methods uses a mesh that is fitted
to the free surface as it develops. A time dependent
mesh must therefore be incorporated. The method
can not handle highly deformed free surfaces because
of highly stretched elements or even grid folding. It
is however possible to implement free surface bound-
ary conditions accurate. This method is chosen in the
present study because details of flow very close to the
free surface are of interest. ;

This is part of a larger effort started at NTNU,
where we during a 6 year Strategic University Pro-
gram will focus on modeling and simulation of vis-
cous flow. Special emphasis will be given to ma-
rine engineering and free surface flow problems
(http://www.math.ntnu.no/cse/).

*haavard.holm@marin.ntnu.no
Tbjornar.pettersen@marin.ntnu.no

2 -~Navier-Stokes solver

2.1 Governing equations

The governing equations are the two-dimensional time
dependent incompressible Navier-Stokes equations.
Laminar flow and constant viscosity are assumed. p,,
u and v denotes the pressure and Cartesian velocity
components respectively and r represents the velocity
of the boundary.

In integral form the Navier-Stokes equations can be
‘expressed as :

—d—[ U'dv + (F-U't)fids =0 1)
dt Jq a0
where F' is the flux vector, and we define
P 1
P2 | W | U= | (2)
v v
F' can be split into two parts :
Fi= Einu =+ F‘u‘is (3)
The component of Fj,, along 7 is
Bun
Fn,inu =-| UUn +Png (4)
' VUn + Py

[ is a positive constant of artificial compressibility, typ-
ical value is 1. p is the modified pressure, defined by

p=p*+-§5 (5)
™

where p* is the original pressure and F} is the Froude
number UL' U and L is characteristic velocity and

g
length respectively.



au ou
Fn,vis = An,:ch_ + An,ygy" (6)
0 0 0 0 0 O
Apz = 0 2up up An,y = 0 p O (7)
0 0 pw 0 u» 2u

where u is the kinematic viscosity.

2.2 Boundary conditions

Light sloshing (no breaking waves) in a rectangular
tank is calculated. Boundary condition on the vertical
and horizontal walls are imposed as no slip condition
unless otherwise stated in the text. At the free surface
we have two boundary conditions: the kinematic and
the dynamic condition. The kinematic condition states
that a particle on the free surface will remain on the
free surface. This can be mathematically formulated

as :
(V-Vg)n=0 (8)

where Vi is the velocity vector of the free surface in-
terface, 1 is the normal vector of the free surface. This
boundary condition is used to step the free surface in
time. The dynamic boundary condition states that the
stress tensor should be continuous over the free sur-
face. Surface tension and viscous effects at the free
surface are neglected, which results in zero stress ten-
sor. Due to the zero tangential stress condition, the
velocity boundary condition is zero gradient extrapo-
lation. The zero normal stress condition lead to the
Dirichlet condition for pressure on the free surface :
p = pa + h/F?2, where p, is the atmospheric pressure
and h is the wave height.

2.3 Spatial disctretization . »

A finite volume method is used to discretize the do-
main. The spatial disctretization is divided into a vis-
cous part and an inviscous part. Fls is calculated us-
ing a central differencing scheme and Finy is calculated
using Roe’s upwind scheme with second-order differ-
encing. This scheme is briefly reviewed here. The ex-
tension to two or three dimensions is straight forward
by applying the one-dimensional scheme independently
in each coordinate direction.

Roe showed the following :

FU 9)

i+

) = F(Uzy) = AU ) Uy ~Uiiy)

it i it

Uiz should be evaluated as the Roe average. Pan and
Chakravarthy [1] have shown that for incompressible
flow, this average turns out to be a simple arithmetic

average :
- 1
U.H,,L ==

2 2 (10}

(U + Vi)

By Roe’s scheme, the numerical flux is then given by

1

Fﬂ-% = E(F(U;_%) +F(U;_%))
1o+ - - -
- §(Ai+§ +Ai+§)(Ui+% ‘"-Uz'+§)

Here U, and U;,L are extrapolated values of the
2

conserved variable a.t2 the left and right side of the cell
surface. Aii+l are given by
2

AL

= (11)

ws = -
1= Rip i Ai i By

here R; 1 is the right eigenvector of A;4 1, which is the

Jacobian of F(U;+1). The diagonal matrices f\iL are
2

the split eigenvalue matrices corresponding to R, 1.

A first order scheme is obtained by simply setting U 3 =
U; and ﬁU;:_ y = Uint Schemes of higher order are ob-
tained by defining U 4 and Ui‘:_% by higher order ex-
trapolations. The scheme is then called a MUSCL

(Monotonic Upstream Schemes for Conservation Laws)
scheme.

2.4 Implicit time integration

After spatial integration, we are left with :
Lt
dt

where D is the volume of the cell. The most general
two-step scheme of Equation 12 is implemented:

(DU') = R(U) (12)

—D?+1 m+1
(1= E)"E_Ui

D? n D?_l m—1
- +2)LUT +HEzT ik
= ORM!'+(1-0+¢)R} - pRI!

(13)

Following the same algorithm as Belov et al. (2] '

R(U™Y) = ORM+(1-0+9)R} — ¢RI
= (1+§)£U'“+1 (14)
At ¢
DT m D?ul ,n,—-l
+ (+2)ZFUT -5V
= 0

According to Newtons method, a correction can be
found : '

aR Di * ) 4
i(@é’ﬁ“(l%'g)ﬂ)ﬁtfﬁ-R(U)—-o (15)
An important consequence is that before we find the
new velocities, we must have updated values of the
fluxes, grid location and grid velocities.



3 "Evolution of the free surface

To step the free surface in time, the kinematic bound-
ary condition, equation 8, on the free surface is used.
Traditionally the boundary condition is rewritten to :

Oh &h
=

"5{ —'u% (16)

For a cell centered discretisation v and u are usually
taken as the average of the cells on the left and right
hand side closest to the free surface. g—% is usually

calculated using a higher order upwind scheme.

Cell number { i-1 | i l i+l l

Node number i-2 i-1 i i+l

Figure 1: Numbering of nodes and cells

The method has been used with success for a wide
range of applications. For some applications it is very
important to preserve the mass. The sloshing prob-
lem is one example. If the mass increase or decrease,
the eigenfrequency will change accordingly and the re-
sponse will be different. It is therefore important to
have a method where the conservation of mass is au-
tomatically preserved. The kinematic condition at free
surface states that the free surface should be moved so
that the mass flux through the uppermost cell face is
zero. The mass flux is calculated as :

m=V-:s—Vg-s (17)
V and Vg is the velocity vector of the fluid and the
free surface respectively. s is the surface vector. The
kinematic condition states that Vg should be adjusted
(through motion of the nodes on the free surface) so
that the mass flux is zero. In this work the wave height
is restricted to be single valued. We can therefore re-
strict the nodes to move vertically. a

Avgy = —ml /5
Rl = hy — ariv/sg * dt (18)
where @ is an underrelaxing factor and h! is the posi-
tion of the center of the uppermost cell face at Newton
iteration I. At the time when we are to move the nodes,
! are not calculated yet (dependent on h). Therefore
we replace ! with :

m xmtT 4 AV - 5) (19)
Where A(V -s) = V. st = V=1 . s'=1. When the New-
ton iterations converge, A(V -s) = 0 and we are left
with ! = !~

- This gives us N equations, where N is the number of
cells at the free surface. The number of nodes to move
is N+1. We experience that a lot of care should be
put into algorithms that moves the nodes. For equally

spaced grids, one could try to move the nodes according
t0 : :

A = .5+ (hi+ Rt
heY Ry (20)
hD = hl

Doing this iteratively will reduce the mass flux through
the uppermost cell face until a certain limit. This pro-
cedure will after some iterations end up in an oscillating
mass flux, see figure below.

Mass flux

b i

b
I S - T TR TR I cell

Figure 2: Mass flux 7h, as function of

The magnitude of these oscillations is not nessecarily
big, but their presence is hard to remove (Al + hi'! =~
0). To get rid of the oscillations the following method
will work: ‘ .

1. Divide the free surface into a small number of
superblocks.

2. The mass-flux over each superblock is calculated.

3. Distribute the mass-flux smoothly according to
the indicated scheme in the figure below.

4. goto step 1, but use smaller superblocks.

For the last iteration, we have the same scheme as for
Equation 20. To ensure a stable solution the last term
in Equation 19 is rewritten to :

AV -5) = ('u = u-g—:) 82 (21)

g-g is calculated using an upwind scheme. Using this
algorithm , a smooth surface will evolve and global con-
servation of mass will be preserved. No sort of filtering
is nessesary. The key point here, is to use the same nu-
merical mass flux that are used when calculating the
residuals. The question of conservation of mass is then
linked to the residual of the mass flux.



4 Application: Light Sloshing

The sloshing problem is used as an example because of
it’s well defined boundary conditions. The conserva-
tion of mass is also very controllable and important.

The initial mesh is given by 20 horizontal amd 20 ver-
tical points uniformly distributed. Start condition is
given in figure 2.

Free surface .

L=0.55

* Figure 3: Initial geometry

To check out the mass conservation, the fluid volume
is plotted as functions of Newton iterations in figure
3. We observe that the change in volume decreases
rapidly as function of Newton iterations.

0.00014

0.00012 |

0.0001

Timestep, t=i Timestep, t=i+l {

Absolute *%
Volume ée-05

405 -
205 |

L

0
Iterations

Figure 4: Volume as functions of Newton iterations at
two typical timesteps

A special problem for viscous free surface flow is the
contact problem. The fluid will adhere to the wall,
due to the noslip condition. A viscous calculation is

t=00
t=.30
t=75

2d t=1.2

t=1.5
Figure 5: Free surface at different timesteps R, = 1000

performed, R, = 1000, Fn 5, initial geometry is
shown in figure 2, but now we use 80 grid points in the
horizontal direction. Smallest elementsize (closest to
the wall) is 0.00113, which is sufficient to resolve the

boundary layer. Results are shown in figure 4 and 5.

In another example, the initial surface elevation is set
to 0.01 * sin(). Both the depth and the height are set

4

Figure 6: Close look at right corner, t=0, .2, .4, .6, .8,
1:; 1.2, 1.4, 1:6,-1.8

to 1. Linear theory can now be applied. Viscosity are
neglected and F, = 1. For standing waves linear theory
gives the period T' = 2r/+/m tanh(r) = 3.5515. Cal-
culated free surface elevation at the wall are given in
figure 6. The calculated period is 3.555, which agrees

0.01

Time

5 8 10 12 14 16

Figure 7: Free surface elevation at left and right wall.

very well with linear theory. The damping that can
be seen in figure 5 ( decrease in amplitude) is assumed
to be due to numerical damping, and should decrease
with finer mesh.

The goal of this work is to study the influence of the
free surface on flows where viscous effects may be im-
portant. The sway problem is one such example. Fig-
ure 6 shows the velocity contours and the free surface
elevation around a ship section at a given time.

= T
=
e A

v
Rl

Figure 8 Velocity contours and free surface elevation
for 2D flow around a rectangular ship cross section
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A level-set approach for unsteady free sﬁrface flows

- A Tafrati, E.F. Campana,

LNSEAN Via di VaHerano 139-00128 - Roma (ITALY)

1 Abstract

In this paper an unsteady Navier-Stokes solver is coupled
with a level-set approach to describe the free surface mo-
tion. As a first step the method is validated by comparisons
with other numerical techniques. The numerical procedure
is then applied to simulate the free surface motion induced
by the sudden start of an high bump.

The analysis cover the successive stages of the breaking
phenomenon: the steep wave evolution, the jet formation,
the splash-up and the entrainment of the air. As a results of
the adopted numerical approach, the velocity field in both
air and water domains is computed.

On the base of experimental observation, available in
literature, the qualitative behavior during and after the over-
turning phase is correctly reproduced.

2 The Navier-Stokes solver

To simulate free surface flows the level-set technique [1,
2] has been coupled with a finite difference Navier-Stokes
solver in generalized coordinates. This latter is essentially
similar to that described by Zang et al. [3], even though
some changes have been made to account for density and
viscosity variations.

In generalized coordinates the Navier-Stokes equation
for an incompressible fluid are:

U

a . __ 14 _10&m

S0+ 5o Un) = ~ = (7 o)
=1 }_ 3 mn%)

+J 7 g + 2 P (uG’ 3. ) . @

where z; and u; are the i—th cartesian coordinate and ve-
locity component, respectively, p is the pressure, p and o
are the local values of the dynamic viscosity and fluid den-
sity. The body force for unit mass is denoted by g;, J “Lis
the inverse of the Jacobian, and

8§m
9z; L4

& awj‘ an ’

Um =] =J
are the volume flux normal to the &, iso-surface and the
mesh skewness tensor, respectively.

Cartesian velocity components and pressure are defined
at .the cell center while volume fluxes, defined at the mid
points of the cell faces, are computed by a quadratic upwind
interpolation of the cartesian velocities.

