An automatic antenna matching method for monostatic FMCW radars

Professor: Prof. Dr.-Ing. Klaus Solbach Supervisor: Dipl. -Ing. Michael Thiel Student: Yan Shen

Outline

- Introduction
- System Development and Design
- Impedance Tuner Design
- Test Results
- Controller Algorithm
- Conclusions and Further Work

Introduction

Hardware Realization of the FMCW Monostatic Radar

If RX and TX are not well decoupled: $RX \times (TX + n \times RX) = RX \times TX + n \times RX \times RX$ DC offset \longrightarrow Reduced performance of the mixer due to changed DC operation. Decoupling \longrightarrow Diplexers \longrightarrow Rat-race coupler

if Zimage(V1, V2) = Zantenna, RX and TX are well decoupled.

Temperatures, radiation environments Antenna impedance changes — Impedance tuner

System Design and Development

- Rat-race Coupler
- Wilkinson Power Divider
- Gilbert Cell Mixer
- Patch Antenna
- System Modelling and Development

Rat-race Coupler

Wilkinson Power Divider

Gilbert Cell Mixer

Mixer schematic

Power level test

Patch Antenna

Quad inset-fed patch antenna

Twin inset-fed patch antenna

System Modelling

0.000Hz:

3.069/180.000

10.00MHz: 0.066/-171.451

0.000Hz: 0.490/0.000 10.00MHz: 1.075/131.432

Tuner Design

The traditional transmission tuner: Additional induced losses on the feed line due to multiple reflections and losses in the ATU itself:

The reflection tuner: Losses on the tuner has no influence to the system.

Principle of our tuner

Tuner schematic:

Simulation result:

FET as Voltage-controlled Resistors

nonlinear Triquint MGF1402 package.

Rds~Ugs

Phase Shifter Design

Variable reactance reflection phase shifter

90°hybrid coupler:

Branch-line coupler

Phase shifter schematic:

Branch-line coupler and Silicon tunning Varactor SMV 2019-108

PCB of the Final Radar System

Test Results

PCB VS Momentum

NWA

Rat-race coupler

Power divider Matching 0 -5--10dB(S(1,1)) -15 -20--25--30 10.0 9.5 10.5 11.0 9.0 11.5 12.0 freq, GHz 12.0 Isolation 0 -5dB(S(2,3)) 10 15--20-10.5 11.0 9.5 10.0 9.0 11.5 12.0 freq, GHz Coupling 0 -3. dB(S(1,2)) -6dB(S(1,3)) -9_ -12--15 9.0 9.5 10.0 10.5 11.0 11.5 12.0

freq, GHz

Branch-line coupler

Antenna PCB VS Momentum

9.0

9.0

freq, GHz

8.5

12.0

Phase shift is not enough; FET works good. Too high series inductance Two ways to improve

Controller System

Original data set, Column 1 is Udiode and Column 2 is Ufet. Column 3 is Udc.

📣 MATLAB 7.6.0 (R2008a)						
File Edit View Graphics Debug Parallel Desktop Window						
: 🎦 😂 👗 ங 📖 🤊 🍽 à 📝 🖹 🥝 Current Directory:						
Shortcuts 🖪 How to Add 🖪 What's New						
🛒 Variable Editor - data						
	👪 🕹 🛍 📸 🔤 🗸 🗸 🖌 🖿 🔚 Stack: Base 💌					
Η data <105x3 double>						
		1	2	3	4	5
	1	0	-0.7000	2.6254		
	2	0	-0.6500	2.8136		
	3	0	-0.6000	3.0447		
	4	0	-0.5500	3.2964		
	5	0	-0.5000	3.5482		
	6	0	-0.4500	3.7756		
	7	0	-0.4000	3.9651		
	8	0	-0.3500	4.1163		
	9	0	-0.3000	4.2112		
	10	0	-0.2500	4.2749		
	11	0	-0.2000	4 3208		

Three dimentional plotted graph

Examples

- 1. [x, fval, history, DC] = func2 ([1, 0]) Result: x = 4.7380 -0.0219fval = 2.5215e-005
- 2. [x,fval,history,DC]=func2([3,-0.4]) Result: x = 4.9778 -0.2191 fval = 5.0413e-010
 - 3. [x,fval,history,DC]=func2([2,-0.5]) Result: x = 2.0001 - 0.7000fval = 2.0723

Conclusions

This master thesis developed a dynamic method to minimize the DC offset at the output of the mixer. A demonstrator was built on an RF grade circuit board (PCB) working at an RF of 10 GHz and consisting of a voltage controlled oscillator (VCO), a Rat- race coupler, a power divider, a tunable impedance network, a Gilbert cell mixer. The hardware is shown below.

