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An unsteady model for free surface flows around hydrofoils
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1 Introduction

Foils are employed in ships as control devices for motions and as main sustaining system of the entire vessel. In
both cases, ambient waves, vehicle’s motions and, generally speaking, out-of-design conditions render the flow
unsteady. Further, as a result of small submergences or large amplitude motions, the flowfield about hydrofoils
is significantly affected by the air-water interface.

We present a model for the unsteady flow generated by a hydrofoil in arbitrary motion beneath a wavy
free surface. If large separation phenomena are ruled out, the flowfield can be accurately described in terms
of inviscid-rotational fluid mechanics in which a thin vortical layer mimics the hydrofoil’s wake and a suitable
unsteady Kutta condition provides the mechanism for vorticity generation. On this physical ground, the initial
value problem is recast in term of boundary integral equations for the velocity field coupled to evolution equations
for the free surface and the wake. ’

The properties of the developed algorithm are discussed by comparing present results againts those obtained
by different numerical techniques. In particular, previous existing approaches based on BEM are almost ex-
clusively ’steady’ models, while grid-based solvers are both (fictitiously) steady and unsteady. In the latter
category, either Euler or Navier-Stokes equations have been solved. We have chosen the classical Duncan’s ex-
periment as a benchmark and, once steady regime is reached, we compare the present wave profiles with results
from Bertram et al. (1998) and Thiart & Bertram (1998). In the following, only the unsteady inviscid-rotational
model is described, while full details about the other two models can be found in the referenced literature.

2 Mathematical statement of the problem

The unsteady flow about a hydrofoil H beneath a free surface F is considered. The main motion of the
hydrofoil is translatory but arbitrary oscillations in heave, surge and pitch are allowed for. If a wave train exists
at & = —o0, the problem can be re-formulated as described in Landrini et al. (1998). The full description of
general case is here omitted for the sake of brevity.

An unsteady problem for the Euler equations can be written and a possible approach consists in splitting it
into a kinematic problem and a dynamic one. The velocity field u satisfies the purely kinematic problem

V-u=0 V xu =7y (1)
in which 4,y is the generalized vorticity distribution. As a second step, the evolution of the free surface and of

the wake is stepped forward by integrating suitable kinematic and dynamic equations.
In the present approach the integral representation

u(P) - Vp/u'nGdSp+VpX/anGdSp
F F
(2)

+

IR
vﬁ,[ 0GdSp + =V x[ kGdSp + Vp x/ YwGdSp
M L H w

is introduced, in which

g=[u—v]n %kz—[u—v]xn I‘:fﬂu-‘rdﬁ (3)

v is the velocity of a point of the hydrofoil, G is the two dimensional free-space Green function and I is
the circulation about the hydrofoil. The resulting boundary integral equations can be solved by coupling an
iterative solver with a fast summation techniques which allow for obtaining an operation count of order N log N
(Graziani & Landrini 1998).

Once the velocity field is known, free surface and wake equations can be integrated in time, thus providing
the new set of boundary data for the next time-step. On the body the standard impermeability constraint is
applied.




Free surface evolution equations The free surface equations follows from the kinematic condition that the
fluid does not cross it and the dynamic constraint that the pressure there is atmospheric. These requirements
are fulfilled if the motion of the free surface points P are described through

Dr P _ Dru, _ B 1 Drr
Dt w = UV W T Dt =T {(w u) VU*‘Q—;\_”P&} + u- % (4)

In these equations v, T are the unit normal and tangent vectors to F and %a = at -+ w - V is the derivative
following the motion of a point P belonging to the free surface 7. The first equation states that the point P
move with a velocity w: the normal component w - v is fixed by the corresponding component u, = u -1 of the
fluid below, while the tangential one, w,, can be arbitraryly chosen. Finally, regardless of the actual value of
w,, the tangential velocity component u, of the fluid evolves according to the second equation, which follows
by the tangential projection of the Euler equation.

Wake evolution equations The vorticity is assumed confined in a-narrow wake W downstream of the
hydrofoil and, indeed, modeled by means of a zero thickness vortex layer of local strength

Y = wk = (uy —u_) xv = [u)k,

where [u,] = [u,] is the tangential velocity jump across the vortex sheet itself.” The wake pointwise (Lagrangian)
behaviour is fully described by the nonlinear differential system of equations

Dw P(¢, f)

Dw J’yw 2y
= wlé, ) T = (5)
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which account for the kinematics and the dynamics of the walke, respectively. In the first equation P(¢,t) is
the position of a wake point, chalacterlzed by the material coordinate £, which moves with a velocity defined
as w(&, t) = 2(u+ +u-), and _Dmi— + w - V is derivative following P € W. The second equation, where

J(£,8) = | ‘ allows for the time evolution of the concentrated vorticity v (€,t). The initial value problem

for the set of equations (5) is defined by the condition that the wake is continously shed from the trailing edge
whith a vorticity density yrg to be determined according to the assumption of zero trailing edge loading.

3 Discussion . .

We consider the flow generated by a hydrofoil starting from rest. Eventually steady state is reached and the
numerically predicted wave pattern can be compared with data measured by Duncan (Duncan, 1983). There
a NACAOQ012 profile with chord length c at an angle of attack o = 5° was placed below the free surface. The
depth of submergence D is measured from the mid-chord profile to the undisturbed water level n = 0 and
cases D/c = 1.2857, 1.1626 and 1.0345 are discussed in the following. The shallower submergences lead to the
formation of a steady breaking wave past the hydrofoil and are not discussed here.

For all the computational methods considered, tests are performed to check the invariance with respect to
further refinements of the discrete solution. In particular, for the present method, convergence is checked by
halving the time-step At and doubling the number of free surface points until convergence is reached. A typical
run requires Ny, = 512 — —2048, N, = 60 — —120, At = OC/U. Damping layers are placed at the edges of the
computational domain to prevent unphysical reflections a.nd the comparison of solutions obtained by doubling
the length L of the discretized free surface rules out possible end effects.

In the RANSE code, the part of the geometry which embeds the free surface was systematically refined
using three different Finite-Volume grids, the numerical grid around the hydrofoil was kept unchanged. The
numerical tests showed that the grid refinement around the profile is not so important for the formation of the
free surface as around the free surface itself where numerical diffusion could quickly damp the generated waves.

In figure 1 the present unsteady solution, solid lines, is compared with Duncan’s experiments, o, for decreasing
values D/c. To rule out the uncertainty due to the graphic manipulation, the Lagrangian free surface markers
are simply connected with straight segments For all the cases shown, quite reasonable wave patterns can be
observed. For the deepest submergence (upper plot) only the present solution is contrasted with the Duncan
data: the first hollow just above the profile is well predicted as well as the to following peaks.

For D/c = 1.1626 differences appear. In particular, the trough induced above the suction side is under-
predicted by all the methods. Steady BEM, ¢, and RANSE, e, solutions roughly give the same values while
a deeper depression is predicted by the unsteady solver which is placed half-way from the actual data. This
feature is repeated for the throughs more downstream. The two inviscid rotational models capture the first
and second experimental wave humps well, while the third crest is rather underestimated. Also a sort of ’shift’
of the wave forms can be detected which may require an analysis of the discrete dispersion relation. As the
RANSE code prediction is concerned, wave height is significantly underpredicted although the wavelength is




correctly captured. The reasons for this disagreement has to be investigated, but recent results of Tzabiras

(1997) indicate that the assumption of turbulent flow over the whole foil may be one contributing factor.
This behaviour is, in some sense, magnified, for the shallowest submergence (bottom plot). In particular

the free surface deformation above the hydrofoil is by far more pronounced in the experiments. Actually,
following the Duncan suggestion, in the present unsteady computations the bottom of the basin is not taken

into account because of the deep water regime of the generated waves. In spite of this, the ’ground-effect’ on the
hydrofoil should increase the actual circulation about it which may explain the reduced depression predicted.

But, although RANSE computation takes the bottom effect, the same disagreement is observed.
The last point to mention is the experimental uncertainty. No error bars are reported in Duncan’s papers

and he generally claimed ’distances were measured to an accuracy of about +0.3 cm’, which can explain the

differences between the experiments and the reported numerical results only partly.
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Figure 1: Wave height n/c past a NACA 0012 (F, = U/ /gc =0.567). The mid-chord point is located at
(x = 0.,y = —D/e) and the incidence is 5 degrees. Solid lines: present unsteady results, o measurements, e

FVM, ¢ Steady BEM.

As a simple example of more general unsteady flows, a case is considered in which the same hydrofoil is
forced to oscillate in pitch about the trailing edge. The mean submergence is D/c = 1.2857, the amplitude of
the sinusoidal oscillations is 5 degrees and two values of the period T" have been considered. The resulting wave




patterns for the corresponding reduced frequencies 7 = 27U/gT = 2. (1 = 1.) are reported in the top (bottom)
plots of figure 2. Clearly, a lee wave system due to the mean forward motion is expected and can be actually
detected just downstream the foil for 0 < z/c < 4.5. The mean amplitude is smaller than the corresponding
one in the top plot of figure 1 because of the zero mean angle of attack and, most important, in both cases it is
not uniform because of the waves radiated downstream (7 > 0.25) as well as because of the local displacement
due to the body motion. Past the tail of the lee wave, the genuine oscillatory part of the solution can be clearly
seen. In both cases, only the longer wavelengths (A/c =~ 2 for 7 = 2 and A/c =~ 5 for 7 = 1) are well resolved
while the shorter ones are too small for being graphically detected. ;
An extended set of results will be discussed at the symposium.
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Figure 2: Wave height 7/c past a NACA 0012 (F,, = U/,/gc =0.567, D/c = 1.2857) in pitching motion about
the trailing edge. The oscillation amplitude is 5 degrees. The oscillation periods are TU/c = 0.996 (top plot)
and TU/c = 2.12.
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Influence of the Kutta condition on 3-d Ship Seakeeping
Computations

Volker Bertram (TU Hamburg-Harburg)
Gerhard Thiart (Univ. Stellenbosch)

We present an indirect 3-d Rankine singularity method (RSM) in the frequency domain which
captures all forward-speed effects. As both steady and unsteady flow contributions are captured
three-dimensionally, the method is called ’fully 3-d’. The method is described in detail in
Bertram (1998).

We consider a ship moving with mean speed U in a harmonic wave of small amplitude h. We
assume an ideal fluid, using a perturbation formulation for the potential:

#t = ¢ + V) + hot. (1)

#© is the part of the potential which is independent of the wave amplitude h. It is the
solution of the steady wave-resistance problem. ¢(1) = Re(p()eiwet is proportional to h. w, is
the encounter frequency. Quantities with a hat denote a complex amplitude. #

All motions u; (i = 1...6) are assumed to be small of order O(h) where h is the wave amplitude.

The harmonic potential () is divided into the potential of the incident wave ¢*, the diffraction
potential ¢¢, and 6 radiation potentials, where ¢* and ¢¢ are divided into symmetric and
antisymmetric contributions:

6
qb(l) — de's N qbd,u. +¢w,s £3 qbw,a e Z(,biu@' (2)

=1

The steady flow contributions are ‘determined in a ’fully nonlinear’ wave-resistance code em-
ploying higher-order panels. This yields the steady dynamic trim and sinkage, the steady wave
elevation and the first and second derivatives of ¢(®). The seakeeping (time-harmonic) problem
to determine the ¢() is linearized around the steady solution, including fulfilling the boundary
conditions on the steady (wavy) surface, using the actually wetted surface of the ship with trim
and the steady wave profile.

The Kutta condition requires that at the trailing edge the pressures are equal on both sides. The
Kutta condition is usually omitted in 3-d methods. It is unclear if this is due to some physical
insight about the negligible effects or oversight. Our formulation for the Kutta condition
requires zero complex amplitudes for the antisymmetric pressure:

— pliwed™® + VOV He) = 0 (3)

i = 2,4,6 for the antisymmetric radiation modes and ¢ = d for the antisymmetric diffraction
part.

The unknown diffraction and unit motion radiation potentials can be determined independently.
Rankine elements are located on the hull and above the free surface (desingularized). Colloca-
tion points are located only on starboard. Mirror images of all Rankine elements account for
the port side.

=)
4

For the diffraction problem, all motions u; are set to zero. For a radiation problem, the relevant
motion amplitude is set to 1 and all other motion amplitudes, the diffraction and incident wave
potentials to zero. Then the free-surface condition and the hull condition are fulfilled in a
collocation scheme. For the antisymmetric problems, also the Kutta condition is fulfilled at




the last column of collocation points at the ship stern. A corresponding number of Thiart
elements (semi-infinite dipole strips on the plane y = 0), Bertram and Thiart (1998), are used.
The dipole strips start amidships and have the same height as the corresponding last panel on
the stern. Radiation and open-boundary condition (waves propagate only downstream and are
not reflected at the outer boundary of the computational domain) are enforced by ’staggering’
the Rankine sources for the free surface relative to the collocation points by one typical grid
spacing downstream. The collocation scheme forms eight systems of linear equations in the
unknown element strengths. The four symmetrical (likewise the four antisymmetrical) systems
of equations share the same coefficient matrix with only the r.h.s. being different. All four cases
are solved simultaneously using Gauss elimination. After solving the systems of equations, only
the motions u; remain to be determined.

The expressions to determine the motions are derived.in principle from ‘force = mass - accel-
eration’. This yields a system of linear equations for u; (i = 1,...,6) which is quickly solved by
(lauss elimination.

The S-175 containership was computed for the design condition with F,, = 0.275. The hull
was discretized by 631 elements. Grids on the free surface had then in each case about 1300
elements.