A semi-implicit scheme is adopted for the time integra-
tion of equation (2). Convective terms are accounted for ex-
plicitly by the Adam-Bashfort scheme, while, to avoid the
viscous stability limit, a Crank-Nicolson discretization has

been employed for the diagonal part of the diffusive opera-
tor. A variable time step integration is carried out according
to the C'F' L constraint.

The discrete form of equation (2) is solved through a
fractional step approach. Namely, an auxiliary velocity field
is introduced and it is computed by neglecting the pressure
term in the momentum equation. The velocity field at the
new time-step is then corrected by adding the gradient of a
scalar function to the auxiliary velocity field. The pressure
corrector is computed by solving the Poisson equation that
arises by enforcing the continuity equation (1).

Turbulence modeling and surface tension effects are not
yet included in the numerical procedure.

3 Dynamics of the air-water interface

In the-level-set approach a signed normal distance d from
the air-water interface is defined at t = 0, beingd > Oin
water, d < 0 in air and d = 0 on the interface. During the
motion the distance function moves with the fluid and it is
updated by the transport equation:

ad.

5= vd .
Fluid properties, such as density and viscosity, vary with
the distance d. To avoid instabilities in the evaluation of the
derivatives, due to large variations of fluid properties, the
jump is spread over a small region close to the interface. As
a consequence, for the property f it is assumed f(d) = fu

(3

ifd>a, f(d) = faifd < —aand
f(d) = (fu+ fa)/2+ (fu = fa)/2 sin(rd/(22)) ,
otherwise. Usually the thickness ¢ is chosen so that the

jump cover three or four cells. The influence of & on the
free surface dynamics will be discussed in the following.

Due to the transport operated by equation (3), the func-
tion d will no more represent a distance later. In order to
keep constant the width of the jump region in time, the iso-
surface at d = 0 is reconstructed and the normal distance
from the interface is reinitialized at each time step.

4 Results

The nhumerical method has been firstly applied to the slosh-
ing in a tank and comparisons have been established with
results obtained for an inviscid fluid by Lilek [4]. This test -
problem is useful to evaluate how the numerical procedure
is able to conserve the mass and to check the grid sensitivity.
The initial free surface height has a sinusoidal variation
y(z) = 1-0.01 sin(zr) forz € (—.5,.5) so that the height
is h; = 1.01 on the left wall of the tank and h, = 0.99 on
the right one. The gravity acceleratlon is g = 1 and the



following values are empldyed for densities and dynamic
viscosities: 0y = 1000,00 = 1.25, 40 = 108 iy =

18 10~%. For the numerical simulation with the level set:

technique, the computational domain extends fromy = 0
toy = 1.4in the vertical direction. )

A first computation has been performed on a grid hav-
ing 20 cells equally spaced in the horizontal direction and
140 cells in the vertical direction, suitably clustered close
to the free surface region. In particular in the region y €
(.985,1.015) a uniform vertical spacing Ay = 0.0005 has
been employed. To evaluate the grid sensitivity the coarse
mesh is refined twice by halving the cell size in both di-
rections. The width of the jump region is chosen to be
o = 0.001 for the coarse and medium grid, while it is
a = 0.0005 for the finer grid.
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Fig.1: Time history of the free surface elevation on the left
wall of the tank. ( ) Lilek, (——~) 20 % 140,
(- ---) 40 x 280, (---) 80 x 560.

Finally, to evaluate the effect of the width of the jump re-
gion, the computation on the 40 X 280 grid has been also
performed with c = 0.0005.
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Fig.2: Effect of the width of the jump on the free surface
dynamics. ( ) jump spread on 8 cells, (———) jump
spread on 4 cells. (grid 40 x 280)
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Comparisons with inviscid Lilek’s results, plotted in Fig.1,
have been established in terms of the free surface height

on the left wall of the tank. As was to be expected, a fine

resolution is needed to avoid an excessive damping while
the use of different width of the jump region does not affect
the free surface dynamics (Fig.2).

In Fig.3 the time history of the total mass is shown for
several grids. Due to errors occurring in the reconstruction
_ of the interface, a fine resolution is required to achieve a

good mass conservation. Jumps in the time history of the

mass occurs when the free surface elevation takes its max-
imum and minimum values. Actually, in these phases ve-
locities are very low and the time step grows according to a
CFL constant time integration.

1000.57

1000.58

1000.55

1000.54

1000.53

1000.52 -

100051 f-yr

1000.5
0 12
Fig.3: Time histories of the total mass for several grid
resolutions: ( ) 20.x 140, (-—-) 40 x 280, (----)
80 x 560. (Initial value 1000.5)

As a further verification, the flow over a bump has been
simulated and results are compared with those obtained by
a standard panel method in order to assess the capability of
the numerical procedure to model the wave dynamics.
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Fig.4: Comparisons between level-set ( ) and panel
method (- -) at two times: t = 20 (up) and t = 150
(down). The iso-line at ¢ = (0o + 0w)/2is represented for

the level-set. A

The bump is placed on the bottom of the channel and
has a geometric profile y(z) = 6(1 — 222 /a? + z*/a*) for

z € (—a,a), § being the maximum height of the bump. The

still water level is h = 1. Att = 0 the bumpis suddenly
started at U = 1.

As a first application, the resulting wavy flow over a
bump having a maximum height § = 0.1 and extending



from z = —0.5 to z = 0.5, has been analyzed. The flow is
simulated in a frame of reference moving with the bump. A
value g = 2 has been assumed for the acceleration of grav-
ity. Both in the level-set approach and in the panel method,
numerical beach models [5, 2] have been employed at the
two ends of the computational domain z € (—14,14). A
free slip boundary condition is applied on the bottom of the
channel. The comparison, depicted in Fig.4, shows an ex-
cellent agreement between the two approaches at least be-
fore the wave disturbances reach the damping regions. Suc-
cessively, the different model employed to damp out wave
disturbances leads to different wave reflections on the do-
main and then the agreement becomes slightly worst.

In the above applications the numerical procedure here
presented worked very well, but, however, it is not the most
efficient method. Actually, the level-set technique is mainly
important when complicated free surface configurations oc-
cur. For this reason the flow over a bump extending from
z = —1uptox = 1 with a maximum height § = 0.4 has
been analyzed. Dynamic viscosities are t,, = L0t s =
18 10~%, in water and air, respectively. In this conditions
the application of panel method predicts the occurrence of
a breaking wave at ¢ ~ 3.6 and the simulation through
the level-set technique is again in good agreement with the
panel method before the wave breaks (Fig.5).

N
AN
I
-0.3 /

-0.4

0 1 2 3 4 5

Fig.5: Comparisons between level-set ( ) and panel
method (- =) for a bump with maximum height § = 0.4 at
t=236. -

Through the level-set technique the numerical simula-
tion has been performed for large times and successive con-
figurations are reported in Fig.6. The formation of sev-

eral plunging waves and the consequent splash-up is repro- -

duced. Even though a quantitative comparison has not been
made, a qualitative agreement with expenmental observa—
tion is achieved [6].

In Fig.7 the stream traces in the region where the falling
jet hits the free surface are shown both in the air and wa-
ter domains. The thick stripe represents the variable density
region. While a quite regular behavior occurs in water, re-
circulation regions in air are induced by the falling jet and
by the separation behind the wave profile.

In Fig.8 the corresponding velocity field is shown to
emphasize the local behavior the uniform value of velocity

U = 1 has been subtracted to the horizontal component. A .

strong velocity characterizes the jet falling on to the water

surface and, by consequence, an intense velocity field is in-

duced by the escaping air leading to the formation of the
two recirculation regions shown in Fig.7.
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Computation of Ship Wave and Resistance using a RANS solver
S. ISHIKAWA and H. YASUKAWA, Nagasaki Experimental Tank, MHI

Introduction

RANS solver has been used as a design tool for the hull form improvement. We applied the
RANS solver including free-surface to actual hull form design. Waves and resistance for 2
vessels with different bow shape were computed. The usefulness of RANS solver is shown

through comparison with the model experiments.

RANS solver _
Our RANS solver is based on the code developed by Hino(1994). The outline is as follows:

¢ N-S equation with artificial compressibility
& Finite-volume approach for spatial discretization
e Cell-centered layout for flow variables (v, w,p)l
e Convective flux: upwind scheme based on the flux difference splitting
e Viscous flux: 2nd-order central differential -
¢ Turbulence model: Baldwin-Lomax Model

e Free-surface: Moving grid system & Multigrid technique

Computation of Wave Pattern and Resistance
Fig.1 shows the comparison of wave patterns between the computation and experiment for

Fn=0.296 & 0.391. Then, Reynolds number is almost 10”. Wave height distribution near ship
hull is well predicted for both cases. However, the remarkable damping is observed in the far
field and Kelvin wave pattern is not captured. That is due to coarse grid on the free-surface in
far field. Further, we confirmed that the wave profile and longitudinal cut of the waves in near
field by computation agree well with those by experiment. )

Next, the resistance acting on the ships was computed. As a result of the computation, we
found that residual resistance is well predicted although the total resistance is underestimated.
And the resistance difference between 2 ships is well predicted in quantity.

The detailed comparison will be presented in the symposium.
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Prediction of Diffraction Waves of a Blunt Ship with Forward Speed

Taking account of the Steady Nonlinear Wave Field

Hidetsugu IWASHITA
Engineering Systems, Hiroshima University
1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, JAPAN

1 Introduction

When the ship advances in a seaway, the wave system gen-
erated by the ship consists of the time-independent steady
wave field and the time-dependent unsteady wave field, as
well known. Both wave fields are then not independent.
The analysis based on the potential theory derives some
influence of the steady wave field on the unsteady wave
field through the free surface and the body surface bound-
ary conditions. This influence can be considered to be-
come negligible as the disturbance of the steady wave field
becomes more remarkable due to a blunt ship hull form
and/or higher forward speed.

Twashita et al.(1993,1994) systematically investigated
the influence of the steady wave field on the wave pressure,
hyrdodynamic forces and ship motions of a blunt VLCC
advancing in oblique short waves. The 3-D Green func-

tion method (GFM) was mainly used for the analysis tak-
ing account of the influence of the steady flow in the body -

boundary condition through m;-term, and it was confirmed
that its influence was significant especially in the low fre-
quency range and its consideration was not yet sufficient
to predict physical quantities described above in good ac-
curacy. Consecutively the influence of the steady flow in
seakeeping computations through the free surface bound-
ary condition were studied by [washita & Bertram (1997)
and [washita et al.(1998A,B) applying the Rankine panel
method (RPM). It has been made clear up to now that the
estimation accuracy of the wave pressure is improved in
some quantity by taking into account the influence of the
steady non-uniform flow in both the free surface and body
surface conditions, but its improvement is not yet sufficient
against our expectation. More accurate estimation may be
expected only by fully taking into account the steady wave
field beyound the framework of the linear theory.

In this paper we apply a desingularized Rankine panel
method (RPM) presented by Jensen et al.(1986) and
Bertram (1990) in order to enable to fully capture the in-
fluence of the steady wave field. The steady problem is
solved so that the fully nonlinear free-surface condition is
satisfied, and the influence terms of the steady wave field
on the unsteady wave field are evaluated by using the solu-

tions obtained here. The unsteady boundary value problem
is linearized assuming the small amplitude of the incident
wave and the ship motions and is formulated so that the
boundary conditions are satisfied on the exact steady free
surface and wetted surface on the body. The method is
applied to a simple Wigley model for the validation and a
Series-60 model for predicting diffraction wave. Numerical
results are compared with experiments and another practi-
cal computation methods, and the influence of the steady
wave field on the unsteady wave field is discussed.

2 Formulation

We consider a ship advancing at constant forward speed
U in oblique regular waves encountered at angle x, Fig.1.
The ship motions R[¢;e*“=*](j = 1 ~ 6) and the wave am-
plitude A of the incident wave are assumed to be small.
wp is the circular frequency and K the wave number of
the incident wave. The encounter circular frequency is
we(= wo — KU cosx). The linear theory is employed for
this problem assuming ideal potential flow.

incident wave (u:n)

x
E? [
n

Fig.1 Coordinate system

The total velocity potential ¥ of the fluid governed by
Laplace’s equation can be expressed as

U(z,y, z; t)=Ud(x,y,z) + O:(z,y, ;1)
=UB(z,y,2) + R[p(z,y,2)e™"] (1)

6
gA :
= e P X; £
Kz—iK(z cosx+ysi:;)

where
(2)

(;50 =1e
® means the steady wave field and ¢ the unsteady wave
field which consists of the incident wave ¢o, the diffraction
wave ¢7 and the radiation wave ¢;(j = 1 ~ 6). The kine-
matic and dynamic boundary conditions to be satisfied on
the exact free surface z = {(z,y;t) yields

Uy + V-V, + V- ‘v"\pt+%ﬁxp STV 4 g0, =0
onz=¢( (3)

where V denotes the two-dimensional Laplacian with re-
spect to z and y. By substituting (1) into (3), the problem
can be decomposed into the steady and the unsteady prob-
lems. ‘

Then the steady wave field is solved so that

%ch 'T(VE) + Ko®, =0 onz=(  (4)
P, =0 on Sy ' (5)

are satisfied on the exact steady free surface z = ({;(z, ).
Sy means the wetted surface and Ko = g/U*. A RPM de-
veloped by Jensen et al. (1986) is used to solve this problem

= Joe



numerically. The nonlinear free surface condition (4) is sat-
isfied by iteration scheme and the radiation condition by
shifting the collocation points one panel upward.

