

Presentation of Bachelor Project Work

UNIVERSITÄT

Prepared by

Godwin Maxime Arinaitwe

with

Prof. Dr.-Ing. K. Solbach

department of High-Frequency Engineering at the University of Duisburg-Essen

Topic: Development of a Transmit/Receive Switch for ²³Na Coils in a 7-Tesla Magnetic Resonance Imaging System (MRI)

Outline

UNIVERSITÄT DEUSSEBURG

Introduction

- Motivation
- Methodology

Concept

- MRI
- PIN Diodes
- ✓ S-Parameters

Hardware Development

- Schematic design & simulation
- Board layout & optimisation
- Wire-wound Inductors

Measurements & results

- ✓ S-Parameter tests
- ✓ High Power Test
- Conclusion
- Questions

Motivation

MRI – Magnetic Resonance Imaging

- Sets the **standard** of care for diagnostic imaging
- One of the fastest growing areas in diagnostic imaging
- Needs a fast switch between transmission and receive for proper functionality

Introduction

_B_U R G

Concept

UNIVERSITÄT

UIS

Hardware Development

Measurements & Results Conclusion

Questions

Godwin Maxime Arinaitwe, 01.04.2014

Page 4

Methodology

- RF Simulation of circuit in ADS
- Band-pass Filter Optimisation
- Realisation of optimised circuit on micro-strip
- PCB layout design in EAGLE
- Assembly of Circuit
- Testing for Impedance/Reflection Coefficients and Insertion Loss
- Circuit pass-band frequency tuning
- High Power Test

Introduction

Concept

Hardware Development

Measurements & Results

Conclusion

MRI - Magnetic Resonance Imaging

- Imaging technique used primarily in medical settings
- Produces high quality images of the inside of the human body
- Available in different types including 1.5-Tesla, 3-Tesla and C
 7-Tesla
- Major manufacturers include Siemens, GE Healthcare, Phillips, Toshiba and Hitachi

7-Tesla MRI from Siemens

Concept

UNIVERSITÄT

_B_U R G

Hardware Development

Measurements & Results

Conclusion

MRI - Magnetic Resonance Imaging

Comparison to CT-Scan

- MRI magnetic energy and RF vs. CT-Scan Ionisation radiation that means added risk as x-ray dose is cumulative
- MRI superior for soft tissue evaluation vs. CT-Scan better for bony tissue

VS.

MRI Scan Image

CT-Scan Image

Concept

Introduction

UNIVERSITÄT

BURG

Hardware Development

Measurements & Results Conclusion

Questions

Godwin Maxime Arinaitwe, 01.04.2014

Page 7

MRI - Magnetic Resonance Imaging

UNIVERSITÄT DUSSEBURG

Basic Functionality of MRI

Summarised in 5 Steps:

- i. Magnetisation^{F >)}
- ii. Excitation
- iii. Relaxation
- iv. Acquisition
- v. Computing and Display

Introduction

Concept

Hardware Development

Measurements & Results Conclusion Questions

Small time frames between Excitation and Acquisition

necessitates a QUICK switch between Transmission of RF

Pulse and Receive of Released RF energy from H-atoms

PIN Diodes

UNIVERSITÄT DEUSSEBURG

- Wide & lightly doped intrinsic region between pand n-type semiconductor regions
- Applications include **RF switches**, power limiters, modulators and variable attenuators
- In Reverse bias, a series capacitance leads to high diode impedance

– Reverse bias = OFF state in an RF Switch

PIN Diodes

 In Forward bias, current removes the junction capacitance and leaves the diode in a low impedance state

Advantages of PIN Diodes:

- High operational speeds (range from 1µs to 10µs)
- Small size \equiv can easily be embedded in RF circuits
- control large RF signals with small DC excitation levels

Page 10

Concept

Hardware Development

Measurements & Results

Conclusion

Questions

UNIVERSITÄT DEUSISEBNURG

Provide complete description of an N-network as seen from its N-Ports

S-Parameters

78,7 MH2 TXRX78B RU 12.3.2012 Serde/Englangeve to he 39pi ____ 180-н zun Vorverstärker zur Spule 31-# Indiade Indiade C1 1 ¥ c2 von Sender 6.7 indiadens tran Zur Vorverstärker Zur Spule 3-Port Network Vom Sender

