Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

UNTERSUCHUNG DER IMPULSANTWORT EINER ULTRABREITBANDIGEN ANTENNE MIT DIELEKTRIKUM IM FERN- BZW. NAHFELD

Sebastian Sczyslo

sebastian.sczyslo@stud.uni-duisburg-essen.de

29. Juni 2006

UWB-Antenne mit Dielektrikum

1 / 38

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

2 / 38

3 ⊳

29. Juni 2006

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

- Einleitung
- Grundlagen

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

- Einleitung
- Orundlagen
- Simulation

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

- Einleitung
- Grundlagen
- Simulation
- Messverfahren und Eigenschaften der verwendeten Antenne

2 / 38

29. Juni 2006

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

- Einleitung
- Grundlagen
- Simulation
- Messverfahren und Eigenschaften der verwendeten Antenne
- Messergebnisse

2 / 38

29. Juni 2006

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

- Einleitung
- Grundlagen
- Simulation
- Messverfahren und Eigenschaften der verwendeten Antenne
- Messergebnisse
- Zusammenfassung

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

- Einleitung
- Grundlagen
- Simulation
- Messverfahren und Eigenschaften der verwendeten Antenne
- Messergebnisse
- Zusammenfassung

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

• bestehendes Universalortungsgerät: Wallscanner Dtect-100

BILD: Dtect-100

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

• bestehendes Universalortungsgerät: Wallscanner Dtect-100

BILD: Dtect-100

● Verbesserung des Gerätes ⇒ Bestimmung der Wandfeuchte

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

• bestehendes Universalortungsgerät: Wallscanner Dtect-100

BILD: Dtect-100

 \bullet Verbesserung des Gerätes \Rightarrow Bestimmung der Wandfeuchte

Ziel: Aufbau eines Messplatzes zur Messung der komplexen Dielektrizitätszahl $\underline{\epsilon}_r$

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

- Einleitung
- Grundlagen
- Simulation
- Messverfahren und Eigenschaften der verwendeten Antenne
- Messergebnisse
- Zusammenfassung

Inhalt Einleitung Grundlagen Simulation Messverfahren und Antenne Messergebnisse Zusammenfassun ● 0 000 00 000 00 000 00 000 000	nisse Zusammenfassu	Messergebnisse 00 000 0 0 00	Messverfahren und Antenne 000 0	Simulation 0 00 000000	Grundlagen ●0 ○○○	Einleitung	Inhalt
---	---------------------	---	---------------------------------------	---------------------------------	-------------------------	------------	--------

DER DIELEKTRISCHE HALBRAUM

Inhalt	Einleitung	Grundlagen ●0 ○00	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung
--------	------------	-------------------------	---------------------------------	---------------------------------------	--	-----------------

DER DIELEKTRISCHE HALBRAUM

BILD: Reflexion am dielektrischen Halbraum

5 / 38

29. Juni 2006

Inhalt	Einleitung	Grundlagen ●0 ○00	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung
--------	------------	-------------------------	---------------------------------	---------------------------------------	--	-----------------

DER DIELEKTRISCHE HALBRAUM

Feldwellenimpedanz

$$\underline{\eta} = \frac{j\omega\underline{\mu}}{\underline{\gamma}}$$

BILD: Reflexion am dielektrischen Halbraum

Inhalt	Einleitung	Grundlagen ●0 ○00	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung
--------	------------	-------------------------	---------------------------------	---------------------------------------	--	-----------------

DER DIELEKTRISCHE HALBRAUM

Feldwellenimpedanz

 η

$$= \frac{j\omega\mu}{\underline{\gamma}}$$
$$= \sqrt{\frac{\mu_0}{\epsilon_0}}\frac{1}{\sqrt{\epsilon_r}}$$

BILD: Reflexion am dielektrischen Halbraum

Inhalt	Einleitung	Grundlagen ●0 ○00	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung
--------	------------	-------------------------	---------------------------------	---------------------------------------	--	-----------------

DER DIELEKTRISCHE HALBRAUM

Feldwellenimpedanz

 η

$$= \frac{j\omega\mu}{\underline{\gamma}}$$
$$= \sqrt{\frac{\mu_0}{\epsilon_0}}\frac{1}{\sqrt{\epsilon_r}}$$

BILD: Reflexion am dielektrischen Halbraum

Lösen des Randwertproblems über die Maxwell'schen Gleichungen:

$$\underline{\Gamma}_{0} = \frac{\underline{\eta} - \eta_{0}}{\underline{\eta} + \eta_{0}}$$

$$= \frac{1 - \sqrt{\underline{\epsilon}_{r}}}{1 + \sqrt{\underline{\epsilon}_{r}}}$$