Assuming small amplitude of the incident wave and ship
motions, we can linearize the free surface condition for ¢;
around the steady free surface z = Cs(z,y) obtained by
solving the previous steady problem. The final form can
be written as follows with corresponding body boundary
condition (Newman (1978), Bertram (1990)):

—Ketp; +ir[VE-V; + VO v
! [6p.7 No g, . T 2 .
+?{;[V@.\7(V@-v¢3) +5Véi V(Ve) ] + ¢4z

5 le =2
3~[§V®-V(V<I>) +K0<Pz}

» 1 o
- Ko+ VO VO, '(”+Fov‘§'v)“”_o
onz=¢_s (6)
[ nj+ (Ufiwe)m; (G=1~ 6)
= { ~gon ey -~ W

where Ke =w3/g, T = Uwe/g and

(n1,n2,m3) =1, (ma,mz2,ms) = —=(n- V)V,
(n41n51n6) =TrXn, (m41m51m) = —(nV}(rX V)?
r=(z,9, %), V=V

m;, V and partial derivatives of @ in (6) and (7) must be
evaluated by using the steady nonlinear wave field satisfy-
ing (4) and (5).

If we express the double-body flow by @ and put @ =
@ + bs, eqs.(4) and (6) lead to the double-body flow for-
mulations such as

L osem e S ER—
YO V(T Vo) + Vo V(Ve: Vés)
T e o a Db B
-}-QKOV(V(;:-qu)-quSJr 52 =0 onz=0 (8
.
—~Kepj + 2V - Vi + *K—OW’ V(Vy - V)
L it S 0 0 T _
+2K0'\7(Vrp-ch)-Vq5,+ 52 =0 onz=0 (9)
and if simply ¢ = —% + s, it becomes the uniform-flow

formulation. -

Once the velocity potentials are obtained on the ship
surface by solving the problems, hydrodynamic pressure
and/or forces can be evaluated by it. The steady pressure
and the wave elevation are calculated by

2
pe = (1 - (V)] (10)
6 = -271{;[1 (VO] onz=¢ (1)

where p is the density of the fluid.
The unsteady pressure R[pe**] is given as follows ( Tim-
man & Newman (1962)):

5D :
p = —plise + UV V)b = p5 D &85 VIV V) (12)

=1

where 8; = e&; for (j = 1,2,3) and B; = ej—s for (G =
4,5,6). e;(j = 1,2,3) are the unit vectors of z,y,z axes.
The second term of right hand side in eq.(12) indicates
the dynamical restoring force due to the unsteady motion

-+ within the steady flow field.

Substituting the incident-wave velocity potential and

“scattered potential into the unsteady potential ¢ in eq.(12),

the wave exciting force Ej; acting in j-th direction is given
by

piz’z = 15 f]sy (1+i—;5;V'V)(¢D+¢j)ﬂj ds (j=1~86)

(13)
where v = Uwo/g. Considering the radiation potential
p;(j=1~6)asepin eq.(12), the added mass and damping
coefficients Aij, Bij acting in the i-th direction due to the
j-th motion are computed by )

. +z'—Bi=[/ (1+_—1—V-V)<bjn,-d5'
p pe Sk iKoT

1
_Wf[sﬂ(ﬁj V)V - V)nadS (14)

The ship motions §; can be determined by solving a simul-
taneous equation of the form

6
S [-wa (M + Asj) + iweBi + Cyléi=B: (i=1~6)
gm=1 T '

B (15)
Here M;; is the mass matrix associated with the body
mass, and Ci; is the matrix of restoring forces. The de-
tails are shown in the text written by Newman (1977).

The diffraction wave R[¢7e*“*’] is calculated by

1
Gr = T : acp(l+{f?g;vq)'v)¢j onz=2_s
(16)
The influence of the steady flow is introduced through the
terms multiplied by 1/Ko. :

3 Numerical method

The RPM applied in this study is a desingularized panel
method developed by Jensen et al.(1986) and extended to
the unsteady problem by Bertram (1990). )

The steady and unsteady potentials, ® and ¢;, are both
expressed by the source distributions on the body surface
S and the free surface Sr,

Gbs(-P) _ Ua(Q)
¢,,-{P.)} - fszJrsF {%‘(Q) } GR@ds (7

where G(P,Q) = 1/4m/(z — o)+ (y—v)+(z— 22,
The body surface and the free surface are discretized into a
finite number of constant panels, and the source panels on
S are shifted one panel above the free surface to make the
method desingularized. Numerical solutions for steady and
unsteady problems are obtained so that a corresponding
set of the free surface condition and the body boundary
condition is satisfied at collocation points. The collocation
points on Sy coincide with the geometric center of each
panel and those on Sp are shifted one panel upward in
order to force the radiation condition numerically. This
numerical radiation condition is valid only when waves do
not propagate to the forward direction of the ship, that
is, 7 < 0.5 from a practical point of view (fwashita et
al.(1993,1994)). _ . :
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4 Results

At first the present method is applied to a Wigley model for
the validation, and some of the results are shown in Figs.2
~ 5. Fig.3 shows a good convergence of the numerical so-
lution and Fig.4 shows that the present RPM is applicable

only for 7 > 0.5. We can see in Fig.5 a significant influence

of the steady nonlinear wave field.

Numerical computations are carried out also for a Series-
60 (Ch, = 0.8) model. It is confirmed in Fig.8 that the
steady wave field can be predicted in quite good accuracy
By the present method. On the other hand, pretty large
discrepancies are still observed in Fig.9 between computa-
tions and experiments presented by Ohkusu & Wen (1996).
At ordinate 9 the computed result underestimates the ex-
periment about 50 % in magnitude and this result is con-
sistent with the result that we have obtained for the wave
pressure, [washita et al. (1993, 1994).

5 Conclusions

(1) The present RPM based on the desingularized
method is confirmed to be effective to solve the
unsteady problem taking account ot the nonlinear
steady wave fleld.

(2) Consideration of the nonlinear steady wave field im-
proves the estimation accuracy of diffraction wave
qualitatively. However the improvement is not so
remarkable at the bow part.

(3) The present method underestimates the diffraction
wave about 50 % in amplitude. This is consistent
with numerical and experimental results on wave
pressure reported by Twashita & Ito(1998).
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Domain Decomposition in Steady, Viscous-Flow Computations

Eric van der Maérel
MARIN, Netherlands
(H.T.M.v.d.Maarel@marin.nl)

1 Introduction

Application of tools from Computational Fluid Dynamics(CFD) in ship hydrodynamics is becoming
common practice more and more. A natural consequence is the advent of requests for the application
of CFD tools in the analysis of flow around more and more complex geometries. For viscous-flow
numerical computations this introduces the need for more advanced ways to handle geometry-related
matters in CFD methods.

Traditionally, for viscous-flow computations in 3-dimensional space, a discretisation of the fluid
domain, is obtained through the generation of a ‘structured* grid, consisting of hexahedral elements,
along the structure (e.g., the hull of a ship). A necessary property of this grid is the application of a
strong stretching (or rather compression) at appropriate places in order to have sufficient resolution
in the boundary layer. Such a stretching needs to be even stronger when the fluid-flow system uses
a turbulence model without the application of the law-of-the-wall and going to real ship Reynolds

- numbers.

Tightly associated with this approach is the notion of the ‘quality‘ of the grid generated. The
definition of the quality of a grid is strongly dependent on the properties of the fluid-flow code, for
which such a grid has been generated in the first place. In general, it is related to the condition of
the system of equations set up in the fluid-flow program and to the robustness of the method used to
solve this set of algebraic equations.

Usually the grid quality degenerates for highly skewed grids larger deviations from orthogonality
of the grid and perhaps cell aspect ratios. These aspects in grid generation are becoming more difficult
to overcome with increasing complexity of the geometric shape. Usually for generally smoothly shaped
forms generating a 'good quality’ 3D grid is not too hard to do. Problems may arise for bluntly shaped
bodies, such as e.g. the after body of typical tanker, and for geometries with strongly curved shapes,
such as near the skegs at twin-skeg hull forms. Such problems are mainly related to the inability
to create a grid of good quality around the geometry. Thus, one is often forced to use a grid of
poor quality, with and is faced with convergence problems and maybe results of locally insufficient
resolution : '

‘ The situation as drawn above is typical for a system where the grid around the geometry is
generated in a single-block structure. Here, enforcing a grid of sufficient quality is some part of the
domain, in general may lead to insufficient quality in another area. This becomes more so in situation
where the geometry itself is of a more complex nature.

One way to alleviate this situation is to subdivide the fluid-flow domain of interest into several

-~ parts and to arrange.grids to be constructed in each subdomain (or block) almost independently from
each other. Dependent on the amount of independence used, this requires the flow solver acting on
the grid to be able to handle the various systems. For slightly independent grid generation the final
system of grids of all subdomains may be reconstructed to a single block, without sacrificing the good
properties of each block in the set of blocks. Another situation that is more likely to occur, is where
the grids in the various blocks cannot be merged to give a single block grid, e.g., when grid lines across
block interfaces do not match (in location and maybe in number as well), so-called non-conforming
grids. Non-conforming grids can be used in a structure where the blocks have no overlap at all and
still are fully covering the the domain. The most flexible situation however, is obtained when the
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system is allowed to have overlapping blocks with non-conforming grids. Then, the only requirement
that relates to interaction of the grids in the blocks, is that the system of grids has to fully cover the
fluid domain of interest. ‘

2 Domain Decomposition

For MARIN’s RANS code for steady, viscous-low computation around hull form structures, PARNAS-
SOS [1], we have been working on embedding the basic solver in a multi-block domain-decomposition
environment. The approach has an initial goal to be able to do fAluid-flow computations, using the
basic solver in its new environment of a (small) set of non-overlapping blocks, with initially a set of
conforming grids.

PARNASSOS is intended to do steady state Navier-Stokes computations for a single-block domain.
It has been extended to support more kinds of boundary conditions, and therefore can be used as the
solver in each block of a set of blocks, resulting from a decomposition of the domain.

The crucial aspect in such a set-up is the mechanism in which the data for each block is coupled
to the data in other blocks. For each block (subdomain) the boundary data is provided by either
neighboring blocks (along block interfaces, interface boundaries) or by the problem’s definition itself
(along the boundary of the domain) If a neighboring block provides boundary conditions, in general
these will depend on the local solution of the Navier-Stokes problem. This solution itself is obtained
through the iteration process and dependent on the boundary conditions supplied for that domain,
thus leading to boundary conditions that are not fixed on interface boundaries, during the iteration
process which solves the- (discretised) Navier-Stokes equations. For a fully implicit solver therefore,
an iteration process to solve the fluid-flow problem for such a set of subdomains, consists of at least
two levels. One is the inner level which aims at solving the (discretised) equations per block. This
process itself is likely to consist of a number of nested iteration processes itself, but can be looked at
as the single process which solves the a subproblem in a subdomain. The outer level iteration process
aims at introducing the coupling between the solutions for the various blocks. It is implemented by
exchanging data between blocks. Thus, in each iteration step on the outer level, the local subproblems
in each block are redefined through a change in boundary conditions applied by communication of
data between the blocks, providing each block with updated boundary conditions.

3 1D Analysis

From literature on domain-decomposition methods for elliptic equations, it is known that the conver-
gence of the outer level iteration strongly depends on the data communicated between the blocks, or
put differently, on the subsequent redefinitions of the subproblems. Given a 1-dimensional problem

Lu=f,

for u = u(z) unknown and f = f(z) given functions of the independent variable z in some domain
Q c IR and boundary conditions '

Bu=y,
for g given and for u(z) on z € 94, the boundary of Q. Decomposition of {2 in two subdomains {2,
k = 1,2, leads to a set of two subproblems denoted by

Luk = fk:
Brur = gk,

where the subscript k = 1,2 indicates the kth subproblem and subdomain. In the boundary condition
for this subproblem gx may depend on the solution on the other neighboring domain. A well-known



method to define such a set of subproblems in each outer-level iteration makes g,(cn) for iteration n

dependent on the approximate solution at iteration level n — 1. Thus we can have

w” = g,
Bl = ¢,

where
o™ = g™y,

At discretisation of the equations, e.g., with a finite volume or finite difference method on a uniform
grid, the nodal values of approximate solutions can be indicated with ugn), for the first subdomain

and UE”’ for the second subdomain, both at iteration level n. With m cells per subdomain and { cells
in the overlap, some general interface equations are given by

ul™ + auﬁ,’:)_l v,(n_l) + avl(ffl),
v((}n) + ﬁv&n) = ugi:zl) - ﬁug’:tlll.

A domain-decomposition method with interface equations as given above is called a Generalized
Schwarz Alternating Method (GSAM) [2]. The convergence rate of the outer iteration is known
to strongly depend on the choice of & and 8. An example is given in Fig. 1 for the Poisson equation
and standard five point finite-difference discretisation. This figure gives the convergence factor of the
outer iteration as a function of o = (8 and overlap Al (with fixed mesh width A =0.1).

