Conception and implementation of a test system for automated tests of audio outputs with the method of acoustic fingerprinting

by

Prof. Dr.-Ing. Klaus Solbach

University of Duisburg-Essen Department of Microwave and RF-Technology Ali Sen University of Duisburg-Essen Department of Microwave and RF-Technology Dipl.-Ing. Michael Reiner Nokia Automotive Business Line R&D Center Bochum

- Introduction
- Overview of the Test System
- Development Process
- Audio Fingerprinting Theory
- Function of Audio Fingerprinting
- Implementation in Nokia Test Tool
- Result of Tests with a Car kit
- Conclusion

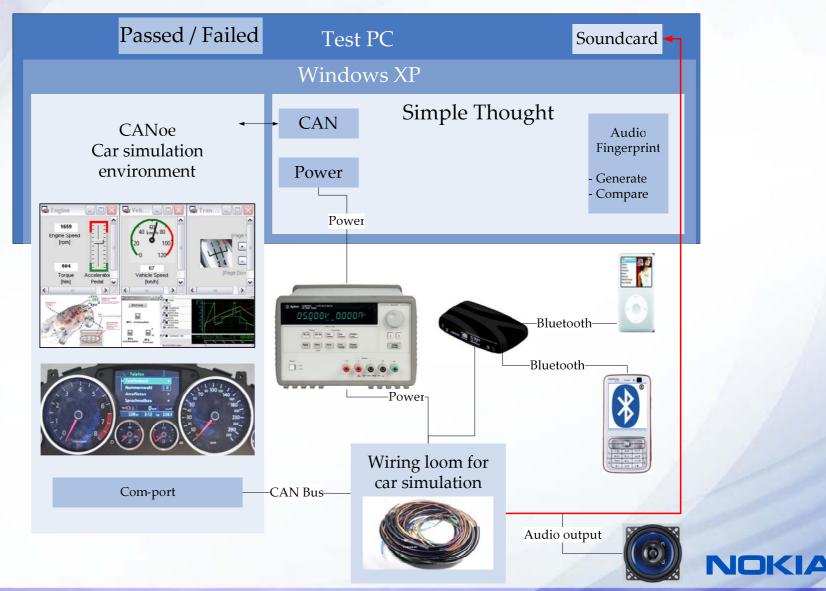
Introduction

What is an audio fingerprint ?

- Small distinguishing feature of an audio signal
- Independent from artist or song name (Metadata)
- Consists of the main perceptual properties of the audio signal

What are the requirements for audio fingerprint comparison:

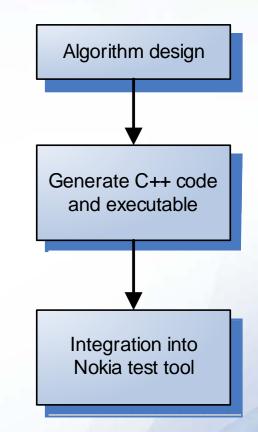
- Only the plain audio is needed
- Reliability
- Real-time audio comparison
- Support for short audio samples
- Support for both music and speech commands
- Limited implementation effort



Overview of the Test System

Development Process

First stage of development:


Used existing fingerprint theory and create fingerprint program in "MATLAB "

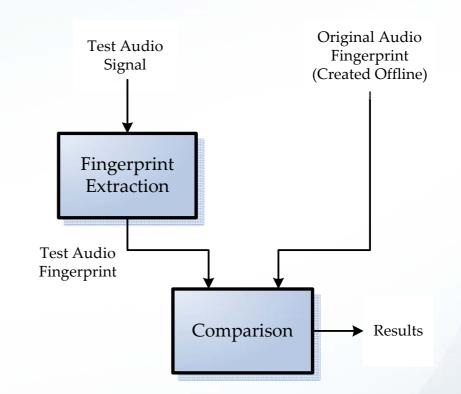
Second stage of development:

 Use "MATLAB" automatic C++ code generation and implement the fingerprint program in "Visual Studio"

Last stage of development:

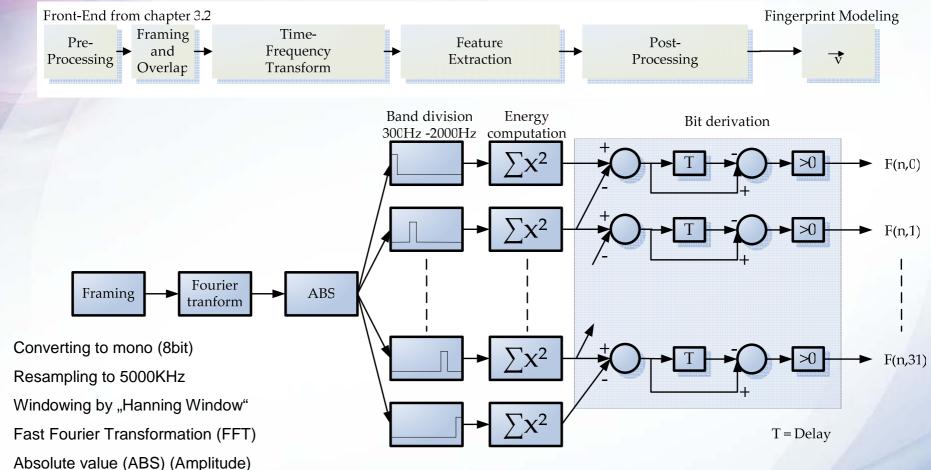
 Implementation of the fingerprint program in "Nokia test tool"

NOK


- Introduction
- Overview of the Test System
- Development Process
- Audio Fingerprinting Theory
 - Music Identification using Audio Fingerprinting
 - Overview of the Fingerprint Algorithm
 - The Pro and Cons
- Function of Audio Fingerprinting
- Implementation in Nokia Test Tool
- Result of Tests with a Car kit
- Conclusion

Music Identification using Audio Fingerprinting

Music identification process:


- 1. Create audio fingerprint from audio file
- 2. Read second audio signal from soundcard and extract fingerprint
- 3. Compare both fingerprints

Overview of the Fingerprinting Algorithm

- 6. Divide the generated spectrum into Bark bands
- 7. Energy computation and energy differences

1.

2.

3.

4.

5.

DUISBURG

NOKIA

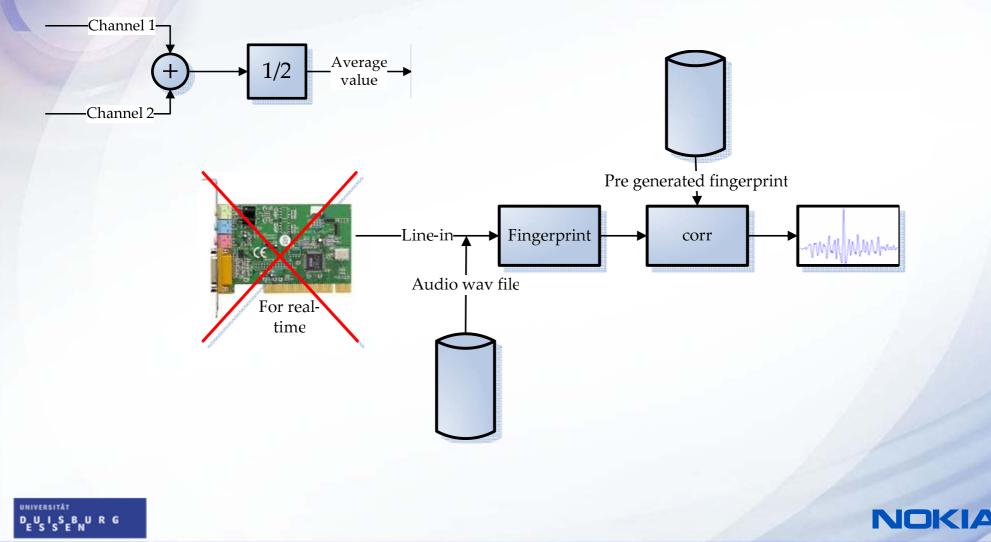
The Pros and Cons

Disadvantages:

Reacting to single sinusoidal sounds and DTMF tones

Advantages of this fingerprinting scheme:

- Adapted for all types of audio signals (speech, music, etc.)
- High accuracy regardless of small disturbance in recordings
- Independent from amplitude of the audio signal
- Easy "MATLAB"-implementation
- Good descriptive documents



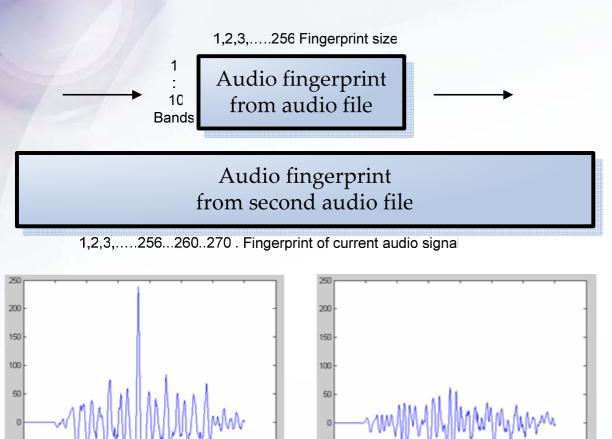
- Introduction
- Overview of the Test System
- Development Process
- Audio Fingerprinting Theory
- Function of Audio Fingerprinting
 - Optimisation of Audio Fingerprint Comparison
 - Results of Comparison with different Settings
 - Audio Fingerprint Comparison I
 - Real-time Audio Matching
 - Possible Applications
 - DTMF Tones
 - DTMF Tone Detection
- Implementation in Nokia Test Tool
- Result of Tests with a Car kit
- Conclusion

Optimisation of Audio Fingerprint Comparison

Results of Comparison with Different Settings

Final result:

Audio samples	Speech commands	Music's like Pop or Techno	Classics	Sinusoidal tones	DTMF tones
Reference	92.13%	95.83%	98.50%	1.37%	3.65%


With different setup:

Audio samples	Speech commands	Music's like Pop or Techno	Classics	Sinusoidal tones	DTMF tones
Reduce fingerprint size (N = 128)	92.13%	95.96%	98.96%	2.15%	2.47%
Increase fingerprint size (N = 384)	92.13%	96.05%	98.00%	1.82%	4.95%
Sample rate 3000 Hz	83.81%	84.62%	86.02%	1.52%	1.89%
Sample rate 4000 Hz	94.53%	94.01%	97.27%	2.91%	2.99%
Sample rate 7500 Hz	89.49%	1.80%	92.90%	3.15%	3.65%
Window size 1024	89.68%	92.71%	96.88%	2.65%	3.65%
Window size 4096	95.91%	95.96%	98.44%	3.56%	1.56%
Overlapping factor 32	92.42%	96.35%	98.63%	2.55%	2.15%
Overlapping factor 128	76.52%	79.21%	80.15%	5.54%	5.94%
Hamming window	92.70%	95.57%	98.57%	2.15%	1.56%
Blackman window	89.33%	95.31%	98.44%	1.22%	1.82%
Triangle window	91.76%	91.08%	97.85%	1.78%	3.78%
Only 10 bands	91.01%	95.75%	98.70%	0.95%	1.82%
Only 5 bands	85.96%	92.19%	93.75%	2.99%	3.32%
Vector elements 1 & -1	96.05%	96.86%	98.98%	3.29%	3.68%

NOKIA

Audio Fingerprint Comparison I

100

200

300

False

600

700

600

200

True

700

Preparations of the audio file to improve the comparison results:

Audio files with silent ending:

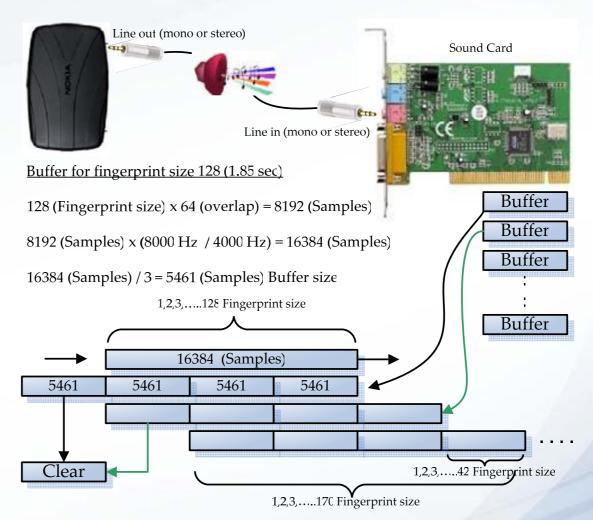
Delete the silent part at the beginning and end of audio file

Extend to short audio files:

After resampling the window size of a short audio file is under 2048 of window size

Extract fingerprint at each part:

For tests with forwarding



Real-time Audio Matching

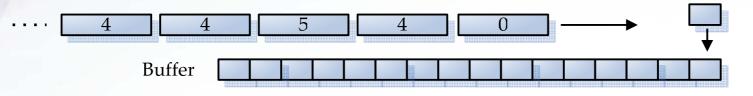
Three different settings for realtime audio matching:

- 1. <u>Best setting:</u> Fingerprint size = 256 (Need higher CPU speed)
- 2. <u>Optimal settings:</u> Fingerprint size = 128
- 3. Fastest settings:

Fingerprint size = 128 (Only 5 bands for reduce the buffer)

Buffer for fingerprint size 256 (3.6 sec) = 8192 (Samples) Buffer size

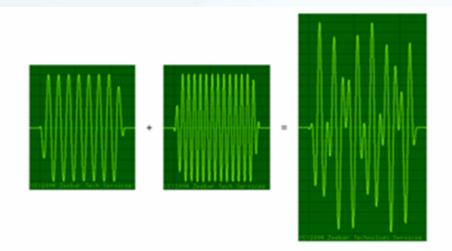
NOKI



Possible Applications:

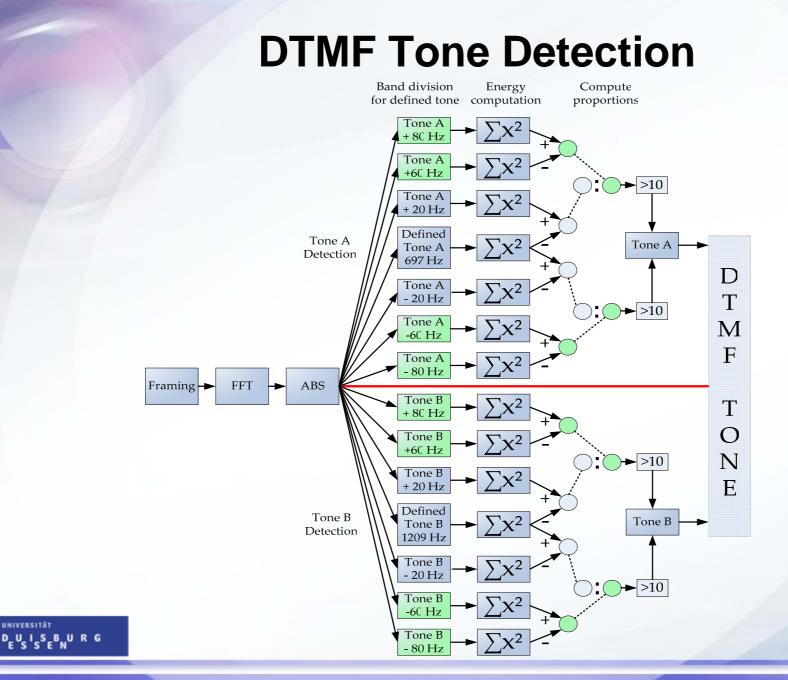

Validation of voice recordings (no voice recognition!)