S. Sczyslo (Univ.Duisburg Essen)

Inhalt	Einleitung	Grundlagen ●0 ○00	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung
--------	------------	-------------------------	---------------------------------	---------------------------------------	--	-----------------

DER DIELEKTRISCHE HALBRAUM

Feldwellenimpedanz

 η

$$= \frac{j\omega\mu}{\underline{\gamma}}$$
$$= \sqrt{\frac{\mu_0}{\epsilon_0}}\frac{1}{\sqrt{\epsilon_r}}$$

29. Juni 2006

5 / 38

BILD: Reflexion am dielektrischen Halbraum

Lösen des Randwertproblems über die Maxwell'schen Gleichungen:

$$\begin{split} \underline{\Gamma}_{\mathbf{0}} &= \quad \frac{\underline{\eta} - \eta_{\mathbf{0}}}{\underline{\eta} + \eta_{\mathbf{0}}} \\ &= \quad \frac{1 - \sqrt{\underline{\epsilon}_{\mathbf{r}}}}{1 + \sqrt{\underline{\epsilon}_{\mathbf{r}}}} \end{split}$$

 $\underline{\Gamma}_0$ entspricht der Übertragungsfunktion $H(\omega)$

S. Sczyslo (Univ.Duisburg Essen)

	Inhalt	Einleitung	Grundlagen ○● ○○○	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung
--	--------	------------	-------------------------	---------------------------------	---------------------------------------	--	-----------------

BILD: Reflexion am dielektrischen Halbraum

6 / 38

29. Juni 2006

|--|

$$\underline{\Gamma}_{0} = \frac{\underline{\eta} - \eta_{0}}{\underline{\eta} + \eta_{0}}$$

29. Juni 2006

BILD: Reflexion am dielektrischen Halbraum

6 / 38

	Inhalt	Einleitung	Grundlagen ○● ○○○	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung
--	--------	------------	-------------------------	---------------------------------	---------------------------------------	--	-----------------

$$\underline{\Gamma}_{0} = \frac{\underline{\eta} - \eta_{0}}{\underline{\eta} + \eta_{0}}$$

BILD: Reflexion am dielektrischen Halbraum

$$\underline{S}_{11} = \frac{\underline{Z} - \underline{Z}_0}{\underline{Z} + \underline{Z}_0}$$

|--|

$$\underline{\Gamma}_0 = \frac{\underline{\eta} - \eta_0}{\underline{\eta} + \eta_0}$$

BILD: Reflexion am dielektrischen Halbraum

6 / 38

Inhalt Einleitung Grundlagen Simulation Messverfahren und Antenne Messergebnisse Zusamme 00 0 000 00 000 ●00 00 000 000 00 00 000 000 00 00 000 000 00 00 000 000 00 00 000 000 00 00 000 000	enfassung
---	-----------

Die dielektrische Platte

BILD: Reflexion an der dielektrischen Platte

Lösungsmöglichkeiten

7 / 38

29. Juni 2006

Inhalt Einleitung Grundlagen Simulation Messverfahren und Antenne Messergebnisse Zusamme 00 0 000 00 000 ●00 00 000 000 00 00 000 000 00 00 000 000 00 00 000 000 00 00 000 000 00 00 000 000	enfassung
---	-----------

DIE DIELEKTRISCHE PLATTE

BILD: Reflexion an der dielektrischen Platte

Lösungsmöglichkeiten

• Maxwell'schen Gleichungen

7 / 38

Inhalt Einleitung Grundlagen Simulation Messverfahren und Antenne Messergebnisse Zusamme 00 0 000 00 000 ●00 00 000 000 00 00 000 000 00 00 000 000 00 00 000 000 00 00 000 000 00 00 000 000	enfassung
---	-----------

DIE DIELEKTRISCHE PLATTE

BILD: Reflexion an der dielektrischen Platte

Lösungsmöglichkeiten

• Maxwell'schen Gleichungen \Rightarrow ESB: $\lambda/4 - Transformator$

7 / 38

Inhalt Einleitung Grundlagen Simulation Messverfahren und Antenne Messergebnisse Zusamme 00 0 000 00 000 ●00 00 000 000 00 00 000 000 00 00 000 000 00 00 000 000 00 00 000 000 00 00 000 000	enfassung
---	-----------