1D Poisson, GSAM, a=B, d=2, h=0.1

hi

Figure 1: Convergence factor for Poisson equation with mesh width A = 0.1.

An analysis for the steady convection-diffusion equation reveals insight into the convergence be-
havior of the outer iteration process for fluid-flow problems. Since a convection-diffusion problem
is not symmetric with regards to the convection direction, the parameters o and (3 can be chosen
independently. Furthermore, the results will depend on the diffusion in the system, indicated by the
cell-Péclet number Pe. For the second-order accurate, fully one sided generalized QUICK scheme for
the convection (parameter A\ = —1), central difference for the diffusion, two nodal points of overlap
and o = (3, the asymptotic convergence rate as a function of cell-Péclet and parameters is shown in
Fig. 2. Optimal convergence behavior is obtained for = 0 at sufficiently large Pe. However, a serious
degradation of convergence occurs for small Pe. In this region an optimal value for o may be applied.
The optimum for & depends on Pe and the convergence factor p is quite sensitive to the value of o
near its optimum. ' B . " ' :
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Figure 2: Iso lines of convergence factor p < 1 for GSAM with second-order generalized QUICK
discretisation, A = —U, with 2 subdomains, 2 cells overlap (minimum).

4 Results

Here we present some results for some actual computations with PARNASSOS and the domain-
decomposition method for the turbulent flow along the stern of the Wigley hull at Re = 108. The
hexahedral grid consists of 65 nodes in the main flow direction, 51 in normal direction and 21 in
girth-wise direction. The grid was split in normal direction at grid plane number 41 counted from the
hull, giving a decomposition with two subdomains. The overlap is constructed by copying the required
geometric data from the neighboring block, across the interface. The local cell-Péclet number based on
the total viscosity, normal velocity and cell size in normal direction is in the order of 1. An impression
of the topology and some convergence result are shown in Fig. 3. The convergence history shows
maximum pressure difference over both blocks versus the number of blocklevel iteration, for the cases
o=B=0and 8 =0, a=—04, applied to all components of the velocity vector and the pressure.

dpmax, Wigley, jcut: 41
T T r

a=fl=) ~o—
as0.4 =0 +——

Figure 3: Topology and convergence for Wigley hull at Re = 106.
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Numerical simulation of viscous flow and free surface
around ship using RANS solver Finflo

Jerzy Matusiak, Helsinki University of
Technology, Ship Laboratory

1 Introduction

In 1995, the research project was started aiming at the development of method capable to
solve the problem of viscous flow and free surface around ship. Reynolds-averaged Navier-
Stokes (RANS) solver called FINFLO (Siikonen et al 1994, Siikonen 1996), developed at the
Laboratories of Aerodynamics and Applied Thermodynamics of Helsinki University of
Technology, was chosen as the platform of the method. The solution method of original
EINFLO utilises a finite-volume formulation, employs structured multiblock grids and it is
based on a compressible flow assumption: An upwind-type spatial discretization of third-
order accuracy without the use of flux limiter and implicit time integration are applied. The
pseudocompressibility feature was incorporated in the code in order to cope with the flows of
liquids.

2 Ship flows with no free surface --

2.1 Double-hull flow of HSVA tanker

First naval application of FINFLO was a computation of viscous flow of two versions of the
so-called HSVA tanker (Mystery). The double hull model was used in this investigation and
the results were compared to the model scale results obtained in wind tunnel and in towing
tank. Several turbulence models were used. The best results in terms of flow pattern at stern
were obtained using the Menter's k-® turbulence model. Double-model resistance coefficient
is given in Table 1. ' . :
Table 1 Double-model resistance coefficient of the HSVA-1 tanker. Comparison between the
measured value of Cetena and the FINFLO computations (Saisto &Sundell 1996,
Schweighoffer & Hellsten 1999)

Cy*10° AC*10 [%]
Measured, Cetena Cy = (1+k) Cr 4.11 -
Computed, Menter's SST turbulence model 4.29 - 4.4
Computed, Menter's RCSST tarbulence model 4.32 9
Computed, k—€ turbulence model ‘ 3.96 : -3.7
Computed, Cebesi-Smith turbulence model 4.02 -2.2

The limiting streamlines obtained with two turbulence models are compared to the flow
visualization results in Fig. 1.

1.2 Fully turbulent ‘flow over a flat plate for a large range of
Reynolds numbers

Schweighoffer (1997) has evaluated by Finflo the fully turbulent flow over a flat plate for a
large range of Reynolds numbers. The results of this investigation in terms of frictional

resistance coefficient are presented in Fig. 2. A clear difference of slope of ITTC-57

correlation line is noted. At large Reynolds numbers (ship scale); Cr of ITTC-57 correlation

line is very close to the results of computations and ESD data. At Reynolds numbers

corresponding to model scale, Cr of ITTC-57 correlation line is approximately 4 % higher

than that of ESD data and 8% higher than the computed values.




3 Free surface hull flows

The wave surface 1 generated by ship hull is evaluated n;éking use of the kinematic boundary
condition

gﬂ:wzin—+u§ﬂ+viq, ; (1)

dt ot ox oy
where 1, v and w are x-, y- and z-components of flow velocity. The bulk flow is computed
with a dynamic pressure set to zero at the deformed free surface. At each iteration cycle of
bulk flow evaluation, the free surface is evaluated using expression (1). This is done using a
third order upwind finite difference scheme and explicit time integration. The deforming grid
technique is used. In other words, at each iteration cycle the computational grid is adjusted
according to the deformed free surface. An example of grid deformation is presented in Fig.

3

Fig. ]| HSVA-I tanker. Experimental flow visualization results (top) compared to the
limiting streamlines obtained by Finflo computations with k—& ( middle) and k- RCSST
-turbulence models (Schweighoffer&Hellsten 1999).
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Fig. 2 Mean skin friction coefficient Cy, derived from F inf2d calculations for Cebeci-Smith,
the Baldwin-Lomax, Menter's k-a/€ (SST) and Chien's k—¢€ turbulence models. Comparison to
the turbulent theory according to White, the ITTC-57 model-ship correlation line and semi-
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Fig. 3  Deformed grid of the Series 60 ship model.
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Fig. 4 Wave field of Series 60 Cy= 0.6 ship model. Fn = 0.316, Rn = 2.56410° (Piippo
1998). _
The contour plot (computed and measured) of the free surface near the Series 60 ship model
is presented in Fig. 4. Other ship models, which were used in validating the method, were the

Wigley model, the HSVA tanker and a model of containership known as Hamburger-case. In
all cases, the error of computed total resistance was within the 10% when compared to the
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measured values. Detailed flow survey was conducted and compared to the measured values
for Series 60 case (Piippo 1998). The general trend of the computed results is to obtain wave
field that is somewhat more regular and dampened when compared to the measured values.
This discrepancy is more pronounced for low Froude numbers.

The deforming grid approach has proven to cope with rapid geometry changes such as caused
by a transom stern. In Fig. 5 computed wave field generated by a model of containership
_Hamburger-case having a transom stert is presented. '

4 Present and future work

Two features, important for modern fast vessels, are being developed. The first one is a
treatment of a surface piercing bow bulb. The other one is an evaluation of ship dynamic trim
and sinkage. The treatment of appendages and a simultaneous evaluation of hull a propulsor
flows are being developed as well. Another topic of near future research is evaluating of hull

flows at ship scale.

Hamburger test case, Fn = 0.249

Fig. 5 Computed wave field of Hamburger-case. Rn = 13.2¢10°. Number of the iteration
cycles at the first grid level = 14800. 818505 cells in O-O type grid.
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Comparison of Three Turbulence Models for the Study of the Wake Past
a Ship Hull :

Roberto Muscari, Riccardo Broglia & Andrea Di Mascio
INSEAN
Via di Vallerano, 139 - 00128 Roma - ITALY

1 INTRODUCTION

The flows to be computed in naval hydrodynamics are such that the only feasible simulations can
be carried out by the Reynolds-averaged Navies-Stokes equations (RANSE). In fact, the Reynolds
number is O(10° = 107) for towing tank tests, and O(10® + 10°) for full-scale flows. Therefore,
an important issue to be addressed is the choice of the turbulence model. Several choices are
possible but none can be said to be the best solution for all cases. Given the complexity of the
flow structure, the Reynolds stress models would be the most appropriate, but they have not
yet been developed as much as the classical eddy viscosity models, and are rather expensive in
terms of storage and CPU time. In practical applications, the most popular models are those
based on the eddy viscosity concept. In order to have more information on the behaviour of these
models, we have computed the flow past 2 model of the american combatant ship DDG51 (INSEAN
Model 2340) for which extensive experimental data are available. We have considered three eddy
viscosity models in our analysis: the algebraic model by Baldwin and Lomax (Baldwin (1978]),
the one-equation model by Spalart and Allmaras (Spalart [1994]) and the x — & model by Chang,
Hsieh and Chen (Chang [1995]). A

In section 2 we give a brief description of the mathematical model and the numerical integration
technique, whereas the discussion on the results is in section 3. In the last section some conclusions
are drawn. :

2 MATHEMATICAL AND NUMERICAL MODELS

The incompressible turbulent flows past a rigid body in steady straight motion is described by
the RANSE. When only the average steady state is to be computed, the pseudo-compressible
formulation (Chorin [1967]) may be exploited. The use of this approach allows the straightforward
extension of numerical integration techniques for compressible flows to the incompressible case.
The governing equations are, in non-dimensional form:

dp Ju; ) - Ou; Ouu; Op Ory
ot +ﬁ8$i =i ! ot ¥ dz; i dz; Oz;

where z; is the i-th coordinate, u; is the i-th component of the velocity vector, 3 is the pseudo-
Su;  Ouj . 1 )

* + —L ) is the stress tensor, ¥y = — =+ Vryrs 1S the global
6m,- 855‘.; Re

- kinematic viscosity, Re is the Reynolds number and vryse is the turbulent viscosity, calculated by

=0 i=1,23 (1)

compressibility factor, Ti; = ¢ (

means of one of the turbulence models cited in the Introduction. Finally p = ; -+ ;—% , P being

the pressure and Fr the Froude number.

The mathematical model has to be completed with initial and boundary conditions. On solid
walls, no-slip condition is enforced, (i.e. u; = 0 for ¢ = 1,2,3), whereas no condition on the
pressure is required. At the free surface, normal and tangential stresses must be enforced

h
D+ Tining = o 'r,-jnjtli =0 (2)

where n; is the i-th component of the normal unit vector and ¢t 1 =1,2 are the i-th components
of two unit tangent vectors, and where the stresses due to air and to surface tension are neglected.
Moreover, the unknown free surface elevation h = h(t, 1, z2) is determined by enforcing that the
boundary is a material surface
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Numerical integration technique

For the numerical solution of the model (1), we have used a second-order accurate finite volume
scheme; the convective fluxes were discretized by a ENO type scheme, whereas a centred scheme
was used for the viscous terms. A multi-stage Runge-Kutta algorithm with local time stepping
was applied to update the solution, and the convergence rate was improved by a Full Multigrid
algorithm. The details of the numerical scheme can be found in (Di Mascio [1998]).

Turbulence models

The turbulence models considered in this work are all based on the eddy viscosity concept. The
reader is referred to (Baldwin [1978]) for a description of the Baldwin and Lomax (BL) model,
to (Spalart [1994]) for the Spalart and Allmaras (SA) model, and to (Chang [1995]) for the Chang,
Hsieh and Chen (CHC) model. However, it is worth noting that SA and CHC are both strictly
“local”, in the sense that the coefficients in the equations depends only on quantities that can be
computed from the velocity field and its first order tenmsor in each point, and from the distance
from the nearest wall. This property is not shared by BL, for which the evaluation of the wall
shear stress at the intersection of the “normal” to the wall is required. This aspect makes the use
of BL rather difficult when dealing with complex geometries or unstructured grids.

3 RESULTS

The results shown in this section are obtained for the flow past the INSEAN Model 2340 (see
fig. 1) whose length is 5.72 m . The flow is characterised by Fr = 0.28 and Re = 1.2 X 107. The
details of the experiments are given in (Olivieri [1999]), whereas for more comments and results
‘the reader is referred to (Muscari [1999]). All the solutions were computed with a 5-block grid;

Figure 1: INSEAN 2340 (or DTMB 5415) combatant hull.

the total number of grid points is about 1'079°000. The size of the cells near the wall was such
that y+ < 1 in the first grid point.

The general features of the flow are depicted in figures 3-2. Figure 3 shows the wave system
generated by the hull. The area around the stern has been expanded to show the streamlines in the
wake of the hull (figure 2). As can be noticed, a significant separation occur for this flow condition.

Let us now examine some numerical aspects of the simulations. As already pointed out, we use
a multigrid technique to accelerate convergence, the finest grid being of about 1'079°000 points.,
On each grid, save the finest, 250 iterations are performed. Converged solution was reached, as can
be seen for example in figure 4, where Cr, for all turbulence models, are plotted against iterations.
For the second (coarse) and third (medium) grid, an ultimate value for the Cy is reached well
before passing to the finer grid.