Introduction

UNIVERSITÄT

DUISBURG

Concept Hardware Development Measurements & Results Conclusion Questions

Godwin Maxime Arinaitwe, 01.04.2014

S-Parameters

- Represented in an S-Matrix
 - $\begin{pmatrix} S_{11} \\ S_{11} \\ S_{21} \\ S_{21} \\ S_{22} \end{pmatrix}$ (Two-port) $\begin{pmatrix} S_{11} \\ S_{21} \\ S_{22} \\ S_{21} \\ S_{22} \\ S_{23} \\ S_{31} \\ S_{32} \\ S_{33} \end{pmatrix}$ (Three-port)
- S(1,1), S(2,2), S(3,3) represent the Reflection Coefficients of the network
- S(1,2), S(2,3), S(1,3) represent the Transmission Coefficients of the network
- **Insertion Loss** can be calculated using:

Insertion Loss (IL)=-20log10|S(1,2)|dB

Introduction Concept Hardware Development Measurements & Results

Hardware Development

Involved the following:

- Schematic Design in ADS 2009
- S-Parameter simulations in ADS 2009
- Board Layout in EAGLE
- Layout Optimisation

Making Wire-wound Inductors

Godwin Maxime Arinaitwe, 01.04.2014

Page 13

Advanced Design System 2009 UNIVERSITÄT

Introduction Concept

Hardware Development

Measurements & Results Conclusion

Schematic Design & Simulation

UNIVERSITÄT

- Carried out using Advanced Design System
- Schematic of provided circuit is drawn

Introduction Concept

Hardware Development

Measurements & Results Conclusion Questions

 S-Parameter Simulations are then carried out using Simulation tool of ADS 2009

Godwin Maxime Arinaitwe, 01.04.2014

Godwin Maxime Arinaitwe, 01.04.2014

Page 15

Godwin Maxime Arinaitwe, 01.04.2014

Page 16

Board Layout & Optimisation

Optimised Circuit layout board drawn using EAGLE

First Version:

- Circuit components way far apart
- Micro-strip width far too small to support 50Ω impedance matching

UNIVERSITÄT DUISBURG ESSEN

Introduction Concept Hardware Development Measurements & Results Conclusion Questions

Board Layout & Optimisation

X-Version (Improved & Final Version)

Concept Hardware Development Measurements & Results

Introduction

UNIVERSITÄT

UISBURG

Questions

Godwin Maxime Arinaitwe, 01.04.2014

Godwin Maxime Arinaitwe, 01.04.2014

Wire-wound Inductors

required number of turns calculated using formula below:

$$N = \frac{1}{a} \cdot \left(\sqrt{\frac{L \cdot (22.9 \cdot a + 25.4 \cdot l)}{10^{-6}}} \right)$$

where; N = number of turns l = length in cm a = radius of coil in cm

derived from formula to calculate inductance of a circular coil with a single layer turn

$$L = \frac{(a \cdot N)^2}{(22.9 \cdot a + 25.4 \cdot l)} \mu H$$

Page 19

Concept

Hardware Development

Measurements & Results

Questions

UNIVERSITÄT

Wire-wound Inductors – Final Product

- Inductors (Coils) are wire-wound and finally...
- Circuit components are soldered onto board

Top Layer

Bottom Layer

Introduction

BURG

Concept

UNIVERSITÄT

- S

Hardware Development

Measurements & Results Conclusion Questions

Measurements & Results

UNIVERSITÄT DUSSEBURG

Tests carried out on the Tx/Rx switching circuit:

S-Parameter Tests

Circuit bandpass frequency Tuning

High Power Test

Introduction Concept Hardware Development Measurements & Results Conclusion Questions

Godwin Maxime Arinaitwe, 01.04.2014

Godwin Maxime Arinaitwe, 01.04.2014

Biased State

S-Parameter Tests - Setup

 Small-signal Vector network Analyser used to carry out measurements

Introduction Concept Hardware Development

Measurements & Results

Conclusion

Questions

 3-Port circuit necessitated additional measurement states like Port-1 Terminated, Port-2 Terminated and Port-3 Terminated states