DIE DIELEKTRISCHE PLATTE

BILD: Reflexion an der dielektrischen Platte

Lösungsmöglichkeiten

- Maxwell'schen Gleichungen \Rightarrow ESB: $\lambda/4 Transformator$
- Signalflussdiagramm

|--|

LÖSUNG MIT SIGNALFLUSSDIAGRAMM

BILD: Reflexion an der dielektrischen Platte BILD: Signalflussdiagramm

|--|

Lösung mit Signalflussdiagramm

BILD: Reflexion an der dielektrischen Platte BILD: Signalflussdiagramm

$$\underline{\Gamma}_{0} = \underline{\Gamma}_{1} + \underline{T}_{1}e^{-\underline{\gamma}_{2}d}\frac{\underline{\Gamma}_{2}\underline{T}_{2}e^{-\underline{\gamma}_{2}d}}{1 - \underline{\Gamma}_{2}^{2}e^{-2\underline{\gamma}_{2}d}}$$

|--|

LÖSUNG MIT SIGNALFLUSSDIAGRAMM

BILD: Reflexion an der dielektrischen Platte BILD: Signalflussdiagramm

$$\begin{split} \underline{\Gamma}_0 &= \underline{\Gamma}_1 + \underline{T}_1 e^{-\underline{\gamma}_2 d} \frac{\underline{\Gamma}_2 \underline{T}_2 e^{-\underline{\gamma}_2 d}}{1 - \underline{\Gamma}_2^2 e^{-\underline{\gamma}_2 d}} \\ &= \frac{\underline{\Gamma}_1 (1 - e^{-\underline{2\gamma}_2 d})}{1 - \underline{\Gamma}_1^2 e^{-\underline{2\gamma}_2 d}} \end{split}$$

innait Eineitung Grundlagen Simulation Messverlahren und Antenne Messergebnisse Zusammenfassun 00 0 00000 000 00 00000 00 00 000000 00 00 00000 00 00 000000 00 00 000000 00 00 00000000	Inhalt	alt Einleitung	Grundlagen ○○ ○○●	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung	
---	--------	----------------	-------------------------	---------------------------------	---------------------------------------	--	-----------------	--

SIGNALFLUSSDIAGRAMM MIT N REFLEXIONEN

BILD: Signalflussdiagramm mit n Reflexionen

$$\underline{\Gamma}_{n=2} = \underline{\Gamma}_1 + \underline{T}_1 \underline{\Gamma}_2 \underline{T}_2 e^{-2\underline{\gamma}_2 d}$$

innait Eineitung Grundlagen Simulation Messverlahren und Antenne Messergebnisse Zusammenfassun 00 0 00000 000 00 00000 00 00 000000 00 00 00000 00 00 000000 00 00 000000 00 00 00000000	Inhalt	alt Einleitung	Grundlagen ○○ ○○●	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung	
---	--------	----------------	-------------------------	---------------------------------	---------------------------------------	--	-----------------	--

SIGNALFLUSSDIAGRAMM MIT N REFLEXIONEN

BILD: Signalflussdiagramm mit n Reflexionen

$$\underline{\Gamma}_{n=2} = \underline{\Gamma}_1 + \underline{T}_1 \underline{\Gamma}_2 \underline{T}_2 e^{-2\underline{\gamma}_2 d}$$

$$\underline{\Gamma}_{n=3} = \underline{\Gamma}_1 + \underline{\Gamma}_2 \underline{T}_1 \underline{T}_2 e^{-2\underline{\gamma}_2 d} + \underline{\Gamma}_2^3 \underline{T}_1 \underline{T}_2 e^{-4\underline{\gamma}_2 d}$$

Inhalt	Einleitung	Grundlagen ○○ ○○●	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

SIGNALFLUSSDIAGRAMM MIT N REFLEXIONEN

BILD: Signalflussdiagramm mit n Reflexionen

$$\begin{split} \underline{\Gamma}_{n=2} &= \underline{\Gamma}_{1} + \underline{T}_{1} \underline{\Gamma}_{2} \underline{T}_{2} e^{-2\underline{\gamma}_{2}d} \\ \underline{\Gamma}_{n=3} &= \underline{\Gamma}_{1} + \underline{\Gamma}_{2} \underline{T}_{1} \underline{T}_{2} e^{-2\underline{\gamma}_{2}d} + \underline{\Gamma}_{2}^{3} \underline{T}_{1} \underline{T}_{2} e^{-4\underline{\gamma}_{2}d} \\ \underline{\Gamma}_{n} &= \underline{\Gamma}_{1} [1 - (1 - \underline{\Gamma}_{1}^{2}) e^{-2\underline{\gamma}_{2}d} \sum_{i=0}^{n-2} (\underline{\Gamma}_{1}^{2} e^{-2\underline{\gamma}_{2}d})^{i}] \end{split}$$