Finally, we present some results on the convergence properties of the scheme. In table 1 the

1 Cth _ g2
convergence order p is computed through PTi5 In [E}z—h—clh—] (4)
T |



Baldwin-Lomax Spalart-Allmaras Chang-Hsieh-Chen

| T'Cv [ Cr [Cror [ Cv | Cp [Cror || Cv Cp [ Cror |
Coarse 0.293 [ 0.482 | 0.775 || 0.295 | 0.484 |-0.779 || 0.193 | 0.488 | 0.681
Medium 0.293 |70.250 | 0.543 || 0.298 | 0.255 | 0.553 || 0.222 | 0.233 | 0.455
Fine 0.297 | 0.175 | 0.472 || 0.299 | 0.181 | 0.480 || 0.246 | 0.174 | 0.419
Extrapolated — 10139 | 0.441 ][ 0.300 | 0.145 | 0.445 || 0.361 | 0.156 | 0.412
Experimental 0.425 0.425 | 0.425
Conv. Order -3.64 | 1.629 | 1.708 || 1.590 | 1.630 | 1.630 || 0.27 2.11 2.65
Uncer. % — 25.9 7.0 0.2 24.8 7.9 31.8 | 11.5 1.7

Table 1: Cy, Cr, Cr x 10? and convergence orders.

Tt can be seen that, probably a further refinement of the grid is required to reach the asymptotic
range and hence the theoretical value p :h2. I'EL the table can also be found the Richardson’s
| A
extrapolation of the Cr, thatis CF = e g; 1CT ., where p is the computed convergence order.
This value has to be compared with the experimental one CE*P = 4.25 x 1073, In this respect,
the best prediction is given by the CHC model which approximates the experimental value within
3.1%, but BL and SA give also very good approximations. In the table is also reported the
“uncertainty”, i.e. the error on the finest grid with respect to the extrapolated value. It can be
seen that, for the BL and SA, the pressure component is still far from grid convergence, while
the viscous component is almost unaffected by grid refinements. For the CHC we have a lower
C, uncertainty, but a much higher Cy uncertainty. Because of the two components have opposite

trends, the the C; seems to have reached a fairly good grid convergence.

4 CONCLUSION

Three turbulence models are used for the study of the low past a model of the american combatant
ship DDG51 (INSEAN Model 2340). In terms of total drag coefficient, all models offer very good -
performance, with the experimental value approximated by less than 5% . The convergence analysis
shows that the order of the scheme is near the theoretical one, despite some evident problems with
the pressure calculation.

References

Baldwin B.S., Lomax H. (1978). “Thin-Layer Approximation and Algebraic Model for Separated
Turbulent Flows”, AIAA Paper 78-257. -

Spalart P. R., Allmaras S. R. (1994). “A one-equation turbulence model for aerodynamic flows”,
La Recherche Aérospatiale, vol. 1, pag. 5.

Chang K. C., Hsieh W. D., Chen C. S. (1995). “A modified low-Reynolds-number turbulence model
applicable to recirculating flow in pipe expansion”, J. Fluids Eng., vol. 117, pag. 417.

Favini B., Broglia R., Di Mascio A. (1996). “Multigrid Acceleration of Second Order ENO Schemes
" from Low Subsonic to High Supersonic Flows”, Int. J. Num. Meth. Fluids, vol. 23, pag. 589.

Chorin A. (1967). “A Num. Method for Solving Incomp. Viscous Flow Problems”, J. Comp. Phys.,
vol. 2, pag. 12.

Muscari R., Broglia R., Di Mascio A. (1999). “Comparison of Three Turbulence Models for the
Study of the Wake Past a Ship Hull”, JAKOM ’99, Fukuoka, Japan.

Olivieri A., Pistani F., Penna R. (in preparation) “Experimental investigation of the flow around
a towed fast displacement ship hull model”.



Di Mascio A., Broglia R., Favini B. (1998). “Numerical simulation of free—surface viscous flows by
ENO-type schemes”, ICHD ’98, Seoul, Korea.

Figure 2: Streamlines in the z2 =0 (left) and the z3 = 0 (right) planes.
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Figure 3: Wave system past the hull. Figure 4: Total drag coefficients vs. iterations.



Stabilisation and Simulation of Non-Linear
Free-Surface Flows using High Order Algorithms

- Tain Robertson and Spencer Sherwin
Department of Aeronautics,
Imperial College of Science Technology and Medicine,
Prince Consort Road, South Kensington, London, SW7 2BY

1 Introduction

Numerical techniques have been widely adopted to solve non-linear free-surface motion around submerged and
surface piercing complex structures. The finite element technique, in particular, has been found to be very
efficient in the solution of free-surface problems. To simulate the flow we use a high order hp/Spectral finite
element code, N'exT ar, [1]. The hp/Spectral technique is capable of very rapid convergence rates, typically
¢ oc h? where A is the mesh size and p the polynomial order, which coupled with the ability to handle complex
geometries make it a very powerful tool to aid the simulation of gravity waves.

A common problem with many discretisation techniques is the use of a smoothing technique to inhibit the
formation of the free-surface saw-tooth pattern, which indicates an unstable system. This inherent instability
is characteristic of linear and non-linear flow. In this paper we formulate a semi-discrete solution system to
examine the spatial discretisation effects on the stability of linear gravity waves and recognise methods to
counter these instabilities. These methods are then applied to the solution of non-linear motion.

2 Inviscid Free-Surface Governing Equations

We consider a Cartesian coordinate system, where the free-surface is described by z = 0, where z points vertically
upwards and the free-surface height can be represented as z = ((z,t). The flow field is evaluated by solving the
the Laplacian
' Vig=0 (1)
where u = V¢ and V.u = 0. The linearised dynamic boundary condition is formulated from the Eulerian
momentum equation with all second or higher terms removed and the kinematic boundary condition ensures
that there is no fluid flow through the free-surface. The linearised dynamic and kinematic conditions are
therefore, -

0
2 =, (2
9 _ oz

evaluated on z = 0.

3 Stability Analysis of Spatial Discretisation

We start our analysis by considering two basic mesh configurations. The first is a structured, symmetric mesh
and the second a structured, asymmetric mesh both shown in figure 1. We compare the meshes in order
to investigate the effects of different spatial discretisations on the stability of the computations. Using the
hp/spectral element solver N'ex7 ar to compute linear flow, the two meshes gave differing results for long
time studies. The symmetric mesh was stable over long periods of time, whilst the asymmetric quickly displayed
the familiar saw-tooth pattern. For an initial free-surface disturbance of ¢ = 0.1 cos(m(z + 0.5)) the profiles of
the free-surface for the respective grids can be seen in figure 1. This instability was largely irrespective of the
time discretisation scheme or length of time-step used. Therefore the temporal discretisation was not affecting
the stability of the solution.
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Figure 1: Symmetric and asymmetric mesh for stability analysis and their corresponding free-surface profiles at T = 1.4

3.1 Formulation of Semi-discrete Eigenvalue Stability Analysis

In order to investigate the stability of the numerical problem we formulate a semi-discrete system by decomposing
the Laplacian, L, into its interior and free-surface boundary components, ie.

2 Li; L; i
(vv,w):qu:[Lbi L;Hib]:o, | (4)

where the subscript i refers to the interior of the domain and b the free-surface boundary. The first row of this
system can be rearranged to obtain

Liid; + Listpy, = 0 = ¢; = —L; ' Lis gy , (5)

which expresses the interior degrees of freedom in terms of the free-surface boundary degrees of freedom. The
differential of 4 in the z direction can similarly be represented by an operator D such that

8¢ . _| Di D ?;
E?TDQIJ—[DM Dbb][cﬁb]' (6)

Following the above method we find an expression for the differential on the boundary to be
d¢ .
'(-9';‘& = Dbiqb,; + Dbb(}bb . (7)

Substituting (5) into (7) we find a relationship for the differential in terms of the boundary values of the velocity
potential, i.e. ’
0 .
’[g . = —Dy L5 Livy, + Daspy (8)
= [Des— D;sL;;'Lis) ¢, = N , (9)

where Np can be thought of as a discrete Dirichlet-Neumann operator. By combining (9) with the linear
free-surface boundary conditions we can now form the semi-discrete form of the linear free-surface motion

[2]=[w T2 (o)

The eigenvalues of the operating matrix dictate the stability of the scheme, if they have a positive real value
the system is unstable.

3.2 Spatial Discretisation Comparison

We used the spatial discretisation analysis to compare the eigenvalues of the 10x 10 symmetric and asymmetric
meshes. The analysis was undertaken with p = 3 and the corresponding eigenvalues can be seen in figure 2 .
As is clearly shown the asymmetric spatial discretisation causes an unstable solution. Further investigation on
different meshes, figure 4, indicates that the instabilities are due to symmetry being lost locally, i.e. when a
horizontally asymmetric element is included in the domain.

3.3 Mechanisms for Stability
3.3.1 Removal of high modes

We follow a procedure advanced by Moore [2], who theorised that the incorrect phase relation of the discretised
system means that high frequency modes can have the same phase speed as low frequency modes permitting
the system to resonant. To remove the instability he removed the higher modes and using the hp technique
we can apply a similar technique. Figure 3 shows the resulting purely imaginary eigenvalues for computations
using polynomial order 2 with the removal of the highest mode. i
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Figure 4: Comparison of eigenvalues of spatially semi-discrete system for contrasting meshes

3.3.2 Addition of a diffusive term

Artificial diffusion is commonly used in compressible flow simulation to remove numerical instabilities and is
attractive in finite element methods due to the ease with which it can be implemented. To this end we consider
adding a diffusive term to the kinematic boundary condition to try to enforce stability. The kinematic boundary
condition then becomes

o¢ _9¢ 9%

%0 e &

where . is some constant large enough to ensure stability. 4 must be dependent on A and p to ensure convergence,
therefore we choose p = Co® , where C and o are constants and ¢ is proportional to the asymmetry of the
spatial discretisation [5]. The resulting eigenvalues can be seen in figure 3. As aresult of the large mode removal
needed to ensure a stable solution, typically half the modes, we choose to implement the added diffusive term
method in our calculations.

4 Results

To test the added diffusive term method we ran a simple sloshing test case, consisting of a 10x 10 asymmetric
mesh with the free-surface having an initial displacement described by ¢ = 0.1 cos(7(z+0.5)). The profile of the
free-surface after T = 1.14s is shown in figure 5, the saw-tooth pattern in figure 1 has been replaced by a smooth
solution. Figure 5 compares the time history of a point on the free-surface undergoing maximum displacement
for varying p and p. It can be seen that as p increases p decreases, thereby increasing the accuracy of the solution.
The diffusive term method was incorporated into a non-linear free-surface code in the sameé manner as for the
linear case. Correlation is sought by investigating wave motion contained within a box which is undergoing
forced sinusoidal translational motion described by d = acoswt where d is the displacement, a = 0.002 and w
is close to the natural frequency of the motion, wg. The results can be seen in figure 6. Agreement between
the computational solution and a linear analytical approximation [3, 4] is very good especially close to start
up, though as the amplitude grows non-linear characteristics of higher peaks and troughs are captured by the
computational results, but neglected by the linear analysis. The computational code was then expanded to three
* dimensions, using domains including complex surface piercing geometries. Figure 7 shows waves travelling from -
right to left and interacting with a surface piercing circular cylinder. :
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Figure 5: Free-surface profile at T = 1.14 with p =3 Figure 6: w = 0.5414wo and w = 0.9999wg
and p = 0.01 and time history of free-surface

Figure 7: Waves from a wave-maker encountering a surface piercing circular cylinder

5 Future Work

Immediate future work includes validating the 3D code and developing a parallel version of the code. Further-
more, we are looking into the possibility of decoupling the free-surface with the interior domain. We would then
use the Navier-Stokes equations to evaluate the interior, whilst having a non-linear free-surface.
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Naval needs require high resolution predictions of the turbulent free surface flow around
surface ships. Traditional approaches employ towing tank measurements and correlation, based on
previous experience, to obtain the expected full scale flow. The emergence of computational
methods suggests the use of a numerical complement to the traditional towing tank approach. The
numerical complement would permit rapid exploration of design space around a validated design
point, and potentially permit the scale up of model data to full scale. Descriptions of various
computational methods, including potential flow and viscous flow approaches, have been presented
previously (Rood, et al., 1996a). It is argued in that paper that the required prediction variables
necessitate including viscous effects in the governing equations. Hence predictions are sought
using Reynolds-Averaged Navier-Stokes (RANS) equations applied to the flow. The equations are
discretized, and solutions are obtained on massively parallel supercomputers. Today, very complex
flows are routinely computed and displayed with inspiring effect in terms of visual presentations of
contours of pressures and velocities. Notwithstanding the attractiveness of the appearance of many
solutions, there is widespread recognition of the need for validation of the computational
predictions. Although the idea of producing validated predictions is readily accepted, the actual
implementation of this costly process is not so easily embarked upon.

