

MASTERARBEIT

Investigation of the Influence of the RF Shield on the Impedance of Meander Dipole Coils in 7 Tesla MR Imaging System

angefertigt von Youssef Saidi bei Prof. Dr.-Ing. K. Solbach Fachgebiet Hochfrequenztechnik Universität Duisburg-Essen

Inhalt

UNIVERSITÄT DUISBURG ESSEN

- Einführung
- Grundlagen
- Validierung des Simulationsmodells
- Ergebnisse
- Resümee und Ausblick

- Sendeverhalten eines HF-Dipols als Funktion vom
 - Abstand zu einer zylinderförmigen RF-Abschirmung
 - Abstand zu einem Phantom
- Figures of merit
 - Antennenstrahlungswiderstand R
 - Gütemaß Q-Faktor
- Kopplung zwischen zwei benachbarten Elementen ebenfalls als Funktion vom
 - Abstand zu einer zylinderförmigen RF-Abschirmung
 - Abstand zu einem Phantom

- Herausforderungen der 7-Tesla MRT
 - Wellenlänge in der Größenordnung einiger Organe
 - Inhomogenes Sendefeld
 - Eindringtiefe ändert sich (andere Flipwinkel α)

Bildartefakte

- Lösung
 - HF-Shimming
 - Verwendung mehrerer Sendeund Empfangsspulen
 - Individuelles Ansteuern

UNIVERSITÄT DUISBURG ESSEN

- HF-Einheit eines 7-Tesla MRT-Systems besteht aus mehreren RF-Spulen
- Mäanderelement
 - hohe magnetische Feldstärken
 - hohes FOV
 - geringe Bandbreite
 - hohe Güte

Einführung Mäanderelement

UNIVERSITÄT DUISBURG ESSEN

- 60 % der Länge verkürzt und in einem Mäander gewunden
- Dielektrisches Substrat auf die Mäander-Arme montiert
 - Höhere B₁-Werte bei gleichzeitiger Reduktion der E-Feldstärken und der Kopplung zwischen den Antennen
- Groundplane: Länge von 25 cm und Breite von 10 cm

Grundlagen RF-Abschirmung

UNIVERSITÄT DUISBURG ESSEN

7

reflektierende Fläche

Grundlagen RF-Abschirmung

UNIVERSITÄT DUISBURG ESSEN

 Strahlungswiderstand eines vertikal ausgerichteten Dipols über einer leitenden Fläche

Permittivität und Leitfähigkeit im menschlichen Körper

	\mathcal{E}_r	σ (S/m)
Head	43.5	0.87
Body	56.7	0.94

- zusätzliche resistive Belastung
- kapazitive Belastung
 - Verstimmung: Verschiebung der Resonanzfrequenz der HF-Spulen

•
$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

•
$$v(f) = \frac{f_0}{f_r} - \frac{f_r}{f_0}$$

UNIVERSITÄT DUISBURG ESSEN

Eingangsreflexionsfaktor S₁₁

UNIVERSITÄT DUISBURG ESSEN

Frequenzverlauf der Antennenimpedanz IZI

11

UNIVERSITÄT DUISBURG ESSEN

Frequenzverlauf der Antennenimpedanz Z

12

Strahlungscharakteristik: IEI als Funktion von Θ

Messergebnisse entsprechen den theoretischen Vorgaben

Validierung des Simulationsmodells Vergleich von Simulation und Messreihe

UNIVERSITÄT DUISBURG ESSEN

Simulationsaufbau

 Simulationsergebnisse f
ür einen Abstand d = 50 mm zum Phantom

h [mm]	f_0 [MHz]	$R_1 [\Omega]$
0	$296,\!434$	$3,\!31$
10	$297,\!877$	$4,\!09$
20	$298,\!257$	4,62
40	$298,\!475$	$5,\!38$
60	$298,\!520$	$5,\!92$
80	$298,\!529$	6,34
100	$298,\!524$	$6,\!68$
ohne Abschirmung	$298,\!922$	8,27

Validierung des Simulationsmodells Vergleich von Simulation und Messreihe

 Prinzipiell gleicher Verlauf von simulationsbasierten und messtechnisch erfassten Werten

UNIVERSITÄT DUISBURG ESSEN

Simulationsaufbau mit nichtplanaren Elementen

UNIVERSITÄT DUISBURG ESSEN

• S_{11} für d = 100 mm zum Phantom

UNIVERSITÄT DUISBURG ESSEN

*S*₁₁ bei Variation der Distanz d zum Phantom

Antennenstrahlungswiderstand R

Antennenstrahlungswiderstand R [Ω]

d [mm] h [mm]	10	20	30	50	100
4,25	$21,\!027$	12,072	$7,\!396$	$3,\!345$	$1,\!011$
10	$23,\!432$	13,610	8,418	$3,\!861$	$1,\!164$
20	25,773	$15,\!063$	$9,\!405$	$4,\!413$	$1,\!351$
40	$28,\!488$	16,700	$10,\!593$	$5,\!169$	$1,\!652$
60	$29,\!857$	$17,\!692$	$11,\!358$	$5,\!673$	1,912
80	30,824	18,252	$11,\!831$	6,038	$2,\!157$
100	31,306	18,706	$12,\!154$	$6,\!371$	$2,\!428$

