

Self-Mixing Amplifier for CW Sensors

Master thesis presentation

Congying Chen

Supervisor: Prof. Dr.-Ing. Klaus Solbach

Department of Electrical Engineering and Information Technology Microwave and RF Technology

Motivation

- **D**10 MHz Single Stage Amplifier Analysis
- Design and Measurement of 10 GHz Self-Mixing Amplifier

Background

Nonlinear Fundamentals

Mixer Fundamentals

Motivation - Background

• CW Sensor

Traditional transmitter and receiver designs

Motivation - Background

• New concept

Motivation – Nonlinear Fundamentals

• Nonlinear network analysis

$$\begin{aligned} \mathbf{v}_{\text{out}} &= \mathbf{a}_{0} + \mathbf{a}_{1} \mathbf{v}_{\text{in}} + \mathbf{a}_{2} \mathbf{v}_{\text{in}}^{2} + \mathbf{a}_{3} \mathbf{v}_{\text{in}}^{3} + \dots \\ \mathbf{a}_{0} &= \mathbf{v}_{\text{out}} (\mathbf{0}) \\ \mathbf{a}_{1} &= \frac{d\mathbf{v}_{\text{out}}}{d\mathbf{v}_{\text{in}}} \bigg|_{\mathbf{v}_{\text{in}}=\mathbf{0}} \quad \mathbf{a}_{2} &= \frac{d^{2} \mathbf{v}_{\text{out}}}{d\mathbf{v}_{\text{in}}^{2}} \bigg|_{\mathbf{v}_{\text{in}}=\mathbf{0}} \quad \mathbf{a}_{3} &= \frac{d^{3} \mathbf{v}_{\text{out}}}{d\mathbf{v}_{\text{in}}^{3}} \bigg|_{\mathbf{v}_{\text{in}}=\mathbf{0}} \end{aligned}$$

If $v_{in} = V_0 \cos \omega_0 t$, the output voltage is $v_{out} = (a_0 + \frac{1}{2}a_2 V_0^2) + (a_1 V_0 + \frac{3}{4}a_3 V_0^3) \cos \omega_0 t + \frac{1}{2}a_2 V_0^2 \cos 2\omega_0 t + \dots$

Motivation – Nonlinear Fundamentals

• Voltage gain (retained to the third order) $G_v = a_1 + \frac{3}{4}a_3 V_0^2$ • 1 dB-Compression Point

Motivation – Mixer Fundamentals

• Down conversion $f_{IF} = f_{RF} - f_{LO}$

Conversion Loss

$$L_{c} = 10\log \frac{P_{RF}}{P_{IF}} > 0dE$$

• Variation of FET Output Conductance

Motivation – Mixer Fundamentals

• Drain current

$$i(t) = g(t) v_{RF} (t) = V_{RF} [g_0 \cos\omega_{RF} t + 2\sum_{n=1}^{\infty} g_n \cos\omega_{LO} t \cos\omega_{RF} t]$$
$$= V_{RF} [g_0 \cos\omega_{RF} t + 2\sum_{n=1}^{\infty} g_n [\cos(\omega_{RF} + n\omega_{LO}) t + \cos(\omega_{RF} - n\omega_{LO}) t]]$$

10 MHz Single Stage Amplifier Analysis

■ Simulation

Measurement

UNIVERSITÄT

• Mixer Characteristics

• Mixer Characteristics

H

20

10 MHz Single Stage Amplifier <u>Analysis – Measurement</u>

≥50Ω

50Ω **→**

Methods of Measurement

 u_{50}

- Spectrum Analyzer
- Oscilloscope

 Z_{IF}

 u_0

Oscilloscope – IF signal

$$P_{out} [dBm] = 10 \log \frac{P_{out}}{1mW}$$
$$P_{out} = \frac{u_{50 rms}^{2}}{50 \Omega}$$
$$Z_{IF} = \frac{u_{0}}{u_{50}} 50 \Omega - 50 \Omega$$

