Verhaltensmodellierung und Simulation eines Fractional-N-Teilers mit $\Delta\Sigma$ -Modulator in einer PLL für Empfänger-Anwendungen

Christoph Spiegel · chspiegel@gmx.net Universität Duisburg-Essen

Simulink-Simulation
VHDL-Simulation

Fractional-N-PLL mit $\Delta\Sigma$ **-Modulator** Inhalt

- Grundlagen
 - PLL (<u>p</u>hase <u>locked</u> <u>loop</u>)
 - Integer-N-PLL
 - Fractional-N-PLL
 - $\Delta\Sigma$ -Modulatoren
 - erster Ordnung
 - höherer Ordnung
 - MASH-Struktur (multistage noise shaping)
 - Dithering (Glättung)

Fractional-N-PLL mit $\Delta\Sigma$ -Modulator

Grundlagen: PLL

- **OSC** Referenzoszillator 1/R Referenzteiler
- Phasen-Frequenz-Detektor PFD
- Schleifenfilter LF

- CP Ladungspumpe
- 1/N Hauptteiler
- **VCO** spannungsgesteuerter Oszillator

- Integer-N-PLL
 - Hauptteiler N ist eine ganze Zahl
 - Frequenzteiler wird als digitaler Zähler realisiert
 - kleinstmöglicher Kanalabstand $\Delta f = f_{ref}$
 - Problem: bei kleinen Referenzfrequenzen f_{ref} ist die Schleife langsam
 - Abhilfe: gebrochenzahliger Hauptteiler
 - führt zu Fractional-N-PLL

- Fractional-N-PLL
 - Hauptteiler N ist eine gebrochene Zahl
 - Problem: gebrochenzahliger Zähler nicht realisierbar
 - Lösung: Umschalten zwischen zwei ganzzahligen Teilern, die im zeitlichen Mittel gewünschten gebrochenzahligen Teilerwert ergeben
 - kleinstmöglicher Kanalabstand $\Delta f = f_{ref} \cdot \Delta N$
 - Vorteil: es kann eine höhere Referenzfrequenz f_{ref} benutzt werden, die Schleife wird schneller
 - *△N*: "Auflösung" des Fractional-Teilers

- Fractional-N-PLL
 - Funktionsweise (Beispiel)
 - soll der Teilerwert N = 450,1 erreicht werden, muss der Teiler neunmal durch 450 und einmal durch 451 teilen
 - im zeitlichen Mittel ergibt sich der gewünschte gebrochenzahlige Wert
 - durch das deterministische Umschalten des Teilers entstehen "Fractional Spurs"
 - Abhilfe: Ansteuerung des Teilers durch $\Delta\Sigma$ -Modulator

- Vergleich Integer- / Fractional-N-PLL
 - Beispiel: GSM900-Band, Kanalabstand 200 kHz

• Integer-N-PLL ($f_{ref} = 200 \text{ kHz}, \Delta N = 1$)

N	4500	4501	4502	 4548	4549	4550
f _{VCO} / MHz	900,0	900,2	900,4	 909,6	909,8	910,0

TABELLE 1. Zuordnung von Teilerwerten N zu Frequenzen f_{VCO} am Oszillatorausgang bei einer Integer-N-PLL (f_{ref} = 200 kHz)

• Fractional-N-PLL ($f_{ref} = 2 \text{ MHz}, \Delta N = 0,1$)

N	450,0	450,1	450,2	 454,8	454,9	455,0
f _{VCO} / MHz	900,0	900,2	900,4	 909,6	909,8	910,0

TABELLE 2. Zuordnung von Teilerwerten N zu Frequenzen f_{VCO} am Oszillatorausgang bei einer Fractional-N-PLL (f_{ref} = 2 MHz)

- $\Delta\Sigma$ -Modulator greift in den Hauptteiler *N* ein
 - nur gebrochenzahliger Anteil x_f wird auf den Modulator gegeben
 - $\Delta \Sigma$ -Modulator setzt x_f in eine Folge ganzer Zahlen $n_i \in M$ um (M enthält 2^{μ} verschiedene Werte)
 - μ ist die Modulatorordnung, üblich sind Modulatoren erster, zweiter und dritter Ordnung
 - es gilt für den zeitlichen Mittelwert des Modulatorausgangs: $x_f = \overline{n_i} = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} n_i$

• $\Delta\Sigma$ -Modulator greift in den Hauptteiler N ein

Beispiel: x_f = 0,1 wird umgesetzt in eine Folge
2, -4, -2, 3, 0, 3, -1, -3, 2, 1, ...