Further Work

- There is a large space for the optimization of the tuner. Some methods can be found out to reduce the series inductance in order to increase the phase shift, which will lead to a larger range of realizable impedance values as shown in the ADS simulation.
- The performance of the dynamic method to minimize the DC offset can be improved by using an I/Q mixer. An IQ-mixer consists of two balanced mixers and two hybrids. It provides two IF signals with equal amplitudes which are in phase quadrature. Two outputs provide two DC values which can be used better to control the two control voltages for the tuner.
- In the future, this work can be transferred into an integrated circuit solution working at much higher frequencies (e.g. 77) based on CMOS or BICMOS technology, where resistors, capacitors, diodes, transistors and multi level metals conductors are available.

A 10-bit data multiplexor manufactured in a SiGe BiCMOS process.

Appendix A

Patch Antenna

- Let the substrate dielectric constant, thickness, patch length, patch width, be denoted by \mathcal{E}_r , h, L, W respectively.
- In this experiment the patch will be fed by a microstrip transmission line, which usually has a 50 Ohm impedance. The antenna is usually fed at the radiating edge along the width (W) as it gives good polarisation, however the disadvantages are the spurious radiation and the need for impedance matching.
- Here, an inset feed is used to match the antenna, because the resistance varies as a cosine squared function along the length of the patch. A 50 Ohm can be found in a distance from the edge of the patch. This distance is called the inset distance.

1) Width of the patch

$$W = \frac{c}{2f_0\sqrt{\frac{\varepsilon_r + 1}{2}}}$$

Where c = the velocity of light $f_0 =$ operating frequency

2) Because the electric field lines reside in the substrate and parts of some lines in air. This transmission line cannot support pure transverse-electric-magnetic (TEM) mode of transmission, since the phase velocities would be different in the air and the substrate, an effective dielectric constant must be obtained in order to account for the fringing and the wave propagation in the line. Effective dielectric constant:

$$\varepsilon_{reff} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left(1 + 12\frac{h}{W}\right)^{-\frac{1}{2}}$$

3) The length may also be specified by calculating the half-wavelength value and then subtracting a small length to take into account the fringing fields as:

$$L = L_{eff} - 2\Delta L$$

$$\Delta L = 0.412h \frac{(\varepsilon_{reff} + 0.3)(\frac{W}{h} + 0.264)}{(\varepsilon_{reff} - 0.258)(\frac{W}{h} + 0.8)}$$

4) For a given resonance frequency, the effective length is given as:

$$L_{eff} = \frac{c}{2f_0\sqrt{\varepsilon_{reff}}}$$

We get:

We use the curve fit formula to find the exact inset length to achieve 50 Ohm input impedance for the commonly used thin dielectric substrates.

$$y_{0} = 10^{-4} \begin{cases} 0.001669\varepsilon_{r}^{7} + 0.1376\varepsilon_{r}^{6} - 6.1783\varepsilon_{r}^{5} + 93.187\varepsilon_{r}^{4} - 682.69\varepsilon_{r}^{3} \\ + 2561.9\varepsilon_{r}^{2} - 4043\varepsilon_{r} + 6697 \end{cases} \times \frac{L}{2}$$

we get:

$$y_0 = 2.22$$

Rat-race Coupler

Real circuit schematic

ADS Layout

Wilkinson power divider

Real circuit schematic

_length2=1.04503 {o}

wave variable

Power:

Appendix B

Tuner with Branchline coupler and SMV 2019-108

Tuner with Branchline coupler and SMV 1245-011

Mixer testing circuit board

System circuit board

Appendix C

Appendix D

Interpolation

- function v3=interpolation(v1,v2)
- userdata = importdata('final.txt');
- data = userdata.data;
- Ufet=-0.7:0.05:0;
- Udiode=0:1:6;
- Udc1=data(1:15,3)';
- Udc2=data(16:30,3)';
- Udc3=data(31:45,3)';
- Udc4=data(46:60,3)';
- Udc5=data(61:75,3)';
- Udc6=data(76:90,3)';
- Udc7=data(91:105,3)';
- Udc=[Udc1;Udc2;Udc3;Udc4;Udc5;Udc6;Udc7];
- v3=interp2(Ufet,Udiode,Udc,v2,v1);
- v3=abs(v3);

Optimization

- function [x fval history DC] = func2(x0)
- history = [];
- options = optimset('OutputFcn', @myoutput);
- [x fval] = fminsearch(@(x) interpolation(x(1),x(2)),x0,options);
- function stop = myoutput(x,optimvalues,state);
- stop = false;
- if state == 'iter'
 - history = [history; x];
- end
- end

٠

- DC=interpolation(history(:,1),history(:,2));
- plot3(history(:,1),history(:,2),DC,'-*')
- xlabel('Udiode'),ylabel('Ufet'),zlabel('Udc');
- grid on
- axis ([0 6 -0.8 0 -2 6])
- end