Page 22

S-Parameter Tests - Setup

- ON state -> Circuit is biased (voltage/current applied)
- OFF state -> Circuit is not biased (floating)

Measurement Setup:

Introduction Concept Hardware Development Measurements & Results

UNIVERSITÄT

UISBURG

Conclusion Questions

Godwin Maxime Arinaitwe, 01.04.2014

Forward biased circuit

Terminated Port	S-Parameter	Magnitude (dB)	
		ON State	OFF State
Port_1 (Zur Spule)	S_{22}	-0.211	-16.296
	S ₂₃	-34.966	-28.078
	S ₃₃	-31.321	-0.267
Port_2 (vom Sender)	S ₁₁	-28.370	-15.376
	S ₁₃	-35.048	-0.279
	S ₃₃	-0.180	-14.083
Port_3 (zum/Vorverstärker)	S ₁₁	-26.188	-16.296
	S ₁₂	-0.175	-26.464
	S ₃₃	-23.973	-0.256

Introduction Concept Hardware Development

Measurements & Results

Conclusion

Reverse biased circuit

Terminated Port	S-Parameter	Magnitude	
		ON State	OFF State
Port_1 (Zur Spule)	S_{22}	-16.258	-0.284
	S_{23}	-27.978	-27.779
	S ₃₃	-16.252	-16.218
Port_2 (vom Sender)	S ₁₁	-15.549	-15.582
	S ₁₃	-0.247	-0.270
	S ₃₃	-14.734	-14.741
Port_3 (zum Vorverstärker)	S ₁₁	-16.509	-16.587
	S_{12}	-26.631	-26.413
	S ₃₃	-0.242	-0.289

Introduction Concept Hardware Development

UNIVERSITÄT

UISBURG

Measurements & Results

Conclusion

Godwin Maxime Arinaitwe, 01.04.2014

High Power Test – Setup

- Verifies the power handling capabilities of the switch
 - Signal Generator Power Amplifier Test Device TX/RX Switch Supply Block diagram of Measurement Setup -> Oscilloscope
- Signal at 78.7 MHz is generated from an Agilent N9310A
 Signal Generator and is then fed to an amplifier
- Output from the ZHL-100W-52 amplifier from Mini
 Circuits Inc. which can deliver close to 100W RF power CW when driven at 0 dBm input is fed to the switch.
- Switch is biased by applying either -30V for reverse bias or 100mA for Forward bias

Introduction

Concept

Hardware

& Results

Questions

Development

Measurements

High Power Test – Setup

Final measurement setup for High Power Test

Introduction Concept Hardware Development Measurements & Results Conclusion Questions

The **amplitude of signal generator** is gradually **increased** from **–20 dBm** and observations are made

Godwin Maxime Arinaitwe, 01.04.2014

UNIVERSITÄT

High Power Test – Results

UNIVERSITÄT DEUSSEBURG

- Heating noticed at the PIN diodes
- Signal at oscilloscope gradually fades as the amplitude of signal generator passes -5dBm mark or 30W Continuous Wave output at Amplifier

Introduction Concept Hardware Development Measurements & Results Conclusion

Godwin Maxime Arinaitwe, 01.04.2014

Conclusions – S-Parameters Interpretation

 S-Parameter Simulations in ADS and S-Parameter Measurements on the Vector Network Analyser show Circuit Functionality as illustrated below.

Introduction Concept Hardware Development Measurements & Results Conclusions Questions

Page 29

UNIVERSITÄT DUISBURG

Conclusions

- Circuit is feasible as a fast switch between Transmission and Receive in an MRI up to about 30W output at the amplifier
- This refers to a Continuous Wave signal while in reality
 Pulsed Wave signals are sent in an MRI
- Implies: Average power of the MRI < 30W. Such a case could be a duty cycle of just 3% and a peak power of 1kW

UNIVERSITÄT

BURG

Questions

Introduction