UNIVERSITÄT DUISBURG ESSEN

• Güte
$$\boldsymbol{Q} = \frac{1}{R} \cdot \sqrt{\frac{L}{C}}$$

• steigt mit Nähe zur Abschirmung, da R sinkt

UNIVERSITÄT DUISBURG ESSEN

• Güte
$$Q = \frac{1}{R} \cdot \sqrt{\frac{L}{C}}$$

sinkt mit N\u00e4he zum Phantom, da R und C steigen

24

UNIVERSITÄT DUISBURG ESSEN

Resonanzfrequenz *f*₀

UNIVERSITÄT DUISBURG ESSEN

- Resonanzverschiebung
 - geringe Leistung bei der Arbeitsfrequenz (Larmorfrequenz)
 - wird durch hohe Güte verstärkt

Widerstand bei der Larmorfrequenz 298 MHz

Reaktanz bei der Larmorfrequenz 298 MHz

Anordnung der HF-Spulen

Ergebnisse Kopplung - planar

UNIVERSITÄT DUISBURG ESSEN

 Simulationsaufbau mit zwei HF-Spulen und planaren Strukturen

Ersatzschaltbild

Ergebnisse Kopplung - planar

UNIVERSITÄT DUISBURG ESSEN

S₂₁ im Freiraum fällt sehr niedrig aus

UNIVERSITÄT DUISBURG ESSEN

S₂₁ ist bei Anpassung deutlich höher

S₂₁ bei Variation der Distanz zum Phantom (ohne Abschirmung)

Ergebnisse Kopplung - planar

UNIVERSITÄT DUISBURG ESSEN

S₂₁ mit Phantom und Abschirmung

S₂₁ [dB] mit Phantom und Abschirmung

d [mm] h [mm]	10	20	30	50	100	ohne Phantom
0	-33.405	-37.841	-40.542	-41.638	-22.115	-12.330
10	-35.011	-38.778	-42.653	-37.002	-20.080	-11.220
20	-36.394	-41.441	-43.936	-34.202	-19.184	-9.146
40	-39.274	-45.170	-41.372	-30.959	-18.738	-7.883
60	-41.791	-43.641	-38.322	-29.087	-18.687	-7.096
80	-42.769	-40.887	-35.985	-27.689	-18.353	-6.707
100	-42.002	-38.762	-34.150	-26.576	-17.576	-6.526
ohne Abschirmung	-34.089	-32.307	-28.525	-20.812	-10.526	-4.646

sehr gering

Ergebnisse Kopplung - nichtplanar

UNIVERSITÄT DUISBURG ESSEN

- Simulationsaufbau mit zwei HF-Spulen und zylinderförmiger Abschirmung
 - Referenzwert: h = 20 mm

Ergebnisse Kopplung - nichtplanar

UNIVERSITÄT DUISBURG ESSEN

Vergleich S₂₁ f
ür geschlossenen (I.) und offenen (r.) Zylinder

d [mm]	10	20	50	100	ohne Phantom
planare Abschirmung	-36.3936	-41.4407	-34.2019	-19.1837	-9.1459
offener Zylinder	-33.9066	-33.8470	-28.3999	-16.9570	-10.3156
geschlossener Zylinder	-33.2175	-33.4109	-29.7676	-19.8876	-6.6096

weiterhin sehr gering

UNIVERSITÄT DUISBURG ESSEN

Ersatzschaltbild mit zwei HF-Spulen und Leitungsanpassung

$$Z_{a} = Z_{c} \frac{Z_{1} + jZ_{c} \cdot tan(2\pi \frac{l}{\lambda})}{Z_{c} + jZ_{1} \cdot tan(2\pi \frac{l}{\lambda})}$$

UNIVERSITÄT DUISBURG ESSEN

λ/4- Leitungstransformation im Smithchart

$$Z_c = \sqrt{R_1 \cdot 50\Omega}$$

UNIVERSITÄT DUISBURG ESSEN

Transformation bei f₀

L)

• Antennenwiderstand R = $1,351 \Omega$ bei d = 100 mm & h = 20 mm

UNIVERSITÄT DUISBURG ESSEN

- Transformation bei f₀
- Antennenwiderstand R = 1,351 Ω bei d = 100 mm & h = 20 mm
- $rightarrow Z_c = 8,22 \Omega$

• Transformation des Antennenwiderstands bei f_0 mit $Z_c = 8,22 \Omega$

UNIVERSITÄT

D U I S B U R G E S S E N

UNIVERSITÄT

D U I S B U R G E S S E N

UNIVERSITÄT DUISBURG ESSEN

- Kompensation des Blindwiderstands mit einer Kapazität C_s in Reihe
 - Für h = 20 mm & d = 100 mm $\rightarrow Z_c = 19,2 \Omega$
 - R_a = 49,80 Ω & X_a = 107,71 Ω

Ergebnisse Blindwiderstandskompensation

UNIVERSITÄT DUISBURG ESSEN

 Kompensation des Blindwiderstands mit einer Induktivität L_s in Reihe

Resümee

- HF-Spulen besitzen hohe Güte, geringe Bandbreite und geringen Antennenwiderstand
 - hohe Sensitivität
 - Reproduzierbarkeit gewünschter Betriebseigenschaften in der Praxis kaum realisierbar
- Verstimmung der Antenne durch menschlichen Körper
 - Leistungsverlust & Verlust der Anpassung der Antenne
- Reduzierung des Antennenwiderstands durch Abschirmung
 hoher Q-Faktor
- Kopplung in der gewählten Anordnung unproblematisch

Ausblick

UNIVERSITÄT DUISBURG ESSEN

- Bestimmung geeigneter Referenzwerte f
 ür die jeweiligen Distanzen
- Änderung der Länge des Dipols
- Kompensation des Blindanteils
- Untersuchung: E- und H-Feld Verteilung bei Variation der Distanz im Phantom

>SAR-Werte

Verluste durch Anpassung quantifizieren

Vielen Dank für ihre Aufmerksamkeit!