Figs.1 and 2 compare results for oblique waves to experiments for p = 150° and p = 120¢.
Results for heave and pitch agree well with experiments. The Kutta condition has only signif-
icant effects for yaw and sway at low frequencies and for roll near resonance. Here the Kutta
condition simulates to some extent the effect of viscous damping and reduces drastically (by
factors between 2 and 4) the motions. However, additional viscous effects (those that would
be apparent also at zero speed) reduce for roll in reality the motions even more. For yaw and
sway, no experimental data are available, but we expect that autopilots in experiments will
prevent the large predicted motion amplitudes of the computations.

For low angles of encounter, the Kutta condition failed to improve consistently results. Im-
provements here are subject to further research.

BERTRAM, V. (1998), Numerical investigation of steady flow effects in 3-d seakeeping com-
putations, 22. Symp. Naval Hydrodynamics, Washington

BERTRAM, V.; THIART, G. (1998), A Kutta condition fo ship seakeeping computations with
a Rankine panel method, Ship Techn. Res. 45, pp.54-63
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Fig.1: RAOs for 5-175, u = 150°, F,, = 0.275; e experiment, + RPM without Kutta condition,
o RPM with Kutta condition
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Time domain analysis of ship motions
by a Rankine panel method

A. Colagrossi M. Greco
INSEAN, Italian ship model basin, Roma - Italy.

Seakeeping analysis in frequency domain by 3D Rankine panel codes are continously improved and
presently available results (see e.g. Bertram 1998) are closer and closer to the limits of the underlying
theory (small time-harmonic perturbations of the steady base-flow).

Physical insight and finer experimental reference data are necessary as a guidance for further
enhancements of codes which in the future will include nonlinear inviscid effects and, eventually,
viscous effects. In both cases a time domain approach to the problem is required and here we present
some linear computations aimed to develop the basic tools for future steps in time-domain analysis.

We are trying to take advantage from the theory of dynamical systems. By analysing the response
of a fluid dynamic system excited by a suitable input some general properties of the system itself can
be evaluated even if the phenomenon is nonlinear. In the linear framework, the Fourier analysis of the
ship response to transient captive forced motions leads to the classical added and damping coefficients
in a broad frequency range. The advantage in performing a transient test is a shorter simulation time
with respect to the one required for a set of (time domain) harmonic forced test. Additionally, we
experienced reduced difficulties in damping the signals outgoing the truncated physical domain. In the
following some linear results for a Wigley hull are obtained by a numerical transient test technique and
frequency domain results are recovered together with experimental confirmation. The interaction of
an advancing ship with a wave—packet for evaluating the exciting forces and/or the response amplitude
operator is under development and will be presented at the Symposium.

Basic formulation

The ship motion problem is formulated in Newman (1978) and only a few details are here recalled.
It is assumed that the unsteady disturbance are small with respect to the flowfield generated by
the steady forward motion of the ship. Therefore, the velocity potential can be written as &7 =
—Upz + ®o(z,y,2) + @(z,y,2,t) where the first two terms are the potential due to the steady
flowfield around the vessel advancing with velocity Up and the perturbation ¢(z,y, z,t) contains all
the unsteady effects. In the linear framework, the perturbation potential can be further split in a set
of potentials proportional to the instantaneous value of the corresponding degree of freedom (three
translations and three rotations). Each of the potentials satisfies the Laplace equation, the free surface
and the body boundary conditions as well as an appropriate asymptotic behaviour.

In principle the unsteady problems are coupled to the steady flowfield through the velocity and
the wave height which, in turn, is the solution of a nonlinear problem. Bertram (1998) solved the
general linearized problem in frequency domain but most of the authors further simplify the problem
by using the unperturbed free stream, or the double body flow as a basis flow.

Here we solve the problem in time domain by using either the free stream or the double body flow
as a basis flow. The initial boundary value problem is recast in the form of integral equation. Namely
the perturbation potentials are represented by Rankine sources distributed on the free surface and on
the hull. At each time step, the potential on the free surface and the normal derivative on the ship
are prescribed and a set of integral equations can be written for the unknown source strenght.

Once this is evaluated by a low order panel method, the wave elevation and the potential on the
free surface are stepped forward in time by a second order Runge-Kutta scheme which provides a new




set of boundary data. Clearly, the computational domain is of finite extent and for avoinding spurious
reflections damping layers are added along the edges of the discretized free surface.

An auxiliary boundary integral problem for the time derivative of the potential is also solved at
each time step. This is used i) for evaluating the tangential derivative of the wave height which is
expressed in terms of derivatives of ¢ and of ¢ and ii) for computing the pressure on the hull by the
Bernoulli equation. The force acting on the hull is finally computed by direct pressure integration.

Some preliminary results

As a simple and well assessed test case we have considered a Wigley hull which is forced to move
in the prescribed degree of freedom with a given time-law. Two different inputs have been adopted
and they are shown in figure 1 with the corresponding loading response for the case of forced heave
motion. In the top plot, the vertical velocity of the hull follows a‘éingle—pulse law. At the beginning the
corresponding hydrodynamic force is dominated by the inertia of the fluid with a minor role of the free
surface. After the vertical velocity becomes zero, the oscillatory behaviour related to the wave-motion
clearly appears. Actually a single-pulse input corresponds to a finite change of the draft. A zero mean
input for the draft is obtained by the double pulse shown in the lower plot of figure 1. Also in this case
the hydrodynamic force follows the body acceleration at the beginning and eventually exhibits a wavy
nature but now with a smaller amplitude. Regardless the actual form of the adopted forcing functions,
the Fourier transform of the generalized hydrodynamic force F'(iw) is related to the Fourier transform
of the generalized motions g(iw) through F(iw) = [w?a*(w) — iwb*(w) — ¢] g(iw) which is used
to determine the added and damping coefficients once the restoring terms ¢ have been evaluated. For
the considered heave test the coefficients obtained by adopting the two different forcings are shown
in figure 2. The results for the single pulse input (solid lines) closely reproduce the double pulse
input results (dashed lines). Differences appear for smaller frequencies, may be due to different energy
leakages both in the numerical simulation and in the Fourier treatment of the results.

The present results are compared to frequency domain computations and to experimental data in
the next figure 3 (heave:top plot, pitch: bottom plot). Both the time domain results and the frequency
ones are obtained by using the uniform stream as a basis flow: an approximation which is still good
for the relatively simple hull considered, at least for the heave motion. The time domain analysis
reproduce the frequency domain results and both agree satisfactorily with the heave experimental
results. Results for pitch motion are less good, in particular the damping is underestimated.

The same kind of agreement between time and frequency computations are obtained for the S175
hull (figure 4). In this case experimental data are available only for the response amplitude operator.
This in turn requires the numerical evaluation of the exciting force which will be discussed at the
Symposium.

V. Bertram (1998). Numerical investigation of steady flow effects in 3D seakeeping computations.
227¢ Symp. on Naval Hydrodynamics. Washington.

J.M.J. Journée (1992). Ezperiments and Calculations on Four Wigley Hullforms. Report No. 909,
Ship Hydromechanics Laboratory, Delft University of Technology, Delft, The Netherlands.

J. N. Newman, 1978. The Theory of Ship Motions, Advances In Applied Mechanics, 18.




12 B Input Vertical Velocity 6,
8 =
4 =
I s \ “Output Vertical Force
- | | | | I | |
2 E ‘
) = Input Vertical Velocity 6,
4 i
2 E _
3 B ./ Output Vertical Force
| i | ! | ! | ! | !

2 4 6 8 t v(g/L)

Figure 1: Transient heave-test of a Wigley hull (F, = 0.3). Time histories of input vertical velocity
and response vertical force. Top plot: single pulse input. Bottom plot: double pulse input.
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Figure 2: Transient heave-test of a Wigley hull (F,, = 0.3). Added mass (left plot) and damping (right
plot) coefficients obtained by Fourier analysing the response vertical force (cfr. fig. 1). Solid lines:
single pulse input &,. Dashed lines: double pulse input 4.
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Figure 3: Added mass (left plot) and damping (right plot) coefficients for a Wigley hull (F, = 0.3).
Frequency domain, O, and time domain (solid lines) numerical results are contrasted with experimental
data, A, from Journée (1992).
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Comparison of eddy-viscosity and second-moment turbulence
closures for a Wing-Body Junction Flow

G.B. Deng & M. Visonneau
Ecole Centrale de Nantes, France

1 Introduction

The turbulent flow around a wing-body junction is a very complex three-dimensional flow despite a simple
geometric configuration. It is encountered in many flows of engineering interest such as in aircraft wing and
body junction flows, ship appendage and hull junction flows or bridge-pier flows. A wing-body junction flow
is characterized by the so-called horseshoe vortex system shed around thé obstacle. This vortical structure
is composed by two streamwise legs of vorticity, each leg having vorticity of the opposite sense. For practical
applications, the behaviour of this vortical structure may be of great interest since many problems like
damage to support foundations, excessive level of noise or vibration have their origins in the generation of
additional turbulence in the core of the horseshoe vortex.

Recently, many experimental studies emanated from the Virginia Polytechnic Institute (Dickinson [1],
Devenport & Simpson [2], Fleming & al. [3], Olgmen & Simpson [4]). All these authors examined the flow
around the same geometry, e.g. a 3:2 elliptical-nosed NACA-0020-tailed cylindrical wing mounted normal
to a flat plate and provided many detailed experimental measurements on the mean and fluctuating flows
at many different locations. Actually, the wing-body junction flow is an archetypal flow of great interest
because of:

— the occurrence of a large region of separated flow ahead of the wing,

- the strong three-dimensionality of the flow field due to two distinct rates of strain generated indepen-
dently by two different walls,

— the strong turbulence anisotropy associated with the development of the horseshoe vortex.

Therefore, the purpose of this paper is to confront the measurements with computations based on a
classical isotropic eddy-viscosity turbulence closure and a new Reynolds stress transport closure recently
developed by the authors.

2 Reynolds-stress closure

The limitations of eddy-viscosity turbulence closures are principally rooted in the fact that the eddy-
viscosity models have been designed to provide the correct level of shear stress for flows in which only this
stress has a predominant influence. Therefore, the essential inability of eddy-viscosity closures to simulate
anisotropic turbulence can explain their bad performances on flows containing recirculating regions or intense
vortices, since the turbulence anisotropy strongly influences the magnitude of longitudinal vorticity [5]. With
the need to resolve anisotropy taken for granted, the main choice for new statistical turbulence closures
is between non-linear eddy-viscosity models and second-moment closures. On complex three-dimensional
flows, second-moment closures will have great potentialities because of the exact representation of stress
production and transport which enables realistic interactions between normal stress anisotropy and shear-
stress components, even if the other physical mechanisms (diffusion, dissipation, redistribution,...) are crudely
modeled, especially near the wall. Consequently, modeling of turbulence anisotropy is mandatory and then,




second-moment closures are optimal candidates when high-Reynolds number flows on complex geometries
are considered.

2.1 The R;; —w model

If one wants to evaluate the true potentialities of second-moment closures on three-dimensional flows,
the eviction of wall-function boundary conditions is a prerequisite, because of the frequent strong three-
dimensionality of the velocity field near the wall. In this paper, we will use a new near-wall low Reynolds-
number model R;; —w model which was proposed recently by the authors [6]. The reader is refered to this
paper for a extensive presentation of this second-moment turbulence closure.

3 Results and discussion

3.1 Grid sensitivity studies and convergence

The calculations were performed at the experimental Reynolds number of 5.0 10% on a grid composed
of 89 x 81 x 81 nodes, in the streamwise, normal to the wing, and vertical directions. The first coordinate
surfaces off the solid walls were located at y* 1.0 (where y* = w,y, /v, u, is the wall friction velocity and
Yn 1s the normal distance to the wall) with about 15 points within the sublayer and the buffer layer. The
solution domain was defined by —2.0 < X/C < 28., 0. < Y/C < 2.0 and 0. < Z/C < 0.8 where C is the
chord length of the wing and the external boundary conditions are provided by previous infinite flat plate
computations.

3.2 Topology of the flow

To explore the structure of the horseshoe vortex predicted by both turbulence models, plots of particle
traces in the plane of symmetry and on the flat plate are shown in Figs. 1 and 2. The R;; — w solution is
characterised by a spiral vortex which is not present in the k — ¢ solution.