It is very important that the RANS code developer understand the process for having RANS
software accepted by the user community in a meaningful manner. Users are very skeptical of the
claims of RANS methods, and proper conditioning of the software as it is matured can pave the way
for easier acceptance of the product. In particular, users want to be assured that the software is
credible and that turnaround can be achieved in a reasonable period. Users would like to see this
information displayed in a rigorous manner.

Several years ago, the Office of Naval Research (ONR) embarked upon the development of
a paradigm for the methodical validation of RANS computational methods (Rood, 1996b). That
paper describes a strategy for implementing a process to arrive at validated software ready for use
by the ship designer. The ONR strategy employed a surface combatant geometry (DTMB Model
5415 Surface Combatant) for the purposes of validating computational ship hydrodynamics. The
implemented strategy consists of five parts: downselection of software, dissemination of software
and documentation, aggressive application, complementary computational ship hydrodynamics and
towing tank investigations, and scaling. ONR has been implementing that strategy with increasing
intensity over the past several years. That particular project will come to a close for steady straight
ahead conditions within the next two years, as it moves toward validating unsteady RANS
predictions for motion caused by waves and for roll motion.

The emergence of computational RANS methods received a push forward when the
Departerent of Defense in 1997 awarded a Challenge Project supercomputer time grant for "Time-
Dependent Computational Ship Hydrodynamics”. This project is one of only 19 awarded by the



High Performance Computing Modernization Office, and is meritorious in its objective of
predicting the time dependent hydrodynamic flow around a turning surface combatant, the US Navy
DDG-51 destroyer. Progress in performing this computation is extraordinary, and is described by
Rood (1997, 1998a, 1998b, 1999). The computations are complex because of the need to properly
determine the large free surface deformations for the combatant, and because of the transom stern
geometry producing a large change in the longitudinal flow. The problem is similar to the
backward-facing step, with the addition of three-dimensional geometry and the deforming °
boundary, for which the location must be determined as part of the solution. Currently RANS
computations are being performed on the SGI Origin 2000 (195 MHz, 128 processors, 65 GB
memory) and the Cray T3E(450 MHz, 816 processors, 200 GB memory). Through the use of
parallelization, clock time for a computation for the flow around a combatant has been reduced
from 40 hours (one week) to eight hours (overnight). This reduction in clock time makes the
computational approach a credible candidate to complement traditional towing tank measurements
from the perspective of the ship designer. Other principle new technologies enabling the
application of validated computational ship hydrodynamics are the implementation of production
methods for measuring the propelled subsurface turbulent flow (LDV) and the free surface temporal
deformations (free-surface probe). Today both predictions and measurements have been completed
for the propelled flow around the DDG-51 at model scale, and preparations are being made to scale
the results to full scale Reynolds number for comparison with at-sea experiments.

A verification and validation workshop in-March 1998 produced initial comparisons of high
resolution RANS computations and predictions. For the first time, rigorous computations were
performed to produce a test matrix for the measurements in the towing tank. This workshop proved
instrumental in focusing user attention on the validation process, and served to attract interest from
industry in applying the software to new naval ship designs. Recently ONR has increased the
intensity of the validation effort in response to a growing need from industry and from Navy
evaluators regarding a series of revolutionary new hull forms in which the propulsor and the hull
are fully integrated. '

These new integrated propulsor/hull configurations are outside of the historical database of
information for estimating ship performance. The need is to first develop an understanding of the
flow around these ship geometries, and then to build a reliable model database that can eventually
be correlated to full scale results. Using traditional towing tank "build and test"” scenarios, the
process will take decades. Hence there is the need, and opportunity, to develop a numerical
complement to the traditional towing tank process. The roadmap presented by Rood (1996b)
defines a systematic complementary physical/numerical investigative process for enhancing
traditional towing tank evaluations. The process features calibrated computational ship
hydrodynamics that complete and extend sparse towing tank data, and provide a means for scaling
results. That process has been implemented by ONR, and the progress is outlined, and refinements
to the process are described in this paper.

The paradigm that is being established builds on the strategy in the Rood (1996b) paper, and
is based on numerical verification, experimental validation, and archival documentation. These
three features are combined in a product called the "documented solution". This product is anew
addition to the strategy for implementing RANS methods. The documented solution is a -
meaningful record of the processes to obtain the computational prediction and the experimental
validation for a particular geometry and flow condition. No longer is the software, in its entirety,
considered to be validated; the concept now is that of a validated solution, the documented solution.
Clearly, a large number of successful documented solutions approaches the notion of validated
software. In principle the documented solution can be used to "train" persons to apply
computational ship hydrodynamics, and can be used as starting points in a design. The proper



balance between numerical and experimental uncertainty in obtaining the validation is obtained by
following the guidance of Stern, et al. (1999). The concept of the documented solution appears to
be a key factor in the growing acceptance of computational methods to complement traditional
towing tank measurements. The user community is willing to entertain documented solutions as a
proof of credibility, although there is some concern that it may be an unwarranted extension of the
"optimized" software, in which factors are set to produce a solution for a configuration, but which
are not applicable to a very wide set of problems.

A team of academic, government laboratory, and shipyard users has been assembled to
complete the process of implementing computational ship hydrodynamics as a complement to
traditional towing tank measurements for the case of steady flow. The team is being supported by
the "ONR Surface Combatant Accelerated Hydrodynamics S&T Initiative”. This program has
produced a significant change in the preliminary design process for novel ship types. The goal of
the program is to produce a set of documented solutions by the end of 2000.
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Introduction

In the context of naval hydrodynamics the attempt to auto-
matically modify the shape of a ship hull, according to the
response of some optimization scheme, trying to minimize
some user defined objective function, has been only very re-
cently performed with the aid of CFD information (2, 3, 4].
Lagrangian-Multiplier methods [1] have been largely used
in these optimization algorithms while some authors prefer
to implement Conjugate Gradient (CG) algorithms [3] or
Sequential Quadratic Programming (SQP) [4]. Although
some of these attempts seemed to be encouraging, there is
still a lack of experimental verification of the success of the
optimization procedure.

In this paper, recently presented in [5], a non- hnea: con-
strained optimization problem has been set up and solved on
the base of the results obtained via CFD techniques. The
non-interactive procedure has been developed to minimize
a previously defined objective function related with the flow
past a ship moving with steady forward speed in calm wa-
ter.

Actually, several objective functions can be introduced
in the optimization scheme e.g. the total resistance of the
ship, the wave pattern generated by its motion, or a com-
bination of both. Different type of geometrical constraints
have been also taken into account, in order to obtain a final
design which is feasible from the standpoint of construc-
tion.

Two strategies, and corresponding algorithms of numer-
ical optimization, namely Sequential Quadratic Program-
ming and non linear Conjugate Gradients, have been ex-
amined, and the features of the Variable Complexity Model
in speeding up the optimization procedure have been also
tested. ‘

During the iterative procedure, the geometry is modified
via a Bezier surface, controlled by a restricted number of
points acting as design parameters.

The flow solver is based on a free surface linear poten-
tial panel code, incorporating a simple flat-plate approxima-
tion for the frictional resistance.

Two numerically optimized bow design, obtained with
the CG and SQP optimization algorithms, have been devel-
oped to reduce total and wave resistance of a tanker ship at
a speed of 16 knots.

Obtained numerical results have been validated against
experimental data. The two optimized shapes have been
tested in the INSEAN towing tank and measured data have
been compared with those of the original design, showing
the success in the optimization process.

1 Optimization algorithms

1.1 Optimization via SQP _

The SQP algorithm [1] allows quadratic convergence for
a non linear function subjected to linear and/or non-linear
constraints. It solves a problem of the form:

minimize F(z), forz € R™,
T
subject to [0 Apa B
c(z)

where F(x) is the objective function, x is the vector of the
design variables Ay is the matrix of the linear constraints,
¢(x) is the vector of the non-linear constraint functions, [
and w are the lower and upper bounds vectors of constraints.

The search direction p is computed by solving a sub-
problem of the form

P
Arp <4

1 "
minimize ng 5 pTHp subject to | < <
- Anp

where g is the gradient of F’ at the solution z, H is a Quasi-
Newton approximation to the Hessian of the Lagrangian
function, and Ay is the Jacobian matrix of ¢ evaluated at
.

1.2 Optimization via CG

The conjugate-gradient method assumes that the search di-
rection p at a step k is given by:

= —gx + Bpr-1

where [y is a scalar quantity to be determined on the ba-
sis of the value of the gradient of the objective function and
of the line search direction at the previous and current step.
Several methods have been tested to compute 3 (Fletcher-
Reeves, Polak-Ribiere, Hestenses-Stifel). The results pre-
sented in this study are computed via a simple Steepest-
Descent (3 = 0) approximation of the CG and are shown in
section 5.

2 Objective functions and their eval-
uation

The choice of a specific objective function is based on the
needs of the user. Total resistance or wave resistance may
be an easy choice for fluid-dynamicists, although ship de-
signers may be more interested in quantities related to the



engine power or to the manteinance costs. In principle
this may be accomplished without difficulties from the op-
timization algorithm viewpoint.

In the present study, several objective functions have
been used to test the capability of the numerical method (to-
tal resistance, wave height or a combination of the two). In
this paper results for the minimization of the total resistance
and wave pattern are presented. ’

The objective function is computed via a linear potential
panel code (WARP) commonly used at INSEAN for stan-
dard ship performance evaluation (details may be found in
(6]). Frictional forces are evaluated via the ITTC formu-
lation where a local Reynolds number is used for each ele-
ment on the base of the local panel length and velocity. The
total resistance is then given by:

R, = Ry, + R;

and the wave pattern is minimized by minimizing:

VZ{TI?

where 7); is the wave elevation for the ith panel.

3 Modification of hull geometry.

Since viscous effects are taken into account in an extremely
simplified manner, the optimization has been restricted to
the fore-body geometry below the waterline, including the
bulb (shown as the highly refined block in figure 1).

Furthermore, the potential code used in the computation
is based on a linearized free surface formulation, and the
effect of the geometry above the waterline is not accounted
for, However, an optimization of the underwater fore body
seems feasible and results have shown realistic improved
designs.

Figure 1: Hull grid showing fore-body optimization block.

Various attempts have been made to develop geometry
modification algorithms: some of them acted directly on the
grid points [2, 3], while more recently some used perturba-
tion surfaces [4], or B-spline definition of hull geometry [8].
As a result of the numerical procedure, the modified geom-
etry should join the original design without discontinuities
and should be generally smooth. The number of design
variables should be kept as small as possible to _minimize

the computations of the objective function gradient. More-
over the algorithm should be as flexible as possible in order
to achieve the most number of possible solutions.

The above requirements have been obtained by using a
Bezier patch that gradually reduces to a zero level while ap-
proaching the unmodified hull shape (figure 2). In this way,
geometric continuity between grid boundaries is guaranteed

“and if the number of control points is kept sufficiently small,

realistic geometries can be obtained that do not need major
refinements prior to construction.

The patch is controlled by a Bezier frame of mxn nodes,
which are related to the patch via

Ye(u,v) = Z Z Ini(u) Km,j(v) pi g

i=0 j=0

where Yz are the coordinates of the Bezier surface, u
and v are adimensional parameters along x and z directions,
ps,j are the y coordinates of Bezier frame nodes and

=3 )00, ()

The y positions of each control point (three in this exam-
ple) form the design variables for which an optimum value
is searched for. The patch is simply superimposed on the
y offsets of the hull to obtain the modified geometry (figure
2) via ’

_ m!
= gl(m = j)!

Yu

= YH.,,.,'Q. (u,'u) + Y5 (u, 'U)
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Figure 2: Original geometry (top left), Bezier surface
(middle) and modified geometry (bottom right).

This procedure has mainly three advantages. Firstly, it
is very flexible and it allows to obtain different hull shapes,
as the Bezier frame can have a different number of control
points both vertically and horizontally. Secondly, the num-
ber of design variables is kept small and hence the compu-
tational effort is minimized, and thirdly the smoothness 18
guaranteed in both directions.

The main disadvantages are that it may be difficult to ap-
ply this method to multi-block grids (at present it can only



be applied to ordered i,j single block grids) and it may be
memory hungry. The linear constraints in fact are defined
on each node of the hull grid, so there are at least as many
constraints as the number of grid nodes. The total number
of constraints may further increase as more than one con-
straint is set an each node, hence increasing the size of the
matrix A.

4 Handling geometrical constraints

In order to achieve a realistic geometry, some constraints
must be imposed to the possible solutions. These may in-
volve constraints which are both linearly and non-linearly
related to the design variables.

Various constraints have been tested during the proce-
dure. The results presented in this paper for both methods
linerally constraint the offset to

Ymin < Ynew < Ymaz

while the keel profile is fixed. To maintain an efficient
panel geometry the maximum variation has been restricted

to
1_15'yold S Ynew S 2yold

One single non-linear constraint has been employed on
the displacement variation §V = £5%.