9 / 38

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

- Einleitung
- Grundlagen
- Simulation
- Messverfahren und Eigenschaften der verwendeten Antenne
- Messergebnisse
- Zusammenfassung

10 / 38

	Inhalt	Einleitung	Grundlagen 00 000	Simulation ● ○○ ○○○○○○	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung
--	--------	------------	--------------------------------	---------------------------------	---------------------------------------	--	-----------------

Zeitbereich vs. Frequenzbereich

ZEITBEREICH VS. FREQUENZBEREICH

Frequenzbreich, weil

11 / 38

S. Sczyslo (Univ.Duisburg Essen) UWB-Antenne mit Dielektrikum

	Inhalt	Einleitung	Grundlagen 00 000	Simulation ● ○○ ○○○○○○	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung
--	--------	------------	--------------------------------	---------------------------------	---------------------------------------	--	-----------------

Zeitbereich vs. Frequenzbereich

ZEITBEREICH VS. FREQUENZBEREICH

Frequenzbreich, weil

• Materialien zeitinvariant, aber frequenzvariant

11 / 38

29. Juni 2006
| | Inhalt | Einleitung | Grundlagen
00
000 | Simulation
●
○○
○○○○○○ | Messverfahren und Antenne
000
0 | Messergebnisse
00
000
00
0
00 | Zusammenfassung |
|--|--------|------------|--------------------------------|---------------------------------|---------------------------------------|--|-----------------|
|--|--------|------------|--------------------------------|---------------------------------|---------------------------------------|--|-----------------|

Zeitbereich vs. Frequenzbereich

ZEITBEREICH VS. FREQUENZBEREICH

Frequenzbreich, weil

- Materialien zeitinvariant, aber frequenzvariant
- Antenne ist eine Art Bandpassystem

11 / 38

Inhalt	Einleitung	Grundlagen 00 000	Simulation • • • • • • • • •	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

Zeitbereich vs. Frequenzbereich

ZEITBEREICH VS. FREQUENZBEREICH

Frequenzbreich, weil

- Materialien zeitinvariant, aber frequenzvariant
- Antenne ist eine Art Bandpassystem
- Auflösbarkeit im Zeitbereich eingeschränkt, aufgrund zu niedrigerer Samplingfrequenz des vorhandenen Oszilloskops

11 / 38

29.

Juni 2006

	Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung
--	--------	------------	--------------------------------	---------------------------------	---------------------------------------	--	-----------------

SIMULATION DIELEKTRISCHER HALBRAUM

BILD: Modell zur Simulation des dielektrischen Halbraums

Inhalt Einleitung Grundlagen Simulation Messverfahren und Antenne Messergebnisse 00 0 000 00 000 <	Zusammenfassung
--	-----------------

SIMULATION DES DIELEKTRISCHEN HALBRAUMS

BILD: Betrag von S_{11} über f

BILD: Phase von \underline{S}_{11} über f

Inhalt	Einleitung	Grundlagen 00 000	Simulation ○ ○● ○○○○○○	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung
--------	------------	--------------------------------	---------------------------------	---------------------------------------	--	-----------------

SIMULATION DES DIELEKTRISCHEN HALBRAUMS

BILD: Betrag von \underline{S}_{11} über f

BILD: Phase von \underline{S}_{11} über f

Inhalt	Einleitung	Grundlagen 00 000	Simulation ○ ○● ○○○○○○	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung
--------	------------	--------------------------------	---------------------------------	---------------------------------------	--	-----------------

SIMULATION DES DIELEKTRISCHEN HALBRAUMS

BILD: Betrag von \underline{S}_{11} über f

BILD: Phase von S_{11} über f

Inhalt	Einleitung	Grundlagen 00 000	Simulation ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung
--------	------------	--------------------------------	--	---------------------------------------	--	-----------------

SIMULATION DES DIELEKTRISCHEN HALBRAUMS

BILD: Betrag von S_{11} über f

S. Sczyslo (Univ.Duisburg Essen)

UWB-Antenne mit Dielektrikum

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

SIMULATION DER DIELEKTRISCHEN PLATTE

BILD: Modell zur Simulation der dielektrischen Platte

	Inhalt	Einleitung	Grundlagen 00 000	Simulation ○ ○ ○ ○ ○ ○ ○	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 00 00	Zusammenfassung	
--	--------	------------	--------------------------------	---	---------------------------------------	---	-----------------	--