Fic. 1: k — e model- Particle traces in the F16. 2: R;j —w model- Particle traces in the
symmetry plane and on the flat plate (the symmetry plane and on the flat plate (the
pressure contours are visible on the flat plate)  pressure contours are visible on the flat plate)

Both models predict a primary line of separation located at the intersection between the three-dimensional
surface and the flat plate. However, the low-shear stress line which was observed in the experiments between
the wing and the primary line of separation is only visible in the second-moment solution, indicating that
the secondary motion predicted by the anisotropic turbulence closure is far more intense.
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3.3 Results on X=cst. planes

Extensive mean and fluctuating velocity measurements were also conducted by Fleming & al. (3] at
several X/C = est. planes adjacent to the wing and in the wake. These measurements made it possible to
characterise the horseshoe vortex development. For the sake of brevity, only one station X /C = 0.64 is chosen
to compare the respective performances of & — ¢ and R;; — w models. Figures 3 and 4 show the near-wing
contours of U/U,.; with both turbulence models at X/C' = 0.64. ’
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(a) Ezperiments; (b) k — e model (a) Ezperiments; (b) Rij; —w model

The distortion of the iso-velocity contours observed in the measurements are due to the secondary motion
which transports higher momentum fluid from the edge of the boundary layer to the near-wall region. This
trend is severely underestimated by the k — € solution and accurately reproduced by the anisotropic Rij—w
model which yields a more intense vortical crossflow. Figures 5 and 6 show the contours of the rms Reynolds
normal stress u'/Ur.; at the same station. A local maximum is located in the region where the distorsion of
U/U,es contours occurs, indicating that this local peak of turbulence is probably due to the increased mixing
of the boundary layer fluid by the horseshoe vortex. The k — ¢ solution exhibits a large zone of high normal
stress located in the corner between the wing and the flat plate. This high turbulence intensity generates
an excessive level of turbulent viscosity which absorbs the secondary motion in the core of the horseshoe
vortex. On the contrary, the anisotropic second-moment closures provides a much more physical solution
since the local peak of u’ is accurately positionned, even if its maximum level is somewhat underestimated.
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4 Summary and conclusion

A systematic evaluation of a new I;; —w model with classical eddy-viscosity closures for a wing-body
junction flow has been provided in this paper. Comparisons with global and local quantities, ranging from the
velocity components to the Reynolds-stress tensor components have established the clear superiority of the
second-moment closure. The new second-moment closure accurately reproduced.the anisotropic behaviour
of the normal Reynolds stress components, which led to a clear amplification of the longitudinal vorticity.
This result clearly demonstrated that second-moment calculations were particularly well suited to three-
dimensional vortical flows involving several predominant flow gradients.
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Yaw flow simulation for the Series 60

A. Di Mascio, E.F. Campana .
INSEAN - via di Vallerano, 139 - 00128 Roma - Italy

The question of the behaviour of the flow past a ship advancing with a yaw angle arise in the study of the
maneuvering characteristics of marine vehicles.

Previous computations of the viscous free surface flow around a yawed Wigley model was attempted in [1]
by using a Domain Decomposition approach and linearized free surface conditions. More recently in [2], [3] the
Series 60 has been used and large domain solution have been attempted for the fully non linear problem.

For the present study, numerical simulations have been carried out in the whole domain of the steady yaw flow
past a Series 60 Cp = 0.6, using a RANS solver and a Full Multi Grid—Full Approximation Storage (FMG-FAS)
algorithm to accelerate the convergence. The solution of the free surface viscous steady flow past a ship hull has
been obtained as the asymptotic solution of the unsteady pseudo-compressible Navier-Stokes equations [4]. The
mathematical model has been approximated by a discrete finite volume model. The computation of the viscous
terms at the cell interfaces is made by means of a finite volume approximation of the derivatives of the velocity
vector while velocity and pressure at the interface, needed for the computation of the Eulerian fluxes, are evaluated
by means of a second order E.N.O.-type scheme [5]. A complete description of these scheme for the simulation of
pseudo-compressible flow may be found in [6].

Accurate model-scale experiments [7], have been used to validate computations. The steady motion with a yaw
angle o = 0°,2.5°,5°,10° and for F'r = 0.316, Re = 5.27 % 105 has been computed. In the simulation, as well
in the experiments, port region is the pressure side, whereas starboard is the suction side.

In the numerical computation the fluid domain has been
divided into a port and a starboard block: each block has been

- discretized by using 96 x 96 x 64 cells in stream-wise, nor-
0TS o o} mal and girth-wise direction, respectively. Starting from this
- o g P
C | o ¢ grid, five coarser grids have been generated by halving in each
S o o Exp. (Longo) direction the number of cells of the previous finer grid. There-
o oI fore the coarsest grid is 6 x 6 x 4. The Full Multi Grid algo-
: rithm was then applied to compute the solution on each grid
O | IS NN WS SO O, O level.
A F Accuracy of the numerical method has been established
C for global quantities, such as the hydrodynamic coefficients,
0L : ; . .
- for which monotonic convergence is obtained on the three
Gy F finer grids. Indeed, the grid doubling procedure used in the
b g P
Sk Multi Grid approach easily allows to apply some verifications
- procedures, as suggested in [8]. Estimates of the grid con-
B vergence uncertainties have been obtained for global quanti-
L ties: C¢, Cs, Cp,. Figure 2 reports the Grid Convergence Index .
L (GCI), defined as
_C 001 |- F2h _ Fh
1 : GCI = wF—ﬂ?«T )]
002 L and the computed values of hydrodynamic coefficients as a

function of the grid refinement ratio h. /h, (h. is the grid step
in the coarsest grid) for all the simulated yaw angles. It is

worthwhile to notice that monotonic convergence is obtained
Figure 1: Comparison between experimental and  on the last three finer grids.

numerical hydrodynamic coefficients as a function The comparison with experimental values is shown in fig.
of the yaw angle: Fr = 0.316, Re = 5.27 x 10%. |, where the hydrodynamic coefficients have been reported

as a function of the yaw angle. While the yaw moment and
the side force coefficients show a significant increase with the yaw angle, the variation of the total resistance is
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Figure 2: Grid Convergence Index for the hydrodynamic coefficients Ct, Cs, Cp, for several yaw angles. Fr =
0.316, Re = 5.27 x 108,

less pronounced. The prediction of the side force and of the yaw moment is satisfactory while some differences
are observed in the estimation of the total resistance coefficient, especially in low yaw angles regime, where the
numerics over-predict the data by a 20%.

Estimated values of the order of accuracy p, defined as

1 f4.'z _ f2h '
p= log 2 log ( f2h — fh ) : (2)

suggests that the asymptotic range was probably reached, at least for the force coefficients.

a 00| 25 50] 100
pc, | 2.00 | 1.74 | 1.73 | 1.52
PC, — 175 [ 2.05 | 1.67
pe.. | — | 146 | 3.54 | 148

Order of accuracy p for the computed hydrodynamic
coefficients for all the yaw angles.

Comparison of the computed wave profiles on the finest grid level with the experiment (figs. 4, 5) reveal a
good agreement with measured waves.

Local measurements of the velocity field have been compared with the numerical simulations. The analysis
will be focused on the starboard region, where viscous and wave effect is more clearly appreciable. Although
global trends are qualitatively predicted, measured data show the presence of a bilge vortex which is not caught in
the numerical simulation. At 2 = 0.8 the experimental contours show a detached low speed region whose location
is numerically predicted but of smaller intensity. Comparisons for 2 = 0.9, and z = 1.0 cross-planes (not showed
in this abstract) indicate that the numerical contours are too smooth and that the vorticity in these regions is too
weak.




Although comparisons with the data are satisfactory for global coefficients, as well as for wave profiles, con-
tours of the axial velocity in some cross-planes reveal that some of the details of the measured data are still not
caught. Indeed, some of the details of the vortex in the starboard region are lost in the simulation. This is clearly
shown in fig 3, where the numerical streamline in the cross-plane & = 1.0 are compared with data. In the exper-
iments the vortex is approximatively located at y = 0.02,z = —0.2 whereas the simulation gives a less intense
vortex located at the same depth but at y = 0.01.

On the basis of the previous considerations on the convergence properties (see fig. 2); the observed discrepan-
cies seems to be caused by the turbulence model adopted, that induces too strong dissipation of the vortex, rather
then by an insufficient grid resolution. However, at the present stage it seems difficult to definitely ascertain the
causes of these unsatisfactory prediction of the wake. Further investigations are required to give a more precise
answer.

The work was supported by the Italian Ministry of Transportation in the frame of INSEAN research plan
1997-99.

References

[1] CampanaE.F, Esposito P.G., Penna R., “Domain Decomposition in Free Surface Viscous Flow”, 20-th ONR
Symposium on Naval Hydrdynamics, Santa Barbara, 1994.

[2] CampanaE.F, Di Mascio A., Penna R., “CFD Analysis of the Flow Past a Ship in Steady Drift Motion”, OC
'98, Third Osaka colloquium on advanced CFD applications to ship flow and hull form design, May 1998.

[3] Tahara Y., Longo J., Stern E, Himeno Y., “ Comparison of CFD and EFD for the Series 60 Cp = 0.6 in
Steady Yaw Motion”, 22-nd ONR Symposium on Naval Hydrodynamics, Aug. 1998.

[4] Chorin A., “A Num. Method for Solving Incomp. Viscous Flow Problems”, J. Comp. Phys, 2, 12, 1967.

[5] Harten A., Engquist B., Osher S., Chakravarthy S.R., “Uniformly High Order Accurate Essentially Non—
Oscillatory Schemes”, J. Comp. Phys., 71,231,1987.

[6] Di Mascio A., Broglia R., Favini B., “Numerical simulation of free-surface viscous flow by ENO-type
schemes”, 3-rd Int. Conf. on Hydrod., Seul (Korea), Oct. 1998

[7] Longo J.,Ph.D. Thesis, Dept. of Mech. Eng., Univ. of Iowa, 1996.

[8] Coleman, W.H., Stern, I, “Uncertainties and CFD Code Validation”, J. Fluids Eng., 119, 795-803, 1888,
1997.

-0.05

-0.1

Figure 3: Numerical streamlines (left) of the & = 1.0 cross-plane are reported in comparison with experimental
data by Longo (right).
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Viscous Flow Computations around Rudders

Ould El Moctar
Technical University Hamburg-Harburg, AB 3-13, Lammersieth 90, D-22305 Hamburg, Germany

Rudders, placed behind the propeller(s), increase the propulsive efficiency by using part of
the rotational energy contained in the propeller slipstream. Rudder forces (lift, drag and stock
moment) are required in evaluating the manoeuvrability of ships, in determining a rudder gear
size and for structural design of the rudder. Potential theory is widely used to investigate rudder
characteristics. In addition S6ding’s [1] empirical formulae based on measurements in uniform
flow and potential theory are used in practice to determine rudder forces. Potential theory is
unable to predict stall conditions due to neglecting the viscous effects. Model experiments are
carried out at lower Reynolds numbers (R,) and are of limited significance. The use of the
RANSE method is a better approach to analyse the flow around a rudder than the potential
theory, especially regarding the possibility of flow separation. In the present study the turbu-
lent flow around rudders with different aspect ratios, profile shapes and thickness in uniform
flow are computed at both model and full scale R,,. Different methods of grid generation were
investigated. The standard k-e model with wall functions is applied.

The conservation equations for mass and momentum in their integral form [3] serve as the
starting point.The solution domain is subdivided in a finite number of CV’s which may be of
arbitrary shape. Normally, hexahedral cells are used whose each side can be subdivided in any
number of faces when the neighbour cell is refined. The conservation equations are applied
to each CV, and the integrals are numerically approximated using the midpoint rule approx-
imation. the gradient is calculated using a conservative approximation of second order. The
discretized continuity equation is transformed into a pressure-correction equation following the
SIMPLE algorithm, adapted to colocated grids. The momentum component equations are lin-
earized using the Picard iteration scheme. The k-¢ model is adopted to determine the Reynolds
stress in Ranse. The eddy viscosity p; is expressed using the turbulent kinetic energy k& and
its dissipation e. The standard set of model constants were used [3]. The discretization and
linearization leads to a system of coupled algebraic equations, which is solved by a segregated
iterative approach. The inter-equation coupling and non linearities are resolved in a predictor-
corrector scheme within outer iterations, which represent the update of the coefficient matrix
and source vector. For more details see [3].

The fact that the solution method is designed to use unstructured grids made of CV’s with
an arbitrary number of faces and with cell-wise refinement allow good flexibility in the grid
generation. Different kinds of grid were investigated. the C-Grid is often used for foil configu-
rations. the solution domain consists of an unstructured C-grid with a local refinement of cell
layers around the rudder. The mesh spacing becomes smaller toward the edges of the rudder to
resolve the tip vortex, Fig. 1. If the rudder is placed behind a propeller, the flow is not uniform
and the rudder should be rotated. in this case, it is proposed to put the rudder in a cylinder
block, which can be rotated inside the fixed block without changing the shape of the CV’s,

Fig. 2. The CV’s along non matching interfaces are thus treated as polyeder with many faces.

In the following, rudder lift L, drag D and stock moment M are represented by non-dimensional
lift, drag and moment coefficients:

L D M
Ci=1—p Cu= m
3pv*he

spv2he’ 1pv?hc?

v is the uniform inflow velocity, p the fluid density, h the rudder height and ¢ the mean chord

length. The rudder aspect ratio is defined as 4, = % The lift generated by a rudder is the



most important quantity characterising its manoeuvring performance, whereas the rudder drag
determines its influence on propulsion power. The moment required to turn a rudder about its
shaft is refer to a point about 25%c behind the rudder nose to make this moment as small as
possible. The non-dimensional rudder forces and moment are computed here to compare the
performance of different rudder designs. )

The dependence of numerical solutions on grid resolution was studied by comparing the results
obtained on three grids consisting of 120.000, 480.000 and 860.000 CV’s. The differences were
of the order of 3%, which is the upper limit on discretization errors.

Reynolds number effects :

Rudder experiments are usually carried out at R, which are one to two orders of magnitude
smaller than in full scale. To demonstrate the R, effect, the rudder flow was computed at
Rp, =5-10" and R, = 2.7-10° for the same rudder. Whicker and Fehlners’s experiments [6]
with this rudder model (R, = 2.7 -10%) in a wind tunnel were compared with the numerical
results. The computation shows that the larger R, results in a larger stall angle, whereas results
before stall are practically not influenced, Figs. 3-5. The numerical solution agrees very well
with the measurements of lift, drag and stock moment except after stall. These deviations are
probably due to the turbulence model in view of the massive separation beyond the stall angle.

Aspect ratio effects .

Two rudders, with the same profile shape NACA0015 and taper ratio (7,) 0.45, are investigated
at R, = 2.7-10% and R,, = 5-107 with two different aspect ratios, 4, = 1.0 and 3.0. The rudder
with the greater aspect ratio produces twice as high lift for a given angle of attack compared
with the low-A; rudder. The maximum lift coefficient is practically independent of the aspect
ratio, the drag coeflicient remains nearly unchanged, Figs. 6-8.