5 Results

The optimization process has been conducted for Fiy =
0.226. Various runs have been performed with both opti-
mization algorithms: the objective function for the SQP was
the total resistance, while SD optimized the wave height.
Different set of constraints have been tried which brought
to different geometries. Here, for sake of brevity, only the
two geometries that have been selected for tank testing are
presented (figure 3): one obtained via the SteepestDescent
(SD) algorithm, and one obtained via the SQP (from here
on ’SD’ and *SQP’ will serve to indicate also the two opti-
mized geometries). With reference to the SD algorithm, a
simple version of the Variable Complexity Model has been
used, that is that part of the function evaluations have ob-
tained by using simpler models, e.g. Double Model panel
computation or slender ship theory. The number of design

(a) Original (b) SD (c) SQP

Figure 3: Optimized geometries

variables for the two methods are 3x3 and 3x1 respectively.
The computed percentage reduction in total resistance is -
6.8% (SD) and -5.6% (SQP). The computed result show a

general improvement in wave pattern (figure 4): both the
second crest and the second through clearly show numeri-
cally computed lower values, and this behavior is continued
further aft. Experiments follow the same trend for resis-
tance (figure 5) and wave profile (figure 6).

(a) Original

(c) Optimized by SQP

Figure 4: Computed wave patterns for the original
and the two optimized hulls. Fy = 0.226,n/L =
—0.010, —0.009, ... + 0.01L.

Table 1 shows the computed quantities with the rela-
tive percentage difference form the original. It can be seen
that the major reduction is in wave resistance (-14%). The
computed C is reduced for the SD model, and so its fric-
tional resistance. This is due to the computation of the local

Org. | SD | 6% | SQP | 0%
Aoniy (Kg) | 19295 | 19414 | 0.6 | 19453 | 038
WSA (m?) | 5.524 | 5549 | 0.5 | 5.561 | 0.7
C.*E+03 | 2.076 | 1.779 | -14.3 | 1.773 | -14.6
C,*E+03 | 3253 | 3.199 | -1.7 | 3254 | 00
R, (Kgh) | 1.366 | 1.175 | -14.0 | 1.174 | -14.1
R; (Kgh) | 2.140 | 2.114 | -1.2 | 2.155 | 07
R, (Kgf) 3167 | 2.951 | -6.8 | 2.991 | -5.6
R.... (Kgh | 3.00 | 293 | -20 | 290 | -3.0

Table 1: Computed quantities, experimental model resis-
tance and percentage difference. All values refer to the
model unless otherwise specifed.

Reynolds number, which permits larger surfaces to have a
smaller frictional resistance depending on the values of the
local velocities. However, the experimental percentage im-
provement in resistance is less than the one predicted nu-




merically (2% for the SD model, and 3% for the SQP). A
probable reason could be that the calculation of the wetted

surface is not sufficiently accurate, a phenomena that has

been noted in previous works and reviewed in Larsson et
al. [7]. Errors in the surface computation lead to inaccura-
cies in the computation of wave resistance and friction re-
sistance (section 2). Both optimized models have a greater
surface than the original, and present larger curvatures (fig-

ure 3). For these models therefore the effect of inaccuracy -

in the surface computation is more evident, being the num-
ber of panels the same as the one of the original geometry.

There could also be some effects due to dynamic trim
and sinkage. During the optimization process models have
been tested in fixed condition (i.e. trim or sinkage not al-
lowed), while in the tank they were tested in free condition.
The resistance is usually slightly higher for free condition.
A single flow computation has been performed for both SD
and SQP geometries with trim and sinkage allowed. Results
are shown in table 2. If account is taken for the free con-
dition, the percentage gain in resistance is smaller than in
fixed condition (6.4 vs 6.8 for the SD, and 5.1 vs 5.6 for the

SQP).

Fy Ror Rsp A% RSQF A%
0.198 | 2.275 || 2.161 | -5.0 | 2.206 | -3.0
0226 | 3.283 || 3.071 | -6.4 | 3.117 | -5.1
0255 | 4.880 || 4.593 | -5.9 | 4.694 | -3.8

Table 2: Computed values of resistance allowing trim and
sinkage. Dimensions for resistance are Kgf.

As was expected, the gain in resistance is greater at the
design speed, for both the numerical algorithms (figure 5).
Nevertheless, the optimized shapes perform better than the
original one for the whole set of tested velocities.

0.226

0.255 -

t [SD Scheme]
SQP Scheme

Percentage Difference (%)
&
P

Froude Number

Figure 5: Measured resistance. The major improvement is
at the optimization point (Fy = 0.226), although there are
significant improvements also in other areas.

The experimental resistance of the SQP optimized model
is lower than the one of the SD model (table 1), which is in
contrast with the numerical predictions. This may be due
still to inaccuracies in the computation of the wetted surface
and hence wave resistance. The computed wave pattern
tends to confirm this: the wave pattern of the SQP model

——s—— Original
- —o— - SD
g SQP

Figure 6: Experimental wave profile, Fiy = 0.226. The
reduction in wave amplitude is 18% (SD) and 21% (SQP).

seems to be slightly better than the one of the SD model
(figure 4). This would indicate that the wave resistance for
the SQP model is lower than the one for the SD model, an
indication that is confirmed by the experiments. Also, be-
cause of the linearity in the free surface boundary condition,
the positive effect of a reduction in the wave crest (SQP in
figure 6) in terms of reduction in frictional resistance is not
‘caught’ by the code, as the wetted surface is computed only
below the waterline.

References

(1] Gill PE, Murray W. and Wright M.H., (1995) Practical
optimization, Academic Press.

[2] Janson C., Larsson L. (1996) A method for the opti-
mization of ship hulls from a resistance point of view.
21st Symp. on Naval Hydrodynamics, Trondheim.

Wyatt D.C., Chang P.A. (1994) Development and as-
sessment of a total resistance optimized bow for the AE
36, Marine Technology, vol. 31, no. 2.

(3]

[4] Tahara Y., Himeno Y. (1998) An application of compu-
tational fluid dynamics to tanker hull form optimization

problem, Third Osaka Colloquium, Osaka.

E.F. Campana, D. Peri, M. Rossetti (1999) Ships of the
optimum shape, SIAM - OP99, Atlanta, USA

[6] Bassanini, Bulgarelli, Campana, Lalli (1994) The wave
resistance problem in a boundary integral formulation,

Surveys on Mathematics for Industry, vol. 4.

Larsson L., Regnstrém B.; Broberg L., Li D-Q, Jan-
son C-E (1998) Failures; Fantasies and Feats in the
Theoretical/Numerical Prediction of Ship Performance,
22nd Symp. on Naval Hydrodynamics, Washington
D.C.

(7}

Leer-Andersen M., Larsson L. (1999) Non-interactive
optimization of hull shapes with regard to minimizing
wash wave height, HIPER’99, Zevenwacht.

(8]



NUMERICAL SIMULATON OF VOITH-SCHNEIDER CYCLOIDAL
SHIP PROPELLERS ' '

M. Schuster, R. Schilling
Technische Universitdt Miinchen
Institute and Laboratory for Hydraulic Machinery and Plants
D-85748 Garching
Germany

SUMMARY

The flow through cycloidal ship propellers is characterized by three-dimensional highly
turbulent patterns due to constantly changing kinematic boundary conditions. The locally
varying acceleration of the rotor blades requires the numerical simulation approach to handle
a rather complex computational domain. Part of the boundaries are moving in space and their
accurate representation is essential to ensure a fully conservative computational procedure.
The approach presented uses the integral form of the Navier-Stokes equations for an
arbitrarily moving control volume. Special care is taken to also satisfy the space conservation
law. For turbulence modeling the Smagorinsky subgrid scale model is implemented, where
van Driest damping is employed in the near wall regions. To solve the equation system the
widely used SIMPLE algorithm is applied to a collocated variable arrangement. The
numerical domain is split into twelve subdomains and the computation is performed parallel
on eight processor units. Two given test cases were simulated and showed good agreement
with experimental data.

INTRODUCTION

Ships operating at special conditions involving safety of people, environmental issues or
transportation of hazardous goods demand for propulsion systems providing a maximum of
manoevrability. In this respect cycloidal propeller represent intelligent drive systems
combining propulsion and steering in a single system.

zero postion thrust ,ahead®
@
DN
I
ship axis
e
thrust ,sideways*
krematc ;\
deering pont
thrust T l thrust T

Figure 1: Sketch of a Water Tractor with cycloidal propeller and S'teering kinematics

For this kind of propeller a number of hydrofoils is rotated on a vertical axis, where their
angles of attack during every revolution can be pivoted from 0 degrees to positive and again
back to negative values. The direction of the zero position and the deflection of the hydrofoils
can be varied in a fashion that precise and continuous thrust variation within 360 degree can

be obtained; see fig. 1.



PROBLEM FORMULATION

In order to describe the incompressible fluid flow in moving coordinates, the integral form of
the conservation law for space, mass, and momentum is used. For an arbitrarily shaped
domain of the volume V bounded by a closed surface S the governing equations can be
written as

d T 2
Eildy“icndS:Q (1)
%JPW—i‘p(chn)dS:O, (2)
%IJ:PCdV—!p(c—cn)cﬂ—pI'—(,ug?‘adc+(gmdc)r)ds :;[S°dV’ (3)

where p represents the fluid density, ¢ the fluid velocity, u the dynamic viscosity, p the
pressure, I the unit tensor, ¢n the net velocity, and s. the volumetric source term of
.momentum. -

Special care is taken to also satisfy the space conservation law, eq. 1, which ensures a fully
conservative computational procedure. Fully implicit temporal differencing makes the method
stable for any time step. By applying the finite volume approach, the discretization of the
convection and diffusion fluxes is carried out in a collocated variable arrangement. For the
computation of mass fluxes through the faces of the control volumes the values of the velocity
components at the face centers have to be determined. To avoid oscillations that may result
from simple linear interpolation, a special interpolation practice is employed, as proposed by
Khosla and Rubin [1] and implemented by many authors as Bauer [2], Orth [3], and Peri¢ [5]:

Fr =F" - pF, - F,) (4)

F, stands for an interpolation of a lower order scheme (e.g. "upwind") and Fy is a higher order
approximation. The term in the brackets is calculated from values of a previous iteration, as
indicated by the superscript 'n'. Its contribution to the implicit part is usually small, so this
explicit treatment does not impair the convergence rate significantly. Multiplying the term in
the brackets by the blending factor 3 regulates the explicit and implicit contribution. The use
of this "Deferred Correction Scheme" damps oscillations and improves the diagonal
dominance of the coefficient matrix. The coupling of pressure and velocity is performed via
the SIMPLE algorithm. The use of the collocated variable arrangement on non-orthogonal
grids demands the algorithm to be slightly modified. Here, a pressure-velocity coupling
method for complex geometries, proposed by Majumdar [4] and Peri¢ [6], has been
implemented, where an additional pressure gradient term is subtracted from the velocity
correction; see Ritzinger [7].

TURBULENCE MODELLING

For the computation of the turbulent flow and the reduction of computational cost with
respect to a required, very fine temporal resolution of 10” s per time step, the commonly used
Smagrorinski subgrid scale model (SGS) is applied. In this approach the SGS stress 7 1s
related to the resolvable velocity field by an eddy viscosity model, 7', = —2v.§,;, where the



large-scale strain tensor .Sy is defined by

1 aiz_;+@
: oalax, o

(5)

The subgrid scale eddy viscosity can be derived by dimensional arguments as

Vp = (CSA)E\JQSUS:)' ) (6)

where A represents the filter length scale and C is the Smagorinski model parameter. This can
be obtained by equating the subgrid-scale production and the dissipation in homogenous
turbulence as shown by Pourquié [9]. The major advantage of this model is the use of an
algebraic formula to calculate the eddy-viscosity from the resolved velocity field and
therefore enables an efficient numerical procedure. In order to ensure the correct limiting -
behavior of the SGS stresses close to solid boundaries van Driest damping is introduced:

2

__y‘t‘ -

ek (7)

L =kl T—E%D

where y* =yu_/v,u, =47,/ p, and gy denotes the shear stress at the wall. As mentioned
- by Ferziger [8] this modification is difficult to justify in the context of large-eddy simulation. '
However, it has proven to produce reasonable results in many application; see Peri¢ [8] and

Nagy [2].
BLOCK STRUCTURE AND PARALLELIZATION

To handle the complex geometry of the cycloid propeller the computational domain was split
into twelve structured grid blocks; see fig. 2. Apparently the chosen approach of spatial
domain decomposition is strongly govemned by the geometry of the solution domain.
Depending on available system resources a single subdomain, or optional, more than one grid

additional processes
,"slave ‘-
¢ slave !
Figure 2: Decomposition of the propeller Figure 3: Data flow management of the

domain Master-Slave concept

block may be assigned to one processor. Every block is represented by its own “Slave”
process performing the flow calculation and exchanging boundary data with their adjacent
neighbors. All Slaves are supervised by an “Master” process that only coordinates and



controls essential parameters, such as residuals and convergence criteria; see fig. 3. The data
flow between the Slave processes essentially accounts for the communication cost of the
parallelization. The control data exchange between Master and Slave processes plays a minor
role. Especially, if the communication rate is high, the routing of the data will have a
significant impact on the overall computational performance. Processes exchanging
considerable amounts of information are favorably located on multi processor boards. This
way the intercommunication will be directed via the internal bus system and thus considerably
less time consuming than the data exchange via network cards and ethernet wires. Therefore,
both proper process assignment and data stream routing are crucial to obtain a maximum of
efficiency.