- Realisierung
 - $\Delta\Sigma$ -Modulator erster Ordnung

– $\Delta\Sigma$ -Modulator zweiter Ordnung

- Realisierung
 - $\Delta\Sigma$ -Modulator dritter Ordnung
 - kaskadierter Aufbau

Fractional-N-PLL mit $\Delta\Sigma$ **-Modulator** Grundlagen: Realisierung $\Delta\Sigma$ -Modulator

• paralleler Aufbau (MASH 1–1–1 $\Delta\Sigma$ -Modulator)

 durch die "Noise Cancellation Logic" wird der Quantisierungsfehler zweier Stufen eliminiert

- Stabilität
 - $\Delta\Sigma$ -Modulator erster Ordnung
 - stets stabil (sofern x_f vom Quantisierer abgebildet werden kann)
 - $\Delta\Sigma$ -Modulator zweiter (dritter) Ordnung
 - stabiler Bereich in Abhängigkeit von $k_{\mu 1}$, $k_{\mu 2}$ (und $k_{\mu 3}$) kann berechnet werden
 - MASH 1–1–1 $\Delta\Sigma$ -Modulator
 - stets stabil, da er aus drei Modulatoren erster Ordnung besteht

- Dithering
 - durch Verwendung eines Pseudo-Noise Generators am Modulatoreingang kann das
 Ausgangsspektrum geglättet werden
 - implementiert wurde "LSB-Dithering", d. h. nur das niedrigstwertige Bit des Eingangsworts wird manipuliert
 - toggle bit dithering (einfach, führt aber zu Fehler)
 - add / subtract dithering (aufwendiger, fehlerfrei)

Simulink-Simulation

VHDL-Simulation

Fractional-N-PLL mit $\Delta\Sigma$ **-Modulator** Inhalt

- Simulink-Simulation
 - Modellierung
 - Simulationsumgebung
 - Ergebnisse
 - Simulationsparameter
 - $\Delta\Sigma$ -Modulator erster Ordnung
 - $\Delta\Sigma$ -Modulatoren höherer Ordnung
 - MASH 1–1–1 $\Delta\Sigma$ -Modulator

- Simulink-Simulation
 - Modellierung
 - die Beschreibung der Modulatoren im *z*-Bereich kann direkt in die Simulink-Umgebung übernommen werden
 - Simulationsumgebung
 - es wurde eine Simulationsumgebung erstellt, mit der eigenständige $\Delta\Sigma$ -Modulatoren simuliert werden können
 - ein Matlab-Skript stellt das Leistungsdichtespektrum des Signals am Modulatorausgang dar

- Simulink-Simulation
 - Ergebnisse
 - Simulationsparameter
 - Simulationsergebnisse hier für $x_f = 410/4096 \approx 0.1 = -20 \text{ dB}$
 - andere Werte x_f führen i. A. zu unterschiedlichen
 Ausgangsspektren
 - Wortbreite des gebrochenzahligen Anteils: 12 bit
 - Betrachtet wird das jeweilige Leistungsdichtespektrum des Signals am Modulatorausgang
 - FFT-Länge: 8192 S, 25 Mittelungen (spectral averages)
 - zunächst Ergebnisse ohne Verwendung von Dithering

• $\Delta\Sigma$ -Modulator erster Ordnung

- deutliche Fractional Spurs erkennbar

• $\Delta\Sigma$ -Modulator zweiter Ordnung

- Anstieg der Energie im trägernahen Bereich
- Unterdrückung der Fractional Spurs

• $\Delta\Sigma$ -Modulator dritter Ordnung

- Hochpasscharakteristik erkennbar
- Unterdrückung der Fractional Spurs

• MASH 1–1–1 $\Delta\Sigma$ -Modulator dritter Ordnung

- Hochpasscharakteristik erkennbar
- Unterdrückung der Fractional Spurs

• MASH 1–1–1 (mit "toggle bit dithering")

- glattes, spurious-freies Ausgangsspektrum durch Dithering

– Besonderheit: identische Spektren für alle x_{f}

Simulink-Simulation

VHDL-Simulation

Fractional-N-PLL mit $\Delta\Sigma$ **-Modulator** Inhalt

- VHDL-Simulation
 - MASH 1–1–1 $\Delta\Sigma$ -Modulator
 - Synthese der Digitalschaltung
 - Ergebnisse

- VHDL-Simulation
 - MASH 1–1–1 $\Delta\Sigma$ -Modulator
 - für die VHDL-Simulation wurde der MASH 1–1–1 Modulator ausgewählt, da dieser bei der Simulink-Simulation die besten Ergebnisse liefert

– Stabilität

- Form des Ausgangsspektrums (Noise Shaping)

- VHDL-Simulation
 - Synthese der Digitalschaltung

- VHDL-Simulation
 - Ergebnisse
 - das Verhalten des MASH 1–1–1 $\Delta\Sigma$ -Modulators wird durch die VHDL-Simulation verifiziert
 - das Design des MASH-Modulators wird f
 ür einen k
 ünftigen Radio-Testchip herangezogen

Simulink-Simulation

VHDL-Simulation

- ΔΣ-Modulatoren eignen sich besonders f
 ür den Einsatz in Fractional-N-PLLs
- Fractional Spurs werden bei ausreichender Modulatorordnung weitestgehend unterdrückt
- Dithering reduziert Spurs zusätzlich
- insbesondere der MASH 1−1−1 ΔΣ-Modulator arbeitet stabil und verfügt über ausgeprägtes Noise Shaping ⇒ somit optimaler Modulator für die Frequenzsynthese

Vielen Dank für Ihre Aufmerksamkeit!