The effects of profile shape and thickness

NACA profiles are often used as rudder profiles. In order to increase the produced maximum
lift or to avoid cavitation problems, other profiles were developed. The flow around three rect-
angular rudders with profile shapes NACA 0025, HSVA MP73-25 and IfS 62TR25 [1], all having
thickness of 0.25¢, have been studied at R, = 5-107. The computed Clmaz of the IfS and HSVA
rudders are 13% and 10% larger than that of the NACA profile respectively. The HSVA profile
has a larger stall angle than NACA and IfS profiles, Fig. 9. The advantage of the NACA profile
is the substantially smaller drag, Fig. 10. These effects were also shown by model experiments
carried out at small Ry, see [5]. .

Thick concave profiles (HSVA,IfS) increase both the lift gradient and the maximum lift. Grater
NACA profile thickness produces less lift for the same angle of attack. Thick profiles should
be avoided because of their larger drag, and the danger of cavitation in high-speed ships, Figs.
10-11. .

The computed results for force and moment agree well with measurements and, thus appear
accurate enough for various practical applications, especially for optimising the rudder shape.
The full-scale Reynolds number results in larger maximum lift and stall angle. A larger Aspect
ratio gives a larger lift gradient and an unchanged stall angle. The IfS and HSVA profiles pro-
duce substantially more lift than the NACA profile, but also higher drag. Thick concave profiles
(HSVA,IfS) increase both the lift gradient and the maximum lift.

The current research will concentrate on including the propeller to analyse its interaction.
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Simulation of Ship Tactical Circle Maneuvers
Using Recursive Neural Networks

David E. Hess and William E. Faller,
William E. Smith and Thomas T. Huang
Carderock Division, Naval Surface Warfare Center
9500 MacArthur Blvd
West Bethesda MD 20817-5700 USA

A method is described in which recursive neural networks (RNN) are used to predict the time histories of
maneuvering variables of full scale surface ships conducting tactical circle maneuvers in the open ocean.
Full scale data describing a series of tactical circle maneuvers with varying rudder deflection angles and
approach speeds have been acquired for each of two ships, and these data have been used to train and
validate two neural networks, one for each ship. Upon completion of training, typical time histories of the
control variables: two propeller shaft speeds and two rudder deflection angles, may be input into the neural
networks and predictions of the time histories of the state variables: linear and angular velocity components,
will be obtained. These data can then be used to recover the remaining hydrodynamic variables required to
describe the motion of the vehicle. The ongoing application of neural network technology to the simulation
of ship maneuvers is showing significant promise and is expected to yield a plant model that can then be
used for the development of an RNN based model reference control system.

The simulated maneuvers are tactical circles which are conducted in order to determine the inherent turning
characteristics of the ship. Of particular interest are such quantities as advance, transfer, tactical and steady
diameters, speed loss and steady speed in the turn. The typical procedure for these maneuvers is to first
establish steady initial conditions for approach velocity and desired shaft speeds and to maintain these
conditions for 30 seconds. Then, an order to Commence Execution (COMEX) of the run is given. Data
acquisition at a rate of 1 Hz begins and steady conditions are maintained for an additional 60 seconds. At
this time an EXECUTE command is given and the rudders are deflected to the desired angle and maintained
for the duration of the maneuver. These conditions are continued until the heading of the vehicle has
changed by 540 degrees; the maneuver is then terminated. An ideal tactical circle maneuver illustrating
these terms is shown in Fig. 1.
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Figure 1. Tactical circle maneuver. Figure 2. Typical uncorrected and corrected

tactical circles.

However, conditions in the open ocean are rarely ideal. Environmental factors such as moderate winds,
unfavorable ocean currents and moderately rough seas can combine to produce the actual circle trajectory
shown in Fig. 2. Note that the standard right-handed coordinate system with the z-axis positive downwards
is used. Knowledge of the time histories of wind speed and direction along with details of the prevailing,
ocean currents should allow one to formulate the appropriate force contributions which alter the trajectory
of the vehicle, and this is one of the areas in which future efforts will be directed. However, for these first
attempts to simulate these maneuvers with recursive neural networks, the problem was simplified by
attempting to remove environmental effects. For this reason, an automated procedure for removing the




effects of drift was devised and applied to each of the maneuvers. An example of the corrected circle,
rotated for convenience to place the steady state approach along the x-axis, is also shown in Fig. 2. The
data consist of maneuvers with rudder deflection angles which vary over a range of 10 degrees to 35
degrees and for a series of approach speeds from 10 knots to 30 knots. Because ships with multiple
propellers often exhibit similar turning characteristics for both right and left turns, the bulk of the data are
right turns with a small number of left turns.

The maneuvering quantities required to describe the motion of the vehicle are the trajectory components
x(t), y(t) and z(t) referred to an inertial coordinate system typically oriented as in Fig. 2; the Euler angles
consisting of roll (1), pitch 6(t) and yaw () which describe the orientation of the body coordinate system,
placed at the center of gravity of the vehicle, relative to the inertial coordinate system; the velocity
components u(?), v(t) and w(t); the acceleration components u(t) ,v(f) and w(t) ; the angular velocity
components p(), g(t) and r(z); and the angular acceleration components p(t) ,q(t)and 7(t) . In addition,

the speed U(t) of the vehicle may be measured or derived from U =+vu? +v? +w? , and these latter
quantities are all referred to the body coordinate system. The time histories of the control signals directing
the vehicle consist of the two rudder deflection angles, &,,(f) and & ,,(t), and the two propeller shaft

speeds, RPMI (1) and RPM2 (f).

The maneuvering quantities actually measured during tactical circles are the control signals, the trajectory
components, x and y, which result from Global Positioning System (GPS) measurements, the Euler angles
and the speed. In the absence of knowledge of z and in conformity with the desire to minimize
environmental effects, z is set to zero. This information is sufficient to derive the time histories of the
remaining maneuvering variables described above. Therefore, prior to training the neural network, all
maneuvering data is operated on by computer codes which were developed to: extract the needed variables
from the raw data files, correct the circles, derive missing kinematic variables, digitally lowpass filter the
time histories to remove noise, and verify mathematical consistency among all variables for each maneuver
and across the set of maneuvers.

The recursive neural network employed in this work is a computational technique for developing a time-
dependent nonlinear equation system which relates input control variables to output state variables. The
neural network is recursive which indicates the use of feedback; namely, the information stream issuing
from the outputs is redirected to form various additional inputs to the network. Such a model is particularly
well suited for nonlinear, time-dependent problems for which the past history of the process is required.
The current neural network model is adapted for use with surface ship exercises from technology developed
for previous work with submarine maneuvers ! and additional information describing applications may be
found in the references .
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Figure 3. Schematic of the recursive neural network.

The architecture of the network is indicated schematically in Fig. 3; it contains an input layer, two hidden
layers and an output layer with the nodes in each layer fully connected to those in the next layer. Each




hidden layer uses bias units and contains 48 nodes using the binary sigmoid activation function. The output
layer consists of 6 nodes, also using binary sigmoids, which predict at each time step dimensionless forms
of the six state variables: u, v, w, p, ¢ and r. The output layer does not use bias units. The input vector
contains 49 contributions which are necessary to describe the forces imparted by the control inputs and the
influence of time-dependent flow field effects; these are described as follows. The two rudder deflection
angles are used to formulate rudder force expressions by making use of knowledge (predicted from the
previous time step) of squared speed and a computed effective angle of attack at the rudder. These two
rudder forces at the current time step represent two inputs. An additional 20 inputs are obtained by
retaining the values of each input rudder force from the immediately preceding 10 time steps and providing
them as inputs for the current time step. The two propeller shaft speed values for the current time step are
put in a dimensionless form using a characteristic length (propeller diameter) and speed (predicted from the
previous time step) and represent two inputs. An additional two inputs at the current time step are obtained
by using the values from the immediately preceding time step for these two expressions. A hydrodynamic
force on the hull at the current time step is approximated with a simple expression employing a computed
sideslip angle and speed squared (predicted from the previous time step) and represents one input; similarly,
values from the immediately preceding 10 time steps are retained and provided as an additional ten inputs
for the current time step. The remaining 12 inputs are obtained by using the 6 recursed outputs from the
previous time step as well as the six outputs from the time step before that. The time step referred to above
at each iteration of the neural network represents a step in dimensionless time. Time is rendered
dimensionless using a characteristic length (ship length) and speed computed from the preceding iteration;
thus, it represents a fraction of the time required for the flow to travel the length of the hull. The neural
network is stepped at a constant rate in dimensionless time through each maneuver.

A subset of the tactical circle maneuvers is chosen to train the neural network, and the training set is
presented on the order of 40,000 to 80,000 times before training is concluded. During this process, the
predicted outputs are compared to the measured outputs, and a modified form of the gradient descent
(backpropagation) algorithm is used to adjust the weights. The maneuvers excluded from the training set,
and therefore not previously seen by the neural network, are used to test the ability of the network to
simulate tactical circle maneuvers based on novel rudder deflection and propeller shaft speed time histories.
Specifically, of the 15 tactical circles available for the first ship, 12 (80%) were used for training and 3 were
retained as novel maneuvers; for the second ship, the training set consisted of 20 maneuvers with 5 circles
(20%) retained for testing purposes.

Preliminary results measuring the performance of the neural network for the first ship for three variables of
critical importance for tactical circles are presented in the Table. For each variable, these error measures
are averaged over each point in the time history and then over all of the available maneuvers. For
comparison, the second number in each cell of the Table is averaged over the validation maneuvers only.
Note that the Average Angle Measure developed by the Maneuvering Code Certification Board at the Naval
Surface Warfare Center is a dimensionless performance measure for which a value of 1.0 represents perfect
agreement between measured and predicted variables and a value of 0.0 indicates no agreement.

Variable \ Errors Absolute Error Avg. Angle Correlation
Measure Coefficient

u 0.30/0.65 kn 0.981/0.959 0.973/0.943

X 62.7/138.5 ft 0.986/0.970 0.993/0.974

y 67.8/147.8 ft 0.942/0.874 0.992/0.969

Table. Error measures averaged over all files / validation files for neural network.

As mentioned above, the circle maneuvers were performed for a range of rudder deflection angles and
therefore a range of steady turning diameters were obtained. If one selects an average turning diameter of
2200 ft and uses this value to normalize the absolute errors in x and y, then the absolute errors are on the




order of 3% averaged over all of the circles and 6.5% for validation circles only. Similar percentages are
obtained if one uses an average steady speed in the turn of 10 kn to normalize the absolute error in u.

Representative examples of the predicted trajectory (dark curve) and the measured trajectory (light curve)
for a training maneuver and a validation maneuver are presented in Fig. 4 and Fig. 5, respectively. The
predicted trajectories are indeed circles and notice that such characteristics as advance, transfer, and tactical
and steady turning diameters are captured quite accurately. Results for the other maneuvering variables are
of similar quality and will be presented.
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Figure 4. Training run 3062. Figure 5. Validation run 3042.

The initial results are encouraging and indicate that recursive neural networks, which enjoy advantages of
simplicity and faster-than-real-time speed, may be used for the prediction of time histories of maneuvering
variables of full scale surface ships conducting tactical circle exercises. Data describing horizontal
overshoot maneuvers for these two ships are also available, and future efforts will be directed towards the
simulation of these maneuvers as well.

This work is sponsored by the U.S. Office of Naval Research. The program monitors are Dr. Teresa
McMullen, Code 342 and Dr. Pat Purtell, Code 333.
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Large Eddy Simulation around a LEBU Drag Reduction Device

Munehiko Hinatsu, Yoshiaki Kodama and Masahiko Makino *

1. Introduction

Recently research in drag reduction has been car-
ried out mainly in mecahnical engineering and this
topic is also very atractive in ship hydordynamics
because these techniques would have great effects
in economic and enviromental problems. The tech-
niques are categorized into active methods and pas-
sive methods. Typical example of an active method
is microbubbles. This method requires power to in-
Jject bubbles into the boundary layer. On the other
hand, a typical example of a passive method is a large
eddy break up (LEBU) device, which is considered a
promising method.

Researches in drag reduction have been mostly ex-
perimental. However, flow visualization techniques
were mainly used in tl'{c;se experirhente;,l works, and
information obtained through them is limited. On
the other hand, we can obtain a lot of information
about turbulence if we use large eddy simulation
(LES), and the authors have simulated flows around
a LEBU using LES to investigate turbulence proper-
ties and the drag reduction mecahnism. Some of the

results are presented and discussed herein.
2. LES with the Dynamic SGS Model

In the present study, we used a Large Eddy Sim-
ulation(LES) for the simulation of turbulent flows.

The space-filtered Navier-Stokes equations are

Ju; 7] L N op  Om; Lazﬂ;
5 T 9 ) T "y~ G T B 9z (1)
where

Tij = Wy — Uty = Lij + Cij + Ry (2)

here, the overbar denotes a space-filtered variable.

Lij = 4 u; —% %; and Cj; = Eu; +ufu; are Leonard
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stresses term and the Cross term, both of which are
neglected in the present study.
The remaining part R;; = ujuf, is the subgrid

scale stressuterm, modeled by the following equation.

Rq,_‘.‘ - ’_'VGSIJ +§6;:Rkk55l,] - 5(8_’3] * 8:'3;) (3)

ve = 2(C,A)*/25;; 5 4)
The coefficient C; in equation(4) is evaluated dy-
namically by the Germano model[1] with Lilly’s least
square method[2]. Then,
£t M
Cy=——1— 5
M;; M;; (5)

with the following relations.