"APPLICATION

This work focuses on the simulation of a five blade Voith-Schneider model propeller. To
evaluate the presented approach two computed test cases were to be compared to
measurements with respect to quantity and direction of the propeller’s thrust:

test case 1: rpm n =250 min™’, pitch p = 0.56, advance A = 0.00
test case 2: rpm n =250 min™, pitch p = 0.78, advance A = 0.70

The computations were Eerformed on 4 Dual Pentium II 300 MHz PCs with a grid resolution
of approximately 1,2-10° points. This provided detailed information about the distribution of
pressure and velocity in the field.-For both test cases the temporary pressure distribution in the
field is depicted in fig. 5. Stream traces computed from the temporary flow field illustrate the
nature of the two different points of operation. In case of the propeller operating with no
advance complex three dimensional vortex structures seem to be shedding from the trailing
edges of the hydrofoils as demonstrated in fig. 5a. When operating with an advance of
A = 0.70 these vortex structures seem to be suppressed and éventually vanish.

The unsteady integral values for the quantity and the direction of the thrust are plotted against
time. All quantities exhibit periodically alternating behavior. As shown in fig. 6 thrust and its
direction oscillate by a frequency of 20 Hz that corresponds to the frequency of the rotating
propeller body times the number of hydrofoils attached. The mean value of each oscillation is
located within the error range of its corresponding measured mean value. Therefore, the
computed results are found to be in good agreement with the model measurements.
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Figure 5: Stream traces of flow around the hydrofoils and contour plot. a) test case 1 — no
advance b) test case 2 - advance A = 0.70 ; -



thrust [N], alpha [deg)

2 "5 mocel popels PN [
) = et odd —— [
a) N thest e —— b) Izt sy ——
100 wsl hortanld —— = st hoeanid ——
A A _mpn. ACEES . Flsa - sl bl iR
v - drecion of thus ——
80 ¥ - 5 80 l\/ \i\/ i\/
mecuedmean g’
—g' mecsusdmeon
80 2
g o
T
P ATEA = 2 ,
# N " 3 . ra—
20 \/ / \_/ \% : £ ‘L../ R e \I)ENE
mecsu & mecn mecyedmem
| o] 0 T 1" ><]
-20 20
0 005 0.1 0.15 02 0.3 0.3 03 03 03 03 038 04 042 044 04 048
ime §) ime [s]
Figure 6: Computation of integral quantities — thrust angle (upper), axial thrust (middel), thrust
sideways (lower), and horizontal thrust (lower flat) . a) test case 1 b) test case 2
CONCLUSION

The results of this study state that the finite volume approach presented allows the simulation
of the flow through cycloidal ship propellers with sufficient accuracy for design and
optimization purposes. A comparison of the computed characteristics with measurements
shows good overall agreement with the trends. Due to the constantly changing flow
conditions in the domain a comparatively expensive SGS turbulence model was chosen. By
requiring a considerably high grid resolution this approach causes a significant computational
effort. However, block structuring and parallelizing the task allowed to solve the flow
problem on comparatively inexpensive Pentium processor units within a reasonable time.
With respect to steadily increasing computer performance the concept presented should be
further refined to simulate highly complex flow structures.
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Unsteady Wash Computation for a High Speed Vessel

Hironori YASUKAWA, Nagasaki Ezperimental Tank, Mitsubishi Heavy Industrﬁes*-

Introduction

Waves generated by a high speed vessel often influence the facilities of the port. To know the -
influences, it is necessary that the propagation and deformation of the waves are simulated
including effects of the port bank and the sea bottom.

As the 1st step of the study on the simulation of the unsteady wash, the waves generated by the
vessel with decelerated motion from constant speed in the towing tank are numerically analyzed.
This is the similar situation to the wave propagation in the process that the vessel reduces the
speed at the port. For the analysis, so-called the Mixed BEulerian-Lagrangian (MEL) method
is adopted. Time domain analyses using MEL method have been carried out, for instance, by
Qi and Mori(1989), Maskew(1991), Beck et al.(1993) and Li and Chwang(1997). However, the
existing MEL method may not be suitable for simulating the wave propagation in long time
since the computational time is too much at present.

To reduce the computational time, we employ the following techniques:

1. Basic equations: 2nd order non-linear free surface conditions are employed for reducing
the computational time.

2. Time integration: a scheme based on Newmark’s 3 method is used for keeping the robust-
ness. '

3. Matrix solver: a kind of iterative solver SOR method is used for quick matrix coinputa.tion.

4. Panel arrangements: constant rectangular panels of free surface fixed in space is employed.
The method presented by Nakatake and Ando (1996) is adopted for simplicity of the free

surface treatment.

The unsteady wash generated by the high speed vessel in the towing tank was realistically
demonstrated.

Basic Equations

Let us consider the numerical towing tank with the water depth h. The vessel in the tank is
assumed to move with the speed U(t) which varies as the function of time ¢. The coordinate
system fixed in the space is employed. The z-axis is defined as direction from the ship stern to
the bow, y-axis to port and z-axis vertically upward. The z — y plane is the still water surface.

The perturbation velocity potential due to ship moving in the tank is defined as o(z,y, 2,1).
Then, ¢ has to fulfill the following boundary conditions as:
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g% =0 onSw - . (4)
The 2nd order non-linear free surface conditions expanded with respect to ¢, which means the
wave height, around z = 0 are employed, egs.(1) and (2). Eq.(3) is the boundary condition on
the wetted hull surface at the still water Sy, and eq.(4) the boundary condition on the tank
wall Sw. ’ )
Applying Green'’s theorem, the velocity potential ¢ is expressed as:

- 0@ . 8 ] .
ap(P)== [ [ ) 3%] G(P;Q)dS (5
where
G(P;Q) = k
- ’ VE—z1)2+ (y—y1)? + (z — 21)?
+ L (6)

Ve —z1)2+y—n)?+ (z+ 21 + h)?

Here, P = (z,v,2) is a field point and @ = (1,71, 21) the source point. o is a constant. Sr
denotes the still water surface (z = 0). The 2nd-term of the right hand side of eq.(6) is the
additional term to fulfill the bottom surface condition.

Numerical Scheme

The time integration with respect to the potential ¢ and wave height ¢ are performed using
Newmark’s 3 scheme. The flow of the computation is as follows:

1; §’“) and Ct(k) at k-th time step are assumed as ¢§k) = ¢>§’°‘1) and Ct(k) =

g(k—l)

t

9. The approximate values of ¢(*) and ¢(¥) at k-th time step are calculated using these
formulae:

68 = ¢+ 1 At/2 (¢ + P (7)
¢ = =D 4 A2 (¢ 4 ¢F) (8)

Here, At denotes the time interval.

3. ¢ on Sp(z = 0) and ¢, on Sy&Sw are given from eq.(7) and the boundary conditions,
respectively. Solving the matrix made by discretizing the eq.(5), ) on Sp and ¢*) on
Syé& Sy which are unknown values are obtained. The matrix was solved using a kind of
iterative solver SOR method with under relaxation for quick computation.

4. The derivatives with respect to ¢ and ¢ on Sr are numerically calculated from the values
obtained.

5. The ¢§") and Ct(k} are calculated from the free surface conditions egs.(1) and (2).

6. The ¢>§’“} and Ct(k) obtained at step 5 is compared with the ¢§") and Ct(k) assumed at step
1. If remarkable difference between them is observed, the values at step 1 are replaced
to those at step 5. And going back to step 2, this procedure is repeated until obtaining
the converged solution. If obtaining the converged solution, a time step is added to the

original k.



Computation

Computations are carried out for -high speed vessel shown in Table 1. As the re:gion of the
numerical towing tank, 30L for the length, 3.2L for the half breadth and 100L for water depth
are assumed. For computation on the half side, 2,400 panels for free surface, 240 panels for the
vessel and 1,820 panels for the tank walls are used. The constant rectangular panels of the free
surface fixed in space-are used. Further, the method presented by Nakatake and Ando (1996) is
adopted for simplicity of the matrix computation with respect to the free surface.

The vessel length L is assumed to be 1.0m in the computations. The vessel speed changes as
the function of time in the computations as follows: the vessel accelerates from the rest, reaches
constant speed F,=0.638 after 1.0s, and runs with the constant speed until 9.0s. The speed
reduction starts at 9.0s, and the vessel completely stops at 10.0s. The computation is continued
until 20.0s. Time interval 0.025s is used in the computation.

Fig.1 shows the propagation of the waves generated by the vessel in the towing tank from 6s
to 14s. Typical Kelvin wave pattern can be observed in the computations at 6s and 8s. At 10s,
shift of the waves generated by the vessel to up stream starts just after stopping the vessel. Also
the waves reflected by the tank side wall are remarkable at the rear region of the vessel. The
bow-shape waves observed in front of the vessel propagate up stream (See the results at 12s and
14s). The wave length of the bow-shape waves is-about 2.5L which roughly agrees with that
of Kelvin waves generated by the vessel. There is-a possibility that the up stream propagating
waves which are generated when the vessel reduces the speed at the port influence the facilities
of the port. The unsteady wash generated by the high speed vessel in the towing tank was
realistically demonstrated. .

At the workshop, I will present the comparison with the model experiments for verification of

the present method.

Table 1: Principal dimensions of high speed vessel

L/B 7.50
B/d | -4.58
Gy 0.45
100V/E® | 0.175

References

Beck, R.F., Cao, Y., and Lee, T.-H.-(1993): Fully Nonlinear Water Wave Computations using
the the Desingularized Method, 6th International Conference on Numerical Ship Hydrodynamics,

Towa City.

Li, D. and Chwang, T. (1997): Time Domain Analysis of Ship-Generated Waves in Harbour
using a Fast Hierarchical Method, Tth International Offshore and Polar Engineering Conference,
Honolulu. _

Maskew, B. (1991): A Nonliner Numerical Method for Transient Wave/Hull Problems on Arbi-
‘trary Vessel, SNAME Trans., Vol.99.

Nakatake, K. and Ando, J. (1996): Rankine Source Method using Rectangular Panels on Water
Surface, 11th Workshop on Water Waves and Floating Bodies, Hamburg.

Qi, X. and Mori, K. (1989): Numerical Simulation of §-D Nonlinear Water Wave by Boundary
Element Method — In the case of submerged bodies —, J. of the Society of Naval Architects of
Japan, Vol.165.



1=19¢

T=14s
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3rd NUMERICAL TOWING TANK SYMPOSIUM (NuTTS’2000)
Tjarno and Gothenborg, Sweden, 10-13 September 2000
SPONSORED BY THE EUROPEAN COMMISSION UNDER THE TMR PROGRAMME

~ Topics:

— Nonlinear flows around marine structures (LES, RANSE Euler with or w/o free surface)

— Free-surface flows around marine structures (3-d ship seakeeping, free-surface viscous flows)
— Related topics (validation experiments, numerical techniques, etc)

Deadlines: Early feedback: 30 May 2000
Abstracts received: 30 June 2000
Notification of acceptance: 7 July 2000

Free of charge for eligible citizens of the EC and associated countries. Eligible are all citizens
of Norway and Israel 35 years of age or younger and accepted as researchers or students in the
field by the organiser. Preference of scholarships will be given to participants of former NuTTS
events.

The event is supported by WEGEMT (www.wegemt.org.uk) and directly before the the Gothen-
burg’2000 workshop (www.iihr.uiowa.edu/gothenburg2000).

You are invited to participate in the above event. The objective of the event is to provide a forum
for informal discussions among experts in the field and to disseminate latest results. Younger
workers and Ph.D. students are especially encouraged to participate. We also encourage female
colleagues to take an active role in the symposium.

The abstracts of the proposed talk will be directly reproduced in the proceedings. There will
be no final full papers. Rather, the symposium is intended to give ’sneak previews’ to full
papers. Work in progress, encountered problems, etc. should be discussed in an open, informal
atmosphere among colleagues.

The first page of the extended abstract should be headed with the title and authors’ names and
address in a compact form to economise on space. Extended abstracts should be limited to 4
pages in a field 17cm by 25cm per page. Copies of the extended abstract should be sent in good
quality to the host.

The event will be held in a remote training facility in beautiful natural surroundings. Bus
transport will organised on 10 and 13"September from/to Gothenborg. All participants stay
and have meals together to maximize interaction and discussion. Participants may have to
share double rooms due to limited availability of housing.

Prospective participants should fill in the attached form and return it to the host. An early
reply will help us in organising the event better. For the early feedback, a tentative title or
topic will suffice.

Volker Bertram, TUTECH, Lammersieth 90, D-22305 Hamburg, Germany

bertram@schiffbau.uni-hamburg.de
www.schiffbau.uni-hamburg.de/IFS/AB/AB-3-14/towtank2.html
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