Comparison of voice commands like phone numbers (0454418156)


 Multiple fingerprints for one audio file (different positions) to check different sound playback features (e.g. fast forward)

• Search audio in database

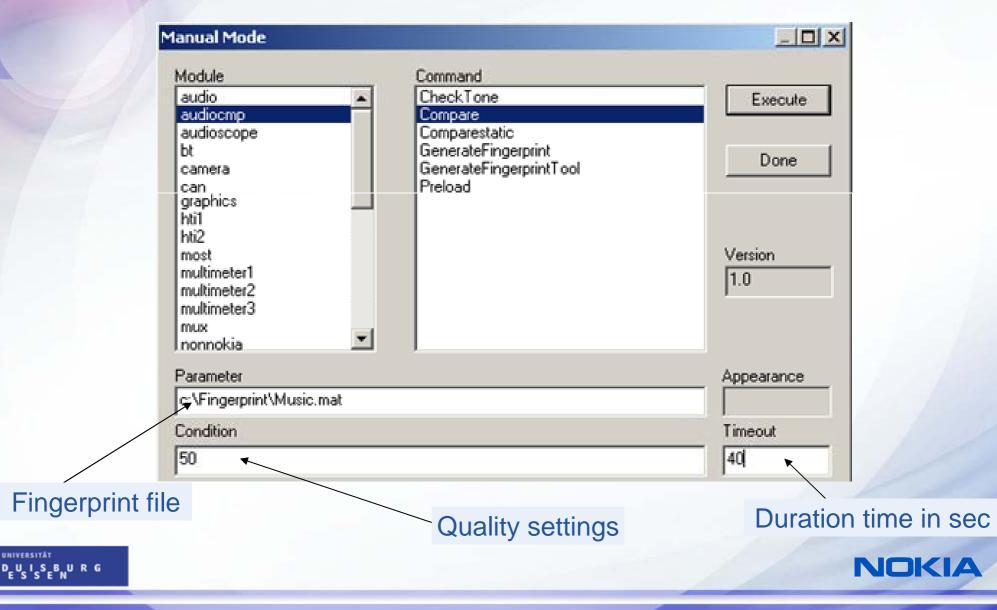
DTMF Tones



697 Hz Sine Wave + 1209 Hz Sine Wave = DTMF Tone "1"

DTMF keypad frequencies (with sound clips)							
	1209 Hz	lz 1336 Hz 1477 Hz		1633 Hz			
697 Hz	1	2	3	А			
770 Hz	4	5	6	В			
852 Hz	7	8	9	С			
941 Hz	*	0	#	D			

UNIVERSITÄT



- Introduction
- Overview of the Test System
- Development Process
- Audio Fingerprinting Theory
- Function of Audio Fingerprinting
- Implementation in Nokia Test Tool
 - Fingerprint Example in Manual Mode
 - Test Script
- Result of Tests with a Car kit
- Conclusion

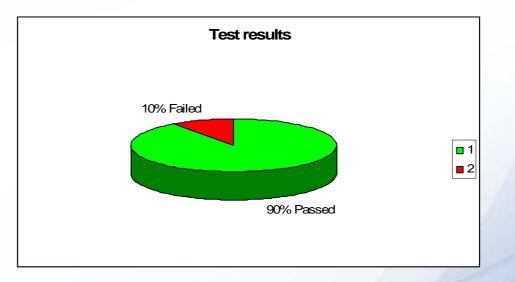
Fingerprint example in Manual Mode

Test Script

Test script:

#	Test script									
#	Filenan	Filename: Fingerprint.csv								
# ID:				Fingerprint						
#	#Label Interface Command			Parameter Condition Timeout Appearance EventOnError			Comment	Ref		
#	Examp	le			_		_	_		
		AudioCmp	Preload						The AudioCmp module is initialized	
		Power	Setvoltage	13					The power supply's output voltage is set to 13V	
		AudioCmp	Generate Fingerprint	C:\Music\Music 12.wav,C:\Finge rprints\Music12. mat,2					Generate fingerprint of an audio file and save it in defined folder	
		AudioCmp	Compare	C:\Fingerprints\ Music12.mat	50 %	40			Compare fingerprint with the audio input (line in) of the PC and returns passed or failed	
#										
	END	System	NOP						End of the Fingerprint script with no operation	

NOKIA


- Introduction
- Overview of the Test System
- Development Process
- Audio Fingerprinting Theory
- Function of Audio Fingerprinting
- Implementation in Nokia Test Tool
- Result of Tests with a Car kit
- Conclusion

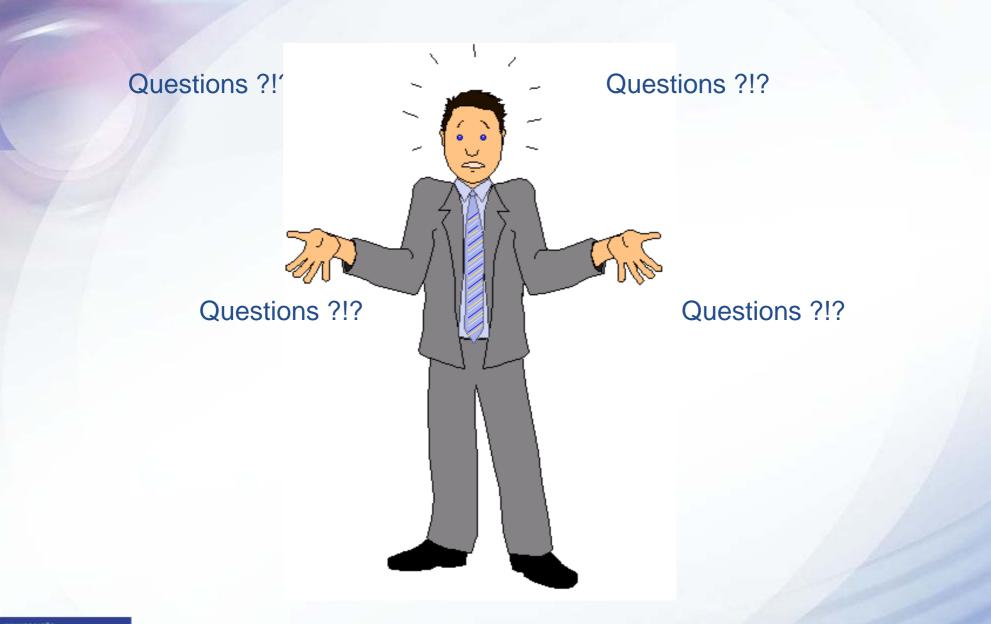
Result of Tests with a Car kit

Original audio Recorded audio samples	Techno	Рор	Classic
Techno	93.13%	8.37%	9.55%
Рор	11.89%	95.03%	10.36%
Classic	13.53%	7.46%	98.58%

Tests:

- Play, Stop, Pause
- Repeat
- Intro scan
- Skip track
- Shuffle
- Fast forward and fast backward

- Introduction
- Overview of the Test System
- Development Process
- Audio Fingerprinting Theory
- Function of Audio Fingerprinting
- Implementation in Nokia Test Tool
- Tests with the Audio Identification System
- Conclusion



Conclusion

- Fingerprint can be extracted from audio file
- Audio signal can be identified
- Similarity rate of almost 90%
- Identification rate of exact 100%.
- Stability of the developed test system is given
- To advance a search and record function can be added in future

Thank you for your attention!