M," = 2K2(C£2 e 1)]§|-§;J, :—/Z =« (6)

* 1 S e
Ly = Lij— gfrkkéij, Lij =0, — w5 (7)

(5

The tilde denotes the variables to which the test
filtering is applied, whose width is wider than the
grid filter used in the space-filtering process to get
equation (1). '

% in Li; is evaluated with the following approxi-

mation [3].

. . i o

= [ 003y~ Ua) + 5 A e+ (8)
3. Computational Scheme

A staggered grid in Cartesian coordinates is used.
Second order central differencing is used in the space
discretization. Time integration is done by a sec-
ond order Runge-Kutta method. No upwind scheme
is used for discretizing the convection term. C; es-
timated by eq.(5) is further averaged in the plane
parallel to the wall. Velocity - pressure coupling is
based on the SMAC method and the pressure Pois-
son equation is solved by the Line SOR method.
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4. Computed Results - Channel Flow -

In order to validate the present computational
code, we solved a parallel channel flow. The dimen-
sion of the computational domain is ¢ = 2.85,y =
1,z = 1.6, where = is the longitudinal axis, y is the
vertical axis and z is in the spanwise direction. The
number of grid points is (33 x 41 x 33). In the span-
wise directions, equi-width grids are set. Grids are
clustered near the wall using tanh function.

Since our target is to solve a flow with LEBU, the
domain decomposition technique is useful for this
problem. So we devided the computation domain
into two blocks, lower half and upper half even in the
computation of the plain channel flow. Further, con-
sidering this fact, a different mesh size is used in the
following regions, —1.35 < 2 < —0.5,-05< 2 <05
and 0.5 < 2 < 1.5. The number of mesh cells are
set to 10, 10,and 13, respectively in each part. Equi-
spaced grid is used in each region. By solving a sim-
ple channel flow with such a complicated grid system,
we can validate the grid dependence on the solution.

A negative pressure Vg‘ra,dient ap/t?:c‘: —2 is ap-
plied to keep the flow quasi-steady. Reynolds num-
ber Re = 500 is assigned and time step At is set
as 0.0005. The initial flow profile is given by the
logarithmic profile with small random disturbances.
Periodic boundary conditions are imposed in the z
and z directions and the non-slip condition is used
at the wall.

Fig. 1 shows the log-profile of velocity. The ve-
locity profile approaches to y* = u™ near the wall
and in the log-region, computed profile agrees with
the log-equation, although the computed result is
slightly larger. In Fig.2, we show the turbulence in-
tensities Vu'u/, Vo'v' and vw'w’ with lines. Sym-
bols in the figure are the experimental results given
by Kreplin & Eckermann[4]. Note that Kreplin’s
data are results with Re = 389. Vu'u' distribution
agrees well with the experimental data considering
that the higher the Reynolds number is, the greater
the turbulence intensity becomes. But v/v'v/ and

w'w' are smaller than those of experiment espe-

cially near the wall. This causes a slight increase of

velocity profile in log-region as shown in Fig.1.

Plate.l shows the sign(v')(u'v') = =£3 surfaces.
We can see the streaky structure of wall bounded
turbulence. Streaks are stretched obliquely from the
wall. In the photo, white and gray streaks make
a pair. A longitudinal vortex line exists between
two streaks. This is a well known property of the
wall bounded turbulence and hence this results agree
quantitatively with the results already obtained by
many other researchers. So, although we have to
need refinement in the turbulence model, we think
that the present code would work so long as we dis-
cuss a qualitative prospect for the effect of LEBU on

turbulent flows.
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Fig.2 Turbulence Intencities in Channel Flow




Plate.l Streak structure of wall turbulence

5. Computation of Flow around a
LEBU (LEBU in Periodic Channel
Flow)

Here we model the LEBU as a flat plate of zero
thickness and it is set in a periodic channel flow.
Therefore in this model, an infinite number of LEBUs
are placed equi-distantly in a row. The longitudinal
length of the computational domain is set to 10 and
channel width is set to 1. The length of the LEBU
is 1 and it is located at y = 0.25, 25% of ‘the channel
width away from the wall.

Flow domain is gridded with (101 x 51 x 31) mesh
nodes. 21 and 31 points are used for dividing the
lower and upper LEBU domains in the y direction,
respectively. In the LEBU part, 10 equi-spaced cells
are used in the x-directon. Periodic boundary condi-
tions are used in the longitudinal and spanwise direc-
tions. A pressure gradient of -2 is imposed to keep
the flow quasi-steady and the Revnolds numbr is set
to 500, as in the previous channel flow. At is set to

0.0002.

6. Results of LEBU Flow Simulation

Figs. 3 and 4 show the change of mean veloc-
ity profiles and turbulence energy profiles along the
channel. Here the LEBU is located at —0.5 < » <
0.5. The baseline of each curve is shifted by 1 for easy
observation. Velocity deficit along the LEBU line is
seen. This means that the LEBU effect remains un-

til the next downstream LEBU and consequently, the

LEBU row has a blockage effect on the channel flow.
From this, the length of the present computational
domain may not be sufficient to investigate the ef-
fect of a single LEBU upon the turbulent flow. The
turbulence energy at the.wall beneath the LEBU is
strengthened and strong turbulence energy is gener-
ated at the LEBU but they are weakend as the flow

goes downstream.
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To investigate more deeply, we show the longitu-
dinal vorticity distribution and pressure distribution
in Figs. 5 and 6. They are both averaged in the
spanwise direction. The vertical lines in the figures

show the position of the LEBU.



Fig.5 Spanwise averaged longitudinal vortices
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Fig.7 Distribution of spanwise averaged friction,
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The streaky structure of the wall turbulent bound-
ary layer remains along the upper wall, on the other
hand, along the lower wall, large structural vortices
distribution is broken by the LEBU. The weakened
streaks on the lower wall are still observed but they
are pressed down toward the wall. This may weaken
the turblence energy at the lower wall, as shown in
Fig.5. From the pressure distibution, even the thick-
less LEBU plays a role in blocking the flow. This is
due to the displacement effect of the LEBU boundary
layer. Finally, we show the skin friction distribution
along the wall. They have been averaged over 100-
timestep. As the LEBU is approached the friction
increases in both the upper and lower channel all,
but reduces with distance downstream. The reduc-
tion rate of the frictional force, corresponding to the

gradient of the cf line, is slightly greater on the lower

wall than on the LEBU-away wall and spans about
5 LEBU units.

By integrating the skin friction, We can eval-
uate the rate of drag for each part, lower
wall, upper wall and the LEBU. Then, we get
Dhiswerwan] Dipperwran="0.953. Deeev) Dpvswan =
0.637. Since we can regard the upper wall
as a LEBU-free wall, the sum of (Dpgppy +
Diowerwatl)/ Dupperwant can be considered the total
drag ratio. Unfortunately this value is 1.59 and
the net drag reduction can not be obtained. In the
present model, the length of LEBU may be too long
as a drag redction device. We need further simula-
tions with different LEBU size and location and also
a case that a single LEBU is located in a fully de-
veloped turbulent boundary layer is necessary. They

remain as future works.
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Diffraction Wave of a Blunt Ship at Forward Speed
in Ballast-Load Condition

Hidetsugu IWASHITA
Engineering Systems, Hiroshima University
Kagamiyama 1-4-1, Higashi-Hiroshima 739, JAPAN

Introduction

Nowadays, the focus of the seakeeping computations is changing from the ordinal prediction of the
global forces and/or ship motions to more accurate prediction of the local wave field represented by
the wave pressure acting on a ship, for the purpose of the global structral analysis based on FEM.
Twashita et al. (1991) systematically investigated about the wave pressure distribution of a blunt
VLCC advancing in oblique short waves and showed its negligible discrepancies between experiments
and theoretical computations based on the linear theory. Consecutively the importance of the influence
of the steady flow in seakeeping computations including wave pressure estimation had been studied
by Iwashita et al. (1994), Twashita & Bertram (1997) and Iwashita (1998). It has been made clear
up to now that the estimation accuracy of the wave pressure is improved in some quantity by taking
into account the influence of the steady flow in both the free-surface and body surface conditions.
More accurate estimation may be expected only by fully capturing the steady Kelvin-wave field in the’
free-surface and body surface conditions and this still remains as a future work.

This paper presents another experimental and numerical example on a local wave field which shows
the insufficiency of the theoretical prediction and suggests urgent settlement for the practical aspect
of the theory. The diffraction wave around the bow part of a blunt ship advancing in head waves is
predicted by a typical RPM and its results are compared with experiments. The significant discrepancy
between two results are discussed relating it to the discrepancy on the wave pressure.

incident wave (mu)

Formulation

We consider a ship advancing at constant forward speed
U in oblique regular waves encountered at angle x, Fig.1.
The ship motion is restricted at its equilibrium position
and the wave amplitude A of the incident wave is assumed
to be small. wy is the circular frequency and K the wave
number of the incident wave. The encounter circular fre-
quency is we(= wo — KU cosx). The linear theory is em-
ployed for this problem assuming ideal (potential) flow.
The velocity potential ¥ governed by Laplace’s equation

can be expressed as Fig. 1 Coordinate system
U(z,y, 2z t) = U[B(z, 9, 2) + o(z,y, 2)] + R[$(z, y, 2)e™'] (1)
where A
e i)—o'((bl) +é7), o= ieKz—iK(a:cosx—ilysinx) (2)

® means the double-body flow, ¢ the steady wave field and ¢ the unsteady wave field. Assuming
small disturbance due to the ship, we can linearize the free-surface conditions for ¢ and ¢ in several




forms. In this paper we adopted the following free-surface conditions derived by Yasukowa (1990) and
corresponding body boundary conditions. For ¢ it becomes

1 g, mges s | 1 dp B
QFOVCD-V(V(I’-VQ)—F KDV(I"V(V@AV(,O)+2K V(V®- Vo) -V + — P =D onez=>0 [3]
dp ;

I 0 on Sy (4)
and for ¢7
—Keopr + 207V ® - Vo + —V<I> V(V® - Vr) + —V(Vfl) Vo) -Vr + ? =0 on %= 0(5)
07 o ;
on ~ on O o | (6)

where V = V&, Ko = g/U?, Ko = w?/g, T = Uw,/g and V is defined as a two-dimensional Laplacian
with respect to z and y on the free surface. Eq.(3) coincides with the Dawson’s ( 1977) free-surface
condition in the steady problem and eq.(5) is a corresponding form in the unsteady problem.

If we put ® = —z, Op/On = ng and V = V[—z + ¢|, the formulation (3) ~ (6) leads to the
Neumann-Kelvin formulation. &

The diffraction wave R[(7 e?¢!] is calculated by using the diffraction potential ¢7 and its derivatives

as follows: )

Gl g yes —z—( +?(—V V)qﬁT onz=0 (7)

where v = Uwy/g.

Numerical methods

The RPM applied in this study is a collocation method developed by Jensen et al. (1986) and Ando
et al. (1988) for the steady problem and extended to the unsteady problem by Bertram (1990). The
radiation condition is satisfied by shifting the collocation point one panel upward on the free surface.
Recently Eguchi (1995) and Nakatake et al. (1995) proposed its extended computation method which
is quite robust and stable even for the blunt ship in the steady problem. We solve our problem applying
this method to the unsteady problem.

The steady and unsteady potentials, ¢ and ¢z, are both expressed by the source distributions on
the body surface Sy and the free surface Sp as follows:

Wi Sl A b Sl ®

where

_ [ @/r+1/r")/4n  for Q on Su o I 3 — 7
G(P,Q)—{l/‘iw for Q on Sp T,}f\/(m—a:)%i—(y y')2 + (2 F 2')?

The body surface and the free-surface are discretized into the finite number of constant panels, and
numerical solutions for steady and unsteady problems are obtained such that a corresponding set of
the free-surface condition and the body boundary condition are satisfied at collocation points. The
collocation points on Sy coincides with the geometric center of each panel and those on Sp are shifted
one panel upward in order to force the radiation condition numerically. This numerical radiation
condition is valid only for 7 > 1/4 in the unsteady problem where the waves do not propagate to
the forward direction of the ship. Fig. 2 illustrates typical computation grids on Sy and Sp. For
the panels inside the waterline on Sp, source distributions are forced to be zero, or those panels are
totally removed from the computation domain, Eguchi (1995) and Nakatake et al. (1995 ).




Results

Numerical computations are performed for a Series-60 model of C = 0.8. Both the ballast-load
condition and the full-load condition are computed based on the doubl-body formulation and the
Neumann-Kelvin formulation described above. Numerical results are compared with corresponding
experiments presented by Ohkusu & Wen (1996) only for the ballst-load condition. Fig. 2 shows the
hull form and the computation grids for the Series-60 model in the ballast-load condition (Cp = 0.8,
B/d = 5.9412).

Fig.3 shows the diffraction waves along the transvers line at ordinate 9, 8, 7 and 6. Notwithstand-
ing the double-body formulation seems to improve the computation results slightly, the remarkable
discrepancy between computed and measured results can be still observed especially near the bow
part and it decreases as the distance from the bow increases. At ordinate 9, the computed result
underestimates the experiment about 50 % in magunitude and this result consistent with the result
that we have obtained for the wave pressure, Iwashita et al. (1993, 1994). The significant influence
of the steady Kelvin-wave field in the free surface condition, which is not taken into account in any
formulations presented here, is considered as a cause.
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(a) Hull form and computation grids
(Ng = 448 on half)

(b) Computation grids (Ny = 448, Np = 2683)

Fig. 2 Series-60 model in ballast-load condition (Cj, = 0.8, B /d = 5.9412)
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Fig. 3 Diffraction wave distributions along transvers line in ballast-load condition (B/d = 5.9412)




LES of a flow past a surface piercing circular cylinder

Takafumi Kawamura*

1 Introduction

The interaction of turbulent flows with a free surface and surface waves is a very intriguing
problem in fluid dynamics, and has also been a subject of active research recently. This
subject has been investigated with respect to open chanel flow, free-surface jet flows, juncture
of free-surface and boundary layer or wake, and so on. However, most of previous studies deal
with cases with negligible free-surface deformations, and effects of surface waves have not been
extensively investigated. In this study, we investigate strong interactions between a turbulent
shear flow and large amplitude nonlinear surface waves about a piercing circular cylinder in a
steady current by large eddy simulation (LES).