BILD: Phase von S_{11} über f

Inhalt Einleitung Grundlagen 00 000	Simulation ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 0	Zusammenfassung
---	---	---------------------------------------	---	-----------------

BILD: $\operatorname{Re}(\underline{\epsilon}_r)$ über f

BILD: $Im(\underline{\epsilon}_r)$ über f

15 / 38

S. Sczyslo (Univ.Duisburg Essen)

UWB-Antenne mit Dielektrikum

Inhalt	Einleitung	Grundlagen 00 000	Simulation 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

BILD: S_{11} bei unterschiedlicher Reflexionsanzahl

Inhalt	Einleitung	Grundlagen 00 000	Simulation ○ ○ ○ ○ ○ ○ ○ ○ ○	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

Rückrechnung

$$\underline{\Gamma}_{0} = \frac{\underline{\Gamma}_{1}(1 - e^{-2\underline{\gamma}_{2}d})}{1 - \underline{\Gamma}_{1}^{2}e^{-2\underline{\gamma}_{2}d}}$$

17 / 38

Inhalt	Einleitung	Grundlagen 00 000	Simulation ○ ○○ ○○○●○○	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

Rückrechnung

$$\underline{\Gamma}_0=rac{\underline{\Gamma}_1(1-e^{-2\underline{\gamma}_2 d})}{1-\underline{\Gamma}_1^2e^{-2\underline{\gamma}_2 d}}$$

Dicke d ist zunächst bekannt

 \Rightarrow **Problem:** $\underline{\epsilon}_r$ ist in $\underline{\Gamma}_1$ und in γ_2 enthalten

Inhalt	Einleitung	Grundlagen 00 000	Simulation ○ ○○ ○○○●○○	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

Rückrechnung

$$\underline{\Gamma}_0 = \frac{\underline{\Gamma}_1(1 - e^{-2\underline{\gamma}_2 d})}{1 - \underline{\Gamma}_1^2 e^{-2\underline{\gamma}_2 d}}$$

Dicke d ist zunächst bekannt

 \Rightarrow **Problem**: $\underline{\epsilon}_r$ ist in $\underline{\Gamma}_1$ und in γ_2 enthalten \Rightarrow analytisch nicht auflösbar

Inhalt	Einleitung	Grundlagen 00 000	Simulation ○ ○○ ○○○●○○	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

Rückrechnung

$$\underline{\Gamma}_0 = \frac{\underline{\Gamma}_1(1 - e^{-2\underline{\gamma}_2 d})}{1 - \underline{\Gamma}_1^2 e^{-2\underline{\gamma}_2 d}}$$

Dicke d ist zunächst bekannt

- \Rightarrow **Problem**: $\underline{\epsilon}_r$ ist in $\underline{\Gamma}_1$ und in γ_2 enthalten \Rightarrow analytisch nicht auflösbar
- \Rightarrow Lösung: numerische Algorhitmen

17 / 38

Inhalt	Einleitung	Grundlagen 00 000	Simulation ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

Rückrechnungsalgorhitmen

• Complete-Bandwidth-Fit: MMSE über das gesamte Frequenzband

18 / 38

Inhalt	Einleitung	Grundlagen 00 000	Simulation ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

Rückrechnungsalgorhitmen

- Complete-Bandwidth-Fit: MMSE über das gesamte Frequenzband
- Splitted-Bandwidth-Fit: MMSE über Teile des Frequenzbands

18 / 38

Inhalt	Einleitung	Grundlagen 00 000	Simulation ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

Rückrechnungsalgorhitmen

- Complete-Bandwidth-Fit: MMSE über das gesamte Frequenzband
- Splitted-Bandwidth-Fit: MMSE über Teile des Frequenzbands
- **Get-thick:** quasianalytische Berechnung, zusätzlich Berechnung der Dicke

18 / 38

	Inhalt Einleitung	Grundlagen Simulation ○○ ○ ○○○ ○○ ○○○○○●	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00	Zusammenfassung	
--	-------------------	---	---------------------------------------	-----------------------------------	-----------------	--

GET-THICK

BILD: $\operatorname{Re}(\underline{\epsilon}_r)$ über f BILD: $\operatorname{Im}(\underline{\epsilon}_r)$ über fVorraussetzung: $\underline{\epsilon}_r$ stückweise konstant über der Frequenz