This physical problem has been studied by Inoue et al.[1] experimentally, and their results
suggest that a strong interaction exists between highly nonlinear surface waves and the sepa-
rated vortical flow behind the cylinder. Strong vertical surface fluctuations were observed near
the stern in the experiment at the Froude number of 0.8, and the periodic vortex shedding
was suppressed near the free surface presumably due to the interaction with surface waves.
Velocity measurements suggest that the fluctuation is dominated by the quasi-periodic vortex-
shedding in the deeper. two-dimensional flow region, but it is dominated by higher frequency,
and more stochastic motions near the free surface. The objective of this study is to provide a
better understanding of this complex flow by applying LES.

2 Numerical method
2.1 Governing equation and computational procedure

The governing equations are the grid-filtered incompressible Navier-Stokes equations. All the
quantities are nondimensionalised with respect to the diameter of the cylinder D and the
uniform velocity Up. The origin of the coordinate system is the centre line of the cylinder at
the still water level. The z1, 75 and z3-axes are taken in the direction of the uniform flow, in
the spanwise direction and in the vertical direction upward, respectively. :

The numerical method developed at ICCH is used for the computations presented in this
study. The details of the method and validations are found in Ref. [3, 2]. This finite volume
code solves the grid-filtered Navier-Stokes equations discretised on general curvilinear grid
based on a partial transformation, where the Cartesian velocity components, pressure and
turbulence quantities defined at cell centres are the dependent variables. A second order
central interpolation is used for calculating fluxes except for convective flux for which the
second order QUICK scheme is used.

Time integration is performed by a second-order fractional step method. First in the
predictor step, the intermediate velocity at cell centre is computed by integrating the mo-
mentum equations using a second order semi-implicit scheme, and the continuity equation is
implemented in the corrector step.

*International Research Centre for Computational Hydrodynamics (ICCH), Denmark




The Smagorinsky model is used to model the SGS stress in this study. The SGS stress is
given by

Tij = —QVT85j — —Z(CSA)Q QSijSijS,'j, ) (1)

where vr, S, Cs and A are the eddy viscosity, the strain rate tensor, the model coefficient
and the cubic root of the volume of the cell, respectively.
The computational mesh is fitted to the free surface and updated every time step by moving
grid points in the vertical direction following the free surface movement expressed by
ah+u i +u ah—u (2)
where h is the height of the free surface from the still water level and u; is the Cartesian
velocity component. The volume flux due to this movement of grid is taken into account in |
the momentum equation. |
|

2.2 Boundary conditions

Computational domain is discretised using O-H-type mesh. The boundary of the computa-
tional domain consist of free surface, body surface, bottom, inflow and outflow. Assuming that
the surface tension and viscous stress of air are negligible, the dynamic free surface condition
is given by

(Zl/Sij - p5ij) n; = 0, (3)

where v is the kinematic viscosity, &;; is the Kronecker delta, and n; is the unit normal vector
of the free surface. On the body surface, no-slip condition is imposed and surface elevation is
linearly extrapolated, while a symmetry condition is applied at the bottom boundary. At the
inflow boundary, the velocity components are fixed at the free-stream value and a homoge-
neous Neumann condition is applied to the pressure. At the outflow, the velocity components
are extrapolated and pressure is kept at zero. An artificial damping function is applied to
the surface elevation near the boundary, and it is damped to zero before reaching the outer
boundary. '

3 Numerical simulation

The grid system used for the simulation is shown in Figure 1. The number of mesh points
is 128x64x16 in the tangential, radial and vertical directions respectively. This number-
is set according to convergence studies carried out using finer and coarser grids. A deep
draft is assumed in the present case and the depth of the domain is set to 4, which is deep
enough according to the experiment. The distance from the centre of the cylinder to the outer
boundary ranges from 10 to 15. The Froude number and the Reynolds numbers are set to the
values in the experiment, which are 0.8 and 2.7x10? respectively. The flow initially at rest is
gradually accelerated using 10 time units, while the time increment is 0.005.

Computed and measured mean surface elevation contours are shown in Figure 2. The
LES computation agrees well with the measurement, especially the flat region behind the
cylinder is very well captured. The root mean square of the computed and measured vertical
fluctuations of the free surface are compared in Figure 3. The LES result agrees very well
with the measurement. The peak position and intensity are very accurately computed. The
location of high intensity fluctuation corresponds to an edge of the flat region found in the

_




mean surface elevation contour Figure 2. This corresponds to the description of Inoue et al.[1]
that the surface fluctuation starts where the gradient of the free surface vanishes.

Figure 4 shows a time history of the streamwise velocity at one point in the wake at three
depths 3 = —0.6, 73 = —1.0, and z3 = —4.0. The velocity fluctuations are dominated by
periodic vortex-shedding at z3 = —4.0, where the mean flow is almost two-dimensional. At one
diameter deep (z3 = —1.0), the amplitude of the fluctuation becomes very small. However,
the character of the fluctuation changes drastically at z3 = —0.6, where the fluctuation is
more random than in the deep two-dimensional flow region. The interaction between surface
waves and the separated vortical flow is more apparent in Figure 5 showing an instantaneous
field of computed vertical vorticity component on the free surface and on the bottom free-slip
plane. A vortex-shedding is clearly observed near the bottom plane where the flow is almost
two-dimensional, however it is much less dominant on the free surface. It is supposed that
the wake-wave interaction enlarges the distance between the two separated layers towards the
downstream direction suppressing the vortex-shedding.

4 Conclusions

Turbulent flow around a surface piercing circular cylinder at F'n = 0.8 has been investigated
by LES. The results have been validated through comparisons with data for the mean surface
elevation and vertical fluctuation of the free surface.

A complex flow pattern resulting from the wave-wake interaction is elucidated by the
computation. It is shown that the quasi-periodical vortex-shedding is suppressed near the free
surface due to the three-dimensional flow pattern near the surface resulting from surface wave
generation. It is also shown that the character of the velocity fluctuation in the wake varies
drastically in the vertical direction toward the free surface. In the deeper region the fluctuation
is dominated by periodical vortex-shedding, while at a depth of one diameter, the amplitude of
the fluctuation is found to be very small, presumably due to the suppression of vortex-shedding
mentioned above. However, more random and intensive high frequency fluctuation is observed
near the free surface. These features are found both in the LES and in the experiment, showing
that LES is capable of simulating such free-surface induced fluctuations.
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PREDICTIONS OF MULTICOMPONENT FREE-SURFACE
FLOWS

S. Mugzaferija and M. Peri¢
Technische Universitat Hamburg — Harburg,
Arbeitsbereich Fluiddynamik und Schiffstheorie, .
Lammersieth 90, D-22305 Hamburg, Germany

INTRODUCTION

Problems which involve a number of immiscible fluids are not rear in everyday life. Examples
relevant for marine environmental technology are oil spills; sloshing of oil and water in
a damaged tank or intrusion of saline into sweet water which happens at a river mouth.
Numerical predictions of these problems are potentially very interesting. They can help us
to gain better understanding of a problem and to test the efficiency of our possible solutions.

The free-surface capturing method presented in [1] is similar to those presented by Lafau-
rie at al. [2] and Ubbink [3] and has been used until now for free-surface flows which involve
two fluids only [4-6]. The method can successfully be applied to problems where the free
surface changes its topology due to wave breaking, ovérturning or splashing. In this sense,
the method has a clear advantage over interface-capturing methods [7]. Furthermore, as it
will be shown in this paper, the method can be extended to deal with flows which involve a
number of immiscible fluids.

MATHEMATICAL MODEL

The conservation equations of mass, volume concentrations and momentum describe the
behavior of a multi-fliid system:

d
— . e 1
dtfvpdV—F/Spv ndS=0, (1)
d
afvcidV—i—fScz-v-ndSWO, (2)
| _
dS= 7. nd / ]
dtfvpvdv+/spvv nds /S nds+ [ f,dv. (3)

Here, V is an arbitrary control volume bounded by a closed surface S, p is the density, v is
the fluid velocity vector, n is the unit vector normal to the surface S and directed outwards,
¢; is the volume concentration of the ith fluid component, T' is the stress tensor, and f;, is
the resultant body force.

The mixture of fluids is treated as a single effective fluid, whose physical properties can
be expressed as a function of the volume concentrations and the physical properties of each

fluid component:
p=Y e m=Yo ey 6=l (4)
i i i

where p; and p; are the density and dynamic viscosity of the ith fluid component, respectively.
One should notice that the mathematical formulation of the problem is not limited to
any specific number of fluids.



NUMERICAL METHOD

In order to solve the governing equations, the solution domain is first subdivided into an
arbitrary number of contiguous control volumes (CVs) or cells. Control volumes can be of
an arbitrary polyhedral shape allowing for local grid refinement, sliding grids, and grids with
non-matching block interfaces. More details about this finite-volume FV discretization can
be found in [8]. Here only the interface-capturing features of the method will be presented.

A successful scheme for interface capturing must exploit the interface sharpening nature
of the downwind scheme, it must prevent over- and underflow of cells (it has to be bounded),
and it should have a mechanism to avoid alignment of the interface with the numerical grid.
The High Resolution Interface Capturing (HRIC) scheme [1] achives this by a non-linear
blend of the upwind (UD) and the downwind (DD) scheme. The UD scheme approximates
the cell-face value by the value at the upstream cell center (Fig. 1). It is unconditionally
stable and always produces a bounded solution. On the other hand, the DD scheme is an un-
conditionally unstable scheme that introduces negative numerical diffusion. It approximates
the cell-face value by the value at the downstream cell center. The way of blending UD and
DD can be analyzed in the Normalized Variable Diagram (NVD) [9]. The local normalized
volume fraction ¢ in the vicinity of the cell center C is defined as follows: ™

3 ¢(r,t) — cuy
i) =, (5)
Cp Cy
where subscripts U and D denote the respective nodes upstream and downstream of the cell

center C, and r is the position vector. The HRIC scheme computes the cell-face value of the
normalized volume fraction according to the following expression (Fig. 2):

Cc if cc < 0
5 2 2% if 0 < & < 05 ©)
! 1 if 05 < & < 1

éc if 1 < &

In order to prevent an alignment of the interface with the numerical grid because of the
use of the downwind discretization [2] , the HRIC scheme corrects the ¢; value according to

the following expression:
& = &Vcosf + éc(l — VeosH) . (7)

where @ is the angle between the normal to the interface (defined by the gradient of the
volume fraction Vc) and the normal to the cell face (Fig. 1).

The blending of upwind and downwind schemes is dynamic and accounts for the local
distribution of the volume fraction. However, if the local Courant number Co is too large,
the dynamic nature of the scheme may cause convergence problems. In order to prevent
this, the HRIC discretization also takes into account the value of Courant number, yielding
the cell-face value of the volume fraction according to the following expression:

& if Co<03
AR if 0.7 < Co (8)
&+ (& — &) 3= otherwise ‘

Finally, the HRIC cell-face value of ¢ is computed according to Eq.(5) as follows:

(1 —&")(cp — cu)

HRIC

¢ ~=vcc+t(l-7)ep, 7= - (9)
Cp — Cc
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Figure 1: Notation and values used for Figure 2: NVD diagram and
NVD diagram and HRIC scheme. the HRIC scheme.

EXAMPLES

The breaking-dam experiment of Koshizuka at al. [10] is a very atractive problem which one
can use to demonstrate the qualitative behaviour of the method as well as its applicability
to problems with breaking and overturning waves.

Figure 3: Comparison of experimental visualisation [10] and computatlon of the breaking-
dam flow 0.5 seconds after one side wall is removed. :

In this case it is important to consider the flow of both water and air, especially when
air becomes trapped in water, as shown in Fig. 3. Water slides along an air cushion which
due to large buoyancy force tends to rise up and to break up the water layer which sits on
it. The predicted form of the free surface has all qualites of the free surface observed in the
experiment.

Another example is sloshing in a quadratic tank, which involves four fluids of different
density. The initial distribution of those four fluids is shown in Fig. 4.a. The fluid densities
are 1, 250, 500, 750 and 1000 kg/m?3. The fluids are colored according to their densities;
black is used for the haviest and white for the lightest fluid. Since the initial distribution
of fluids cannot be preserved, they star moving. Figure 4.b shows an arrangement of fluids
shortly after the begining of the simulation. The heviest fluid pushes others trying to reach
the state of its minimum potential energy. After a wail all motions die out due to the work
of the viscous forces, and the system reachs the state of its minimum potential energy, which
is shown in Fig. 4.c.

SUMMARY
In this paper we have shown how the free-surface capturing method [1] can be used for simu-

lation of multicomponent free-surface flows. The examples show good qualitative behaviour
of the method when applied to multicomponent fluid flows. In the future, the method will

3



Figure 4: Sloshing of four fluids in a tank.

be tested for the praxis more relevant situations and problems for which quantitative vali-
dations are also possible.
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VISCOUS FLOW CALCULATIONS PAST A YACHT HULL
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Summary. The present work is concerned with the calculation of the turbulent flow-field around a
yacht hull with a keel. The RANS equations are solved in two blocks and boundary conditions are
exchanged between them until convergence is reached. The k-& model is adopted to simulate
turbulence and the solution algorithm follows the fundamental concepts of pressure-correction
methods on staggered grids.

1. Introduction

The impressive development of CFD methods has grown to be an extremely valuable tool for
designs in marine hydrodynamics. Among the problems which can be studied effectively by CFD is
the influence of appendages on the flow structure around the hull. There are two general approaches
that may be followed to perform computations in such complex domains. According to the first one,
the calculation domain is divided in blocks and the numerical solution proceeds treating them either
as a whole or separately by exchanging boundary conditions. In the second approach an
unstructured grid configuration is employed to cover partly “difficult regions” or, alternatively, the
whole calculation domain. Each method exhibits its own advantages and shortcomings with respect
to accuracy and convergence, depending on the examined geometry. The aim of this work is to
present the fundamental aspects of a two-block solution that has been developed to calculate the
turbulent flow field around a yacht hull including an extended keel. The main objective of the
method is to compute the total resistance of the body in order to study the sensitivity of results with
regard to the size and the shape of the keel.

2. Grid Generation

The calculation domain around the complete configuration is divided in two blocks, the one
surrounding the hull and the other surrounding the naked keel which has the shape of a three-
dimensional swept wing. In both cases the computational grid is generated by applying the
conformal mapping technique. The mesh around the hull consists of subsequent plane orthogonal
curvilinear grids which are created by transforming the transverse sections onto the unit circle [1].
A similar C-type grid is generated around the keel where the wing sections are transformed on the
unit circle following again a general conformal mapping approach, [2]. Characteristic grid sections
of the combined blocks are shown in Fig. 1.



3. Governing Equations

The finite volume method has been employed to solve the transport equations which govern the
steady, incompressible and turbulent flow past the examined vessel. In a local 3D orthogonal
curvilinear system (x;, xj, X)) with metrics (h;, h;, hy) the ui-Reynolds (or time-averaged Navier-
Stokes) equation reads [1]:

0 a(hjhluiui)+ a(hihiujui)Jr 8(h,hu,u,)
h,h h, ox. X . ox,

! J

1 5 .
= _h_:f +pu K +pufK“ -puu Ky —puu Ky +(Gii _ij)KJi +

1 1

+(Gii _Gu)Ku + 0y (zKij * Klj)"'gn (2Kn + Kjl)+
. 0o . . '
1 do +i o +_1_6crl, (1)

h, dx; h; ox; h, o,
where u;, uj and uj are the mean values of the velocity compbnents and Kj; stands for the curvature
tensor. The stress tensor components g are evaluated by employing the standard two-equation k-&
model. The differential equations (1) are integrated in control volumes corresponding to a staggered
grid arrangement [1] and discretized following second order finite differences in space. The
resulting algebraic equations comprise an elliptic system for each variable, while a hybrid scheme
[3] is adopted to model the convective and diffusive terms.

4. The Solution Algorithm

An iterative procedure is followed to attain convergence in both blocks. A first solution is
completed for the bare hull, i.e. neglecting the keel effects. To achieve fast convergence, the
successive grid refinement technique described in [3] is combined with a parabolic solution of the
discretized equations. In this block, the external boundaries are placed at an adequate distance from
the body, so that Dirichlet-type conditions can be applied assuming that the flow is undisturbed. At
the exit plane Neumman.boundary conditions are applied for each variable, except the pressure
which is extrapolated. The turbulence effects close to the body surface are taken into account by the
wall function application [1].

Once convergence has been achieved in the first block, the values of variables on the external
boundaries (B), Fig. 2, of the second block are calculated by linear interpolation. Evidently, the C-
grid around the keel is located within the first block which is used to compute the flow past the hull.
The solution in the second domain is obtained by combining a marching procedure with a fully
elliptic one : the velocity components and the turbulence quantities are calculated as elliptic on
wing sections while in the third direction a parabolic solution is followed, corresponding to a sweep
of the domain. On the contrary, the pressure-correction equation is solved by a fully elliptic solver
at the end of the aforementioned sweep. This treatment is necessary since the lateral velocity
component (along the wing span) may take positive or negative values, according to the examined
incidence, that influence strongly the convergence rate. At the exit plane of the domain under
consideration non-reflecting conditions are adopted [4], while the wall functions are again
employed near the solid surface.

When the solution is completed in the second block, boundary conditions are specified by linear
interpolations on the surface (A), Fig. 3, which is located within the calculation domain. These
values are adopted as internal Dirichlet conditions for the first block, i.e. no solution in the interior
of (A) is performed. The solution proceeds again until convergence is achieved around the hull, etc,
until the calculated total forces of the combined geometry remain practically constant.



5. A Test Case

A first application has been carried out for a yacht hull which has been tested experimentally in the
towing tank of the Laboratory for Ship and Marine Hydrodynamics of NTUA. The waterline length
of the model is 3.73 m and the span of the keel 0.80m. The latter has approximately the shape of a
NACA 0018 section. Computations were performed for a symmetric case (i..e. zero incidence) at
the low Froude number of 0.16 in order to reduce as far as possible the free surface effects. The
corresponding Reynolds number was equal to 4.27x10°. A grid of 60x60x180 nodes was used in the
first block, where the first number denotes the nodes girthwise, the second normal to the body
surface and the third is the number of transverse sections. With the same notation, a 238x20x40 grid
was employed for calculations around the keel. In order to compare the calculated total resistance of
the bare hull, experiments were carried out with and without the keel. In the first case, the computed
total resistance of 0.387 Kp was quite close to the measured one of 0.370 Kp. Then, the described
procedure was applied to calculate the effect of the keel. Convergence was achieved in 5 block-
iterations and the computed resistance was found equal to 0.570Kp which is lower by almost 7%
than the measured one. Apart from the numerical uncertainties, this discrepancy may partly be
attributed to the end effects of the geometry of the real keel which were not taken into account in
the calculations. In any case these results have been considered very encouraging and the research
work is continued with applications of the method at various incidence angles .
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The level set technique applied to 2-d wave problems

Mathias Vogt and Lars Larsson

Abstract

A level set technique is used with a finite volume method to solve the incompressible Navier-
Stokes equations for 2-dimensional free surface viscous flow simulations. Numerical parameters,
such as air height, grid density and the width of the band where the physical properties change from
air to water are systematically varied. The level set and the moving grid methods are compared for a
bottom bump and a submerged NACA 0012 hydrofoil. Solitons generated by a bottom mound and
the onset of breaking as function of submergence and speed of the hydrofoil are also predicted.

Level set method

A modern numerical algorithm for viscous flow to treat moving boundaries based on a fixed grid is
the level set technique, Osher and Sethian (1988). In the level set formulation and non-dimensional-
ized by the reference length L, the free stream velocity U, and the density, p, and the viscosity, v, of

water the Navier-Stokes equations may be written as
2.
~ o &Vm Vp Vx,
n, = -0 -Va+ PR
CiRe G py
where & is the velocity vector, p is the pressure, subscript ¢ denotes the time derivative, V" is the
Laplacian operator and V is the gradient operator. Re = U_L/V is the Reynolds number and

Fn = U, /gL is the Froude number. {; and {; are density and viscosity functions dependent on

the level set function, ¢.

The level set function is a smooth scalar function defined in the whole domain, including both air
and water, and the interface is a subset with a value of zero of this function. Initially, the function is
equal to the distance, with sign, from the interface. For later times the value is obtained from the
equation

¢g = —U- Vq)
This means that the level set function moves with the fluid as an extra quantity. The interface may
thus be found from the location where the function is zero. To smooth the jump at the interface the
physical properties are smoothed in a band, defined between two values of the level set function,
around the zero level set. To keep the band width constant in time the level set function is reinitial-
ized by iterating a Hamilton-Jacobi equation

0, = 1-|V¢|
to steady state. This ensures that the gradient of the level set function is one. Depending on the sign
of the level set function the flow properties are given appropriate values

1 if ¢>a _
- A if ¢<-a where Sp=0= (1)
iT ] ” AL, =05(1-1)
G+ AC, sini (ﬁ) otherwise



and A, and A, are the ratios between the air and water properties for the density and viscosity respec-
tively. o is half the finite thickness of the band in which the density and viscosity change.

The level set method has the potential to simulate overturning and breaking of waves and even
merging without special treatment. Geometrical quantities are not recalculated when the free surface
moves like they have to in the moving grid method. It is straightforward and simple to implement the
level set method and no complexities are added when it is extended to three dimensions.

Numerical formulation

In the present method the equations of motions, the Navier-Stokes equations, are defined on a
staggered grid system. The fluid domain is discretized by a finite-volume formulation and velocity
and pressure are updated with a time splitting fractional step method combined with a velocity and
pressure simultaneous iteration method. Convective terms and equations for the free surface are dis-
cretized with third order upwind schemes.

Turbulence is modelled with the standard k- model with wall functions. The turbulence model
can not handle the smoothed density and viscosity in the level set formulation near the free surface.
So, when the level set method is used the turbulent quantities are solved up to a grid line a few cells
under the deepest wave trough where the turbulent viscosity is assumed to be negligible.

One way to apply non-reflecting boundary conditions is to extend the computational domain with
an added dissipation zone, Hino et al. (1993). The level set function is damped with an artificial
wave damping function, v, as follows

xX—-x, 2
gif = "ui-g%_y(x)(ply:yfs Where Y(X) = A[xo—'de ]fxdsxsxo

’

0 otherwise

A is a constant, x,, is the x-coordinate at the outflow boundary and x,is defined as x; = x_ — 2nFn?.

Since the initial free surface does not necessarily coincide with a node, the level set function at y =
Vs, ¢|y - is calculated by linear interpolation. In the moving grid method the kinematic free sur-
face boundary condition is modified with the damping function in a similar manner. This method
increases the computational cost undesirably, especially for 3-D computations. Another method is to

match the Navier-Stokes equations on the outlet boundary using an anisotropic propagation wave
equation, Jin and Braza (1993). A modified version of this, used in the moving grid method is

2
du, du, Ju,
= +U=——V—s
ot 19x 1 0 x%
u, is given by the continuity equation whereas pressure and the free surface are linearly extrapolated.
Today there is no such method in the level set formulation. For more details on the numerical imple-

mentation see Vogt (1998).

=0,

Results and discussion

For most cases here the turbulence had no significant effect on the free surface wave profile and
was therefore omitted for those cases.

A grid density test for the case of waves generated by a submerged hydrofoil, Duncan (1983), run-
ning at Fn=0.567 and non-dimensional depth, d=1.034 is shown in figure 1. The medium grid is
hereafter used. Since ship flow calculations mostly concern the water flow only, and due to the fact
that the introduction of a band in which the physical properties change is an unphysical approxima-
tion, it is favourable to keep the air domain and the band width to a minimum. It is shown here, fig-




ure 2, that for stationary non-breaking waves the band has little influence on the wave profile when
the number of cells in the direction normal to the free surface is restricted to a few cells in the band.
Further, the air domain only needs to be about 10 cells from the free surface and thus does not affect
the computational cost significantly, figure 3. Computations with the moving grid method and the
level set technique are compared with experiments in figure 4. With the moving grid method the
wave troughs and the first wave are not as well predicted as with the level set technique while both
phase and amplitude of the last wave is better predicted with the moving grid method than with the
level set technique.

The waves generated by a bottom bump, Cahouet (1984), at Fn=0.43 are compared with computa-
tions with the moving grid method and the level set technique in figure 5. To get a stable solution the
turbulence model was switched on. The non-reflecting outlet boundary condition was used in the
moving grid method and with the level set technique the convective terms were computed with a
hybrid scheme with the coefficient of 0.2 i.e. 80% central differences and 20% first order upwind
scheme. The dissipation of the waves computed with the level set technique is not visible in the fig-
ure but further downstream the waves are damped.

The flow over a bottom mound, Lee et al. (1989), with a smusmdal shape at Fn=0.9 is shown in
figure 6. The upstream advancing solitons, the depressed water level behind the mound and the trail-
ing waves are clearly visible.

Since the density and viscosity are smoothed near the free surface and there is no turbulence
model included in the level set formulation, the stresses near the surface cannot be expected to be
correct. Nevertheless, it is shown in figure 7 that it is possible to detect the onset of breaking for a
submerged hydrofoil running at different depths and Froude numbers. The definition for breaking
was taken to be when the normal to the surface was pointing downwards, even though spilling break-
ing occurs long before that. This was never a problem because a slight change in the depth or Froude
number conditions for values near the border line between the breaking and non-breaking regions
resulted in an abrupt change of the wave profile.

A breaking wave generated by a submerged hydrofoil at Fn=0.425 and d=0.50 is shown in figure
8. The result is only qualitative since the resolution is insufficient, but it shows that the level set
method is capable handling changes in topology.
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A Rankine Source Method for Wave Resistance Minimization
Hironori YASUKAWA,  Nagasaki Ezperimental Tank, Mitsubishi Heavy Industries*

1. Introduction

Ship hull forms with minimum wave resistance obtained through a series of iterative calculations
by Rankine source method in conjunction with optimization technique (nonlinear programming)
have been presented, e.g., by Kim (1989), Janson et al.(1994), Yasukawa (1995) and Mifune et
al.(1995). However, computational time is considerable large until obtaining the converged
solution since Rankine source method spends much time in evaluating the wave resistance.

This paper proposes a Rankine source method, which is here called Rankine Source Kochin-
Function Method (RSKFM), to evaluate the wave resistance with short computational time for
the hull form optimization. This method deals with a problem of wave resistance change when
slightly modifing the hull form based on the given mother ship. As an application example of the
present method, calculation results are introduced with respect to the hull form optimization
based on Series 60 (Cp=0.6) hull using the present RSKFM in conjunction with the optimization
technique.