Inhalt	Einleitung	Grundlagen 00 000	Simulation ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

GET-THICK

BILD: $\operatorname{Re}(\underline{\epsilon}_r)$ über f BILD: $\operatorname{Im}(\underline{\epsilon}_r)$ über f

Vorraussetzung: \underline{e}_r stückweise konstant über der Frequenz

• Mittelwertbildung über eine Sinusschwingung ergibt den imReflektionsfaktor der Grenzschicht

Inhalt	Einleitung	Grundlagen 00 000	Simulation ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

GET-THICK

BILD: $\operatorname{Re}(\underline{\epsilon}_r)$ über f BILD: $\operatorname{Im}(\underline{\epsilon}_r)$ über f

Vorraussetzung: $\underline{\epsilon}_r$ stückweise konstant über der Frequenz

- Mittelwertbildung über eine Sinusschwingung ergibt den imReflektionsfaktor der Grenzschicht
- Rückrechnung wie im Fall des dielektrischen Halbraums

Inhalt	Einleitung	Grundlagen 00 000	Simulation ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

GET-THICK

BILD: $\operatorname{Re}(\underline{\epsilon}_r)$ über f BILD: $\operatorname{Im}(\underline{\epsilon}_r)$ über f

Vorraussetzung: \underline{e}_r stückweise konstant über der Frequenz

- Mittelwertbildung über eine Sinusschwingung ergibt den imReflektionsfaktor der Grenzschicht
- Rückrechnung wie im Fall des dielektrischen Halbraums
- Abstand zwischen zwei Minima ermitteln (λ /2-Transformator)

Inhalt	Einleitung	Grundlagen 00 000	Simulation ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

GET-THICK

BILD: $\operatorname{Re}(\underline{\epsilon}_r)$ über f BILD: $\operatorname{Im}(\underline{\epsilon}_r)$ über f

Vorraussetzung: $\underline{\epsilon}_r$ stückweise konstant über der Frequenz

- Mittelwertbildung über eine Sinusschwingung ergibt den imReflektionsfaktor der Grenzschicht
- Rückrechnung wie im Fall des dielektrischen Halbraums
- Abstand zwischen zwei Minima ermitteln (λ /2-Transformator)

• Dicke ermitteln aus $\lambda/2$ Beziehung

UWB-Antenne mit Dielektrikum

29. Juni 2006

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

Inhalt

- Einleitung
- Grundlagen
- Simulation
- Messverfahren und Eigenschaften der verwendeten Antenne
- Messergebnisse
- Zusammenfassung

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne ●00 ○	Messergebnisse 00 000 00 0 00	Zusammenfassung	
Messue	rfahren						

in coordination of

Messprinzip

Messung des Reflexionsparameters $\underline{\mathcal{S}}_{11}$ der dielektrischen Platte an der Grenzschicht

21 / 38

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne ●00 ○	Messergebnisse 00 000 00 0 00	Zusammenfassung
Mess	verfahren					

Messprinzip

- Messung des Reflexionsparameters $\underline{\mathcal{S}}_{11}$ der dielektrischen Platte an der Grenzschicht
- \Rightarrow Messung mit dem Netzwerkanalysator

21 / 38

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne ●00 ○	Messergebnisse 00 000 00 0 00	Zusammenfassung
Mess	verfahren					

Messprinzip

Messung des Reflexionsparameters $\underline{\mathcal{S}}_{11}$ der dielektrischen Platte an der Grenzschicht

 \Rightarrow Messung mit dem Netzwerkanalysator Messfehler

21 / 38

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne ●00 ○	Messergebnisse 00 000 00 0 00	Zusammenfassung
Messve	rfahren					

Messprinzip

Messung des Reflexionsparameters \underline{S}_{11} der dielektrischen Platte an der Grenzschicht

 \Rightarrow Messung mit dem Netzwerkanalysator Messfehler

 \Rightarrow Kalibrierung

21 / 38

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne ⊙●0 ○	Messergebnisse 00 000 00 0 00	Zusammenfassung

3-TERM ERROR

BILD: Signalflussdiagramm der systematischen Fehler

22 / 38

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne ⊙ ⊙	Messergebnisse 00 000 00 0 00	Zusammenfassung

3-TERM ERROR

BILD: Signalflussdiagramm der systematischen Fehler

3 Fehler \Rightarrow 3 Standards

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne ⊙●0 ○	Messergebnisse 00 000 00 0 00	Zusammenfassung