2. Wave Resistance for a Modified Hull Form

In the coordinate system, z-axis is defined as direction from the ship stern to the fore, y-axis
as lateral direction and z-axis as vertical upward. The z — y plane is defined as a still water
surface.

Denoting an original hull form as Fy(z,y,2) = fo(z,z) Fy = 0, the modified hull form is
represented as F'(z,y, z) = Fo(z,y,2) F f(z, z) = 0, where a hull form modification quantity is
expressed as y = % f(z,2). The f is assumed to be small in quantity. Total velocity potential
around the modified hull form ®(z,y, z) is represented as:

&(z,9,2) = do(z,v,2) + d1(z,y,2) + ¢(2,y, 2) - (@)

where ¢g means the double-body flow potential for the original form, ¢; the steady wavy flow
potential for the original form and a perturbation potential due to the hull form modification
¢. It is assumed that ¢ is the same order as ¢ and is small in comparison with ¢.

The free-surface condition proposed by Baba (1976) is employed as the free-surface condition.
Then, free-surface conditions with respect to ¢ and ¢ are represented as follows:

0 8 5* dp1 _

(u0%+voa—y) $1+ 9 =9D(z,y) on z=0 (2)
7] a5 9

(g +w5y) #+957 =0 n =0 @

where

Dle3) = 52 (ol )u0) + 3 (ol odun), Go(ev) = 2o(U7 1 = )

U denotes the ship velocity, (o the wave elevation based on double-body flow, (ug, vg) the velocity
component of the double-body flow on still water and g the acceleration gravity.
The hull surface condition should be fulfilled on the surface of the modified hull form and is

represented as follows:
(Vo + Vg1 +Ve¢)-VF =0 on y = =x(f + fo) (4)
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Linearizing the equation so as to fulfill the boundary condition on the hull surface of the original
form, the following conditions with respect to ¢1 and ¢ are obtained:

%E:% = O(¢%)¢1f) on y= +fo i (5)
g% = ny(f'b{]mf:n +¢02fz) + O(¢2,Q5f, ¢¢1,f2) on Yy = :{:fo (6)

(nz,ny, n;) demotes outward normal vector of the hull surface.  The boundary value problems
for the original ship (¢g,#1) can be solved easily by Rankine source method (Dawson 1977).
Therefore, the residual problem is to solve the problem with respect to ¢. The boundary
conditions of ¢ are the same form as those of ¢; except the right hand side, which is the
flow perturbation term, of the boundary conditions. Using similar Rankine source method
to that for ¢;, the problem with respect to ¢ can be solved easily. The position where the
present hull boundary condition should be fulfilled is the original ship hull surface. This means
that rearrangement of the hull and free-surface panels is not necessary for evaluating the wave
resistance against the various hull form modification. This feature is convenience for reduction
of computation time of the wave resistance. '

In the boundary value problem of this form, the following Kochin-function for evaluating the
wave resistance can be defined (Yasukawa 1998):

Hr(6) = H1(0) + H(6) : (7)
where
H(8) = - ff ¢1(z,y, 2) (ngicosd + nyisind + n,) k E(0;z,y,2)dS
s
e .
- f/; $1(z,y,0) [go,;(tpx + 2) cos® 8 + 2(¢pg + 1)y cosfsin §
F
+2sin® 6] KE(6;7,, 0)dzdy  — f fs D(z,)E(6; ,y,0)dzdy  (8)
F -
H©) = [[ ny(duafet00:F:) (07,9, 2)d8
H

- /f #(z,y, z) (ngicosb + nyisind + n;) kE(6; z,y, z)dS
Su

2
- % fS qb(x!yr 0) [‘P::((Pz + 2) 0032 0+ 2((,05 + ]_)(py cosfsiné
F

+p2sin’ 9] K2E(8; z,y,0)dzdy (9)

. : 3 Ko g
E(9;z,y, z) = exp{ik(zcos + ysinf) + zk}, k= 23’ = i

where S means the hull surface and Sr the free-surface(still water surface). ¢ is perturbation
potential of the double-body flow. Then, wave resistance R,, is represented as:

o [ gy
Bo=on _w/alHT(B)l cos® 6 (10

3. Hull Form Modification Function f

For convenience of the treatment, the modification quantity from the original form f(z,z) is
defined as the following simple formula (Suzuki 1998):

f(z, z) = fo(z, z) x w(z, 2) (11)
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w(z,z) =) > Ay sin{rr (Z?)_JZ) } sin{n(iﬁ_?) } (12)

i=1j=1

Aij, 2o, 20, t and ¢ are parameter for the hull form modification and become the design variables
in the optimization procedure. Stem and stern profiles can’t be modified for the hull form
improvement so far as use of this formula.

4. Minimization of Series 60(C}, = 0.6) Hull Form

A package routine of the optimization technique with External Penalty Method is employed to
treat the design constraints and Hooke-Jeeves’ pattern search method is adopted for local search
of the solution (Parsons 1954). The solution algorithm in this method is quite simple because
the derivatives of the objective function with respect to the design variables are not necessary.

Optimizations are carried out for Series 60 (Cp=0.6) hull. As design constraints, we employ
constant displacement volume, constant length perpendicular, constant breadth and constant
draft.

Fig.1 shows 2 fore body plans with minimum wave resistance at 0.2 and 0.3 in design F,, where
F, is Froude number based on ship length. In case of F;, = 0.2, the optimum form is almost the
same as the original form. The original hull form may be close to the optimum hull form in case
without protruded bulb in fore hull form. In case of F,, = 0.3, the hull form where the sectional
area increases near S.5.9 and decreases near S.5.7 1/2 was obtained as the optimum hull form.
Fig.2 shows the comparison of sectional area ratio curves. The sectional area curve of so-called
high speed type is obtained as the optimum form.

Fig.3 shows the history of wave resistance coefficient based on ship length Cyr, through the
optimization calculation at F, = 0.3. The converged solution is obtained about 350 step. The
reduction ratio of the wave resistance is about 11%. This computational time was about 5 hours
for work station with 10.50 in SPEC{p95.

At the workshop, I should be able to present further applications of this approach to more
realistic hull forms.
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Nonlinear Wave Resistance Calculations
Using a Finite Difference Euler Method

by Daohua Zhang and Allen T. Chwang

ABSTRACT  An inviscid flow with a free surface around a Wigley hull is studied
numerically. The Euler equations and the continuity equation are solved with fully
nonlinear free-surface boundary conditions. A moving grid system is used to fit the
deforming free surface at each time step. Time integration is made by a time-splitting
fractional-step method while the convection terms are discretized by the QUICK
scheme. Computations are performed at six Froude numbers. As a result, calculated
hull-side wave profiles and drag coefficients show very good agreement with the
experimental data. The entire wave system agrees well with the Kelvin wave pattern.

. INTRODUCTION

Wave resistance is the largest component of the total resistance of a ship at high speed,
and this has attracted a lot of theoretical and experimental research over the years. The
nonlinearity of the problem and the associated free-surface boundary conditions make it
difficult to predict the free surface flows around a ship accurately and efficiently. With rapid
growth in computer capacity, numerical methods are becoming more popular for analyzing
flow problems in hydrodynamics and ship design. The methods are split into two main
categories: potential-flow and viscous-flow methods.  Traditionally, free-surface flow
problems have been solved by the potential-flow theory, since in many practical applications
the wave pattern and wave resistance are the only information needed. So far, most of
popular computer codes in ship design are all potential-flow methods [1]. The modern
methods based on Navier-Stokes equations with a free surface are being developed and are
Just making their way into ship wave problems [2, 3]. The frictional resistance can be
obtained by the Navier-Stokes methods at a cost of significant computational resources.

The inviscid flow methods based on the Euler equations have played an important role in
aerodynamics, but they never become popular in hydrodynamics. Hino [4] computed a free
surface flow around a submerged hydrofoil by both Euler and Navier-Stokes equations, and
Farmer et al. [1] developed efficient methods to compute Euler and Navier-Stokes solutions
for nonlinear ship wave problems. They found that the Euler solution with proper boundary
conditions was reasonable in comparison with experiments and other potential calculations.
This is encouraging since the Euler method requires significantly less computational
resources than the Navier-Stokes method.

Based on the authors’ previous two-dimensional Navier-Stokes method with a free
surface [5], the objective of the present work is to develop an efficient three-dimensional
Euler method for the free surface wave problem. Comparisons of numerical predictions with
experimental data for the Wigley hull show encouraging results for wave profiles and
resistance coefficients.

2. OUTLINE OF THE COMPUTATIONAL METHOD

A Cartesian coordinate system (x, y, z) is established as the reference frame in the physical
domain with the origin fixed at mid-ship on the mean free surface and the x-, y-, and z-axes in
the aft direction, towards the starboard, and upwards respectively. The unsteady Euler and
continuity equations with a free surface are solved for the mean-velocity components (i, v, w)
and the piezometric pressure ¢ = p+ z/F”2 , where F, = uo/,/gL is the Froude number, u,
the free stream velocity, L the ship length and g the gravitational constant. The governing
equations in conservative form for (u, v, w) and ¢ are partially transformed into numerically
generated boundary-fitted, non-orthogonal, curvilinear coordinate system (&, 1, {). Variables

I



are non-dimensionlized using the ship length L, free stream velocity u, and density p. The
transformed equations are solved using a regular grid and the finite difference discretization.
Spatial differentials are discretized using the second-order central differences and the QUICK
scheme is used for convection terms. Although the present solutions are for steady flows, the
equations are solved in unsteady form with time serving as a convergence parameter. Time
marching is carried out using a time splitting fractional step. A Poisson equation for the
pressure increment between two time steps is solved to enforce the mass conservation at each
time step.

One of the difficulties in solving free-surface flow problems is that the location of the free
surface is not know a priori and is part of the solution in the problem. On the instantaneous
free surface, both the kinematic and dynamic conditions must be satisfied. The kinematic
condition, implemented by the Euler method, is used to determine the free surface location
and the dynamic condition is to impose atmospheric pressure on the free surface. The grid
system is regenerated at each time step to fit with the new location of the free surface.

The impermeability condition is applied on the hull surface. On the symmetry plane
(y=0), derivatives in the y direction as well as the v component of velocity are set to zero.

At the far upstream, flow is uniform and free surface is undisturbed. The downstream plane
is taken sufficiently far from the ship and a dissipation zone with coarse grid is added there to
prevent the reflection of waves into the solution domain. . Detailed equations and the solution
procedure were given by Zhang & Chwang [5].

3. RESULTS AND DISCUSSION

Calculations are made on a Wigley hull with fixed sink and trim. The calculation domain
is taken as x (-1.0, 3.0), y (0.0, 1.0), and z (h, -0.7). An H-type mesh of 181x40x35 grid
points with 95x19 on the hull is used to perform simulations at six Froude numbers. The time
step is set to be A1=0.001.

The computed wave profiles along the hull, compared with experimental data of the
University of Tokyo are shown in Fig. 1. The agreement with the experiment is very good on
the whole. Some discrepancies are noted near the stern for smaller Froude numbers, where
separation and eddy losses may be present in the experiments. Bow waves are under-
predicted and phase lagged. The whole wave systems are also in excellent agreement with
the well known Kelvin ship wave pattern (Fig. 2).

In fact, most solutions presented at the CFD Workshop Tokyo 1994 showed an under-
prediction of the bow wave in comparison with data due to the inability of the numerical
methods to simulate a thin film (about 1.5 mm) and beads of fluid present near the bow
region. It was also observed at the workshop that most of the wave patterns showed rather
poor results in spite of the good prediction of hull-side wave profiles. Strangely enough, the
pressure drag is rather well calculated although the wave patterns are not acceptable [3].

The wave resistance is obtained easily by integrating hull surface pressure in the present
calculation (Fig. 3). Fig. 4 shows a comparison between the computed and experimentally
determined resistance coefficients, both derived from integrating the hull surface pressure.
The computed resistance coefficient shows a favorable agreement with the experimentally
determined value.

Many attempts to evaluate wave resistance at medium and high speeds are found in the
literature and most of them show a reasonable correspondence between measurements and
calculations. However, the interpretations of the results are not obvious. In fact, the actual
wave resistance is rarely measured but derived from the experiments, including some form-
factor effect of viscous resistance. In the present study, although both computed and
experimentally determined coefficients shown in Fig. 4 are derived by the same way, they are
different in the physical sense. The computed resistance by the Euler method under the
assumption of an inviscid fluid is the wave-making resistance, while the experimentally
determined one consists of wave-making resistance and viscous pressure drag because the
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surface pressure measured in the experiments is under the effect of viscosity. For a thin and
streamlined body like a Wigley hull, the viscous pressure drag is usually very small compared
with the wave-making resistance at medium and high speeds. Therefore, the computed wave
drag over-predicts the experimentally determined drag by a small amount. This can be seen
clearly in Fig. 5 where the resistance coefficient versus the Froude number is presented. It 1s
also seen from this figure that the experimental data show some oscillation with Froude
number due to the interaction between the bow and stern wave systems, while the numerical
predicted resistance curve does not have humps and hollows distinctly as the experimental
data do and it also mismatches the phase with the experimental data. However, the resistance
computed by the present method seems quite promising compared with the results presented
at the CFD Workshop Tokyo 1994, which presented the state of the art of CFD in ship
hydrodynamics. At present, the capability of predicting the wave resistance numerically is
not fully validated even for ranking purposes. Therefore, the predicted wave resistance
should not be used for absolute power predictions.
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Figure 1. Wave profiles along the hull-side.
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