3-TERM ERROR

BILD: Signalflussdiagramm der systematischen Fehler

- 3 Fehler \Rightarrow 3 Standards
 - Short: Metallplatte
 - Load: Absorbermaterial
 - Open: nicht möglich im freien Raum
 - \Rightarrow Shifted Short oder definiertes Material

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne ⊙⊙● ○	Messergebnisse 00 000 00 0 00	Zusammenfassung

MESSAUFBAU

BILD: Messaufbau

23 / 38

∃ ⊳

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne ⊙⊙● ○	Messergebnisse 00 000 00 0 00	Zusammenfassung

MESSAUFBAU

${\scriptstyle B{\scriptstyle \rm ILD:}} \ Messaufbau$

Größe der Platte in Abhängigkeit des 3dB-Öffnungswinkels und des Fernfeldabstands der Antenne wählen

innait Einieitung Grundiagen Simulation Wesserannen und Antenne Wessergebnisse Zusammenfassunj 000 00 00 000 000 000 000 000000 00 00 00 000000 00 00 000000 00 000000 00 000000 00 000000 00 000000 00 0000000 00 0000000 00 0000000 00 0000000 00 0000000 00 00000000	Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne ○○○ ●	Messergebnisse 00 000 00 0 00	Zusammenfassung	
---	--------	------------	-------------------------	---------------------------------	---------------------------------------	--	-----------------	--

Antenne

EIGENSCHAFTEN DER ANTENNE

Art der Antenne: gerichteter Dipol

- Fernfeldabstand: $r_{ff} \approx 100 mm$
- Nahfeldbereich: $r_{rn} \approx 25 mm$
- größter 3dB-Öffnungswinkel im Frequenzbereich zwischen 2-8 GHz: $\alpha_{3dB} = 105^{\circ}$
- Gewinn:

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse	Zusammenfassung

Inhalt

- Einleitung
- Grundlagen
- Simulation
- Messverfahren und Eigenschaften der verwendeten Antenne
- Messergebnisse
- Zusammenfassung

	Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse ●0 000 00 00 00	Zusammenfassung
--	--------	------------	--------------------------------	---------------------------------	---------------------------------------	---	-----------------

Rohdaten

Rohdaten Absorber

BILD: Empfangssignals einer Absorberplatte im Abstand von 120mm

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse ⊙● ○○○ ○○ ○○	Zusammenfassung
--------	------------	--------------------------------	---------------------------------	---------------------------------------	---	-----------------

Rohdaten

Rohdaten des Shorts und des Shifted Shorts

BILD: Empfangssignals zweier Kurzschlüsse bei 120mm und 140mm

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse	Zusammenfassung

Messergebnis im Fernfeldbereich

Messergebnis von Polyamid im Abstand von 120mm nach Kalibrierung

Inhalt Einleitung Grundlagen Simul 00 0 000 0 000 00 000	ation Messverfahren und Antenne 000 0 00	Messergebnisse Zusammenfassung ⊙● ⊙● ○ ○ ○ ○
		ŏo

Messergebnis im Fernfeldbereich

Messergebnis von Teflon im Abstand von 120mm nach Kalibrierung

Inhalt Einleitung Grundla 00 000	agen Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse ○○ ○○ ○○	Zusammenfassung
			ŏo	

Messergebnis im Fernfeldbereich

Messergebnis von Teflon im Abstand von 120mm nach Kalibrierung und Datenfilterung

Inhalt	Einleitung	Grundlagen	Simulation	Messverfahren und Antenne	Messergebnisse	Zusammenfassung
			000000		00	
					00	

strahlender Nahfeldbereich

Messergebnis von Polyamid im Abstand von 50mm nach Kalibrierung und Datenfilterung

Inhalt	Einleitung	Grundlagen	Simulation	Messverfahren und Antenne	Messergebnisse	Zusammenfassung
		000				
			000000		00	
					00	

strahlender Nahfeldbereich

Messergebnis von Teflon im Abstand von 50mm Nach Kalibrierung und Datenfilterung

Inhalt	Einleitung	Grundlagen	Simulation	Messverfahren und Antenne	Messergebnisse	Zusammenfassung
		00	0	ဝဝဝ	00	
			000000		000	
					00	

reaktiver Nahfeldbereich

Messergebnis von Polyamid im reaktiven Nafeldbereich

BILD: Betrag von S_{11} mit d=10mm

BILD: Betrag von \underline{S}_{11} mit d=30mm

Inhalt	Einleitung	Grundlagen	Simulation	Messverfahren und Antenne	Messergebnisse	Zusammenfassung
		000				
			000000			
					•0	

BEISPIEL: POLYAMID IM ABSTAND VON 40MM MIT Rückrechnung Splitted-Bandwidth

200

BILD: Betrag von \underline{S}_{11}

Inhalt Einleitı	ing Grundlagen	Simulation 0 00	Messverfahren und Antenne 000 0	Messergebnisse 00 000	Zusammenfassung
				00 0 ● 0	

BEISPIEL: POLYAMID IM ABSTAND VON 40MM MIT Rückrechnung Splitted-Bandwidth

BILD: Betrag von \underline{S}_{11}

BILD: Phase von \underline{S}_{11}

34 / 38

S. Sczyslo (Univ.Duisburg Essen)

UWB-Antenne mit Dielektrikum

Inhalt	Einleitung	Grundlagen	Simulation	Messverfahren und Antenne	Messergebnisse	Zusammenfassung
		000	00		000	
			000000		ŏŏ	
					00	

BEISPIEL 2: POLYPROPYLEN MIT HILFE DES GET-THICK ALGORHITMUS

BILD: Betrag von \underline{S}_{11}

BILD: Phase von \underline{S}_{11}

29.

Juni 2006

Inhalt Einleitung	Grundlagen 00 000	Simulation o oo oooooo	Messverfahren und Antenne 000 0	Messergebnisse	Zusammenfassung
				ŏo	

BEISPIEL 2: POLYPROPYLEN MIT HILFE DES GET-THICK ALGORHITMUS

ine K Salbar

Inhalt Einlei	tung Grundlagen	Simulation	Messverfahren und Antenne	Messergebnisse	Zusammenfassung
	00	0	<u> </u>	00	
		000000		000	
				0	

BEISPIEL 2: POLYPROPYLEN MIT HILFE DES GET-THICK ALGORHITMUS

BILD: Betrag von \underline{S}_{11}

BILD: Phase von \underline{S}_{11}

	Referenzmessung	Messergebnis
ϵ'_r	2,37	2,19
$ an\delta$	0,0072	-0,0165

Inhalt E	inleitung	Grundlagen	Simulation	Messverfahren und Antenne	Messergebnisse	Zusammenfassung
		00	0	000	00	
			000000		000	
					0 00	

BEISPIEL 2: POLYPROPYLEN MIT HILFE DES GET-THICK ALGORHITMUS

50 50 50 -50-50

200

BILD: Betrag von \underline{S}_{11}

BILD: Phase von \underline{S}_{11}

	Referenzmessung	Messergebnis	
ϵ_r tan δ	2,37 0,0072	2,19 -0,0165	
Dicke[mm]	65	66,2	Fachgeliet Hischfrequenztechnik Prof. Dz-ing. K. Solface

S. Sczyslo (Univ.Duisburg Essen)

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

Inhalt

- Einleitung
- Grundlagen
- Simulation
- Messverfahren und Eigenschaften der verwendeten Antenne
- Messergebnisse
- Zusammenfassung

Inhalt Einleitung Grundlagen Simulation Messverfahren und Antenne Messergebnisse Zusammenfassi OO OOOOO OOO OOOOOOOOOOOOOOOOOOOOOOO

ZUSAMMENFASSUNG

 Simulation ermöglicht Vorhersage des Reflexionsparameterverlaufs gegenüber der Frequenz abhängig von <u>€</u>r

37 / 38

ZUSAMMENFASSUNG

- Simulation ermöglicht Vorhersage des Reflexionsparameterverlaufs gegenüber der Frequenz abhängig von <u>€</u>r
- Rückrechnungsalgorhitmen erlauben die Bestimmung der Dielektrizitätszahl $\underline{\epsilon}_r$

37 / 38

ZUSAMMENFASSUNG

- Simulation ermöglicht Vorhersage des Reflexionsparameterverlaufs gegenüber der Frequenz abhängig von <u>€</u>r
- Rückrechnungsalgorhitmen erlauben die Bestimmung der Dielektrizitätszahl $\underline{\epsilon}_r$
- Kalibrierungsmethode erlaubt die Messung des Reflexionsparameters ab dem strahlenden Nahfeld

Inhalt	Einleitung	Grundlagen 00 000	Simulation 0 00 000000	Messverfahren und Antenne 000 0	Messergebnisse 00 000 00 0 00	Zusammenfassung

Vielen Dank für Ihre Aufmerksamkeit!

38 / 38

29. Juni 2006

S. Sczyslo (Univ.Duisburg Essen) UWB-Antenne mit Dielektrikum