Ρ

• Measurement with a Spectrum Analyzer

Unit		LO, RF and IF signal [dBm]									Conversion	n I	Loss [dB]		
		LO signal													
DE		0			4	5			1	0			1	5	\rightarrow
signal	IF signal	C	onversi Loss	on	IF signal	С	onversio Loss	on	IF signal	C	onversi Loss	on	IF signal	C	Conversion Loss
-10	-34.2		24.2		-26.4		16.4		-23.2		13.2		-21.0		11.0
-15	-39.4		24.4		-32.2		17.2		-28.3		13.3		-26.3		11.3
-20	-44.9		24.9		-37.3		17.3		-33.3		13.3		-31.3		11.3
-25	-47.8		22.8		-413		16.3		-38.2		13.2		-36.3		11.3
-30	-52.3		22.3		-46.7		16.7		-43.3		13.3		-41.5		11.5
-40	-				-				-53.5		13.5		-51.5		11.5

• Measurement with an Oscilloscope

		RF Signal [dBm]									
LO Signal [dBm]		-10									
		Open[mV]	50Ω [mV] Impedance		npedance[Ω]	Output Power[dB					
	0	9.84	4.52		58.85		-33.88				
	5	22.77	10.90		54.45		-26.24				
	10	31.91	15.51		52.87		-23.18				
	, 15	40.98	19.95		52.63		-20.10				

 Measurement of the Amplifier Output Conductance (RF Input Conductance)

Input Power[dBm]	v_in[mV]	v_out[mV]	v_out_50Ω [mV]	$Z[\Omega]$	<i>G</i> [mS]
-30	15	332	147	62.98	15.9
-25	26	580	258	62.33	16.0
-20	49	990	453	59.38	16.8
-15	86	1.54 *10^3	707	59	16.9
-10	155	2.03 *10^3	1.00 *10^3	51.5	19.4
-5	271	2.70 *10^3	1.26 *10^3	57.14	17.5
-3	336	2.77 *10^3	1.28 *10^3	58.20	17.2

Design and Simulation

Measurement

- Transistor Selection & Operating Point
- Bias network Design

UNIVERSITÄT

-32 -34 DUISBURG ESSEN

Stability Analysis

UNIVERSITÄT

DUISBURG ESSEN

• Input and output matching and Overall Amplifier

UNIVERSITÄT

D U I S B U R G E S S E N

• Input and output matching and Overall Amplifier

- Design and Simulation

• Input and output matching and Overall Amplifier

• Input and output matching and Overall Amplifier

Design and Measurement of 10 GHz Self-Mixing Amplifier

– Design and Simulation

• RF Input Conductance

UNIVERSITĂT

D U I S B U R G E S S E N

Eqn g1=I_Probe1.i/Vout

Congying Chen

• 1 dB Compression Point

UNIVERSITĂT

DUISBURG ESSEN

Design and Measurement of 10 GHz Self-Mixing Amplifier

– Design and Simulation

• IF Signal

Design and Measurement of 10 GHz Self-Mixing Amplifier

<u>– Measurement</u>

• Implementation

UNIVERSITÄT

DUISBURG ESSEN

Design and Measurement of 10 GHz Self-Mixing Amplifier

- Measurement

• Measurement of 1 dBm-Compression Point

Input Power[dBm] -10 -8 -6 -4 -2 0								
	[nput Power[dBm]	-10	-8	-6	-4	-2	0	2
Output -0.49 1.51 3.51 5.40 7.17 8.50	Output Power[dBm]	-0.49	1.51	3.51	5.40	7.17	8.50	9.50

• Measurement of the Mixer Conversion Loss

UNIVERSITÄT

D U I S B U R G E S S E N

• Mixer Products (Spectrum Analyzer)

	LO Signal[dBm]									
DE Signal		2		0	2					
[dBm]	IF Signal [dBm]	Conversion Loss[dB]	IF Signal [dBm]	Conversion Loss[dB]	IF Signal [dBm]	Conversion Loss[dB]				
-10	-30.79	20.79	-27.00	17.00	-24.50	14.50				
-15	-36.99	21.99	-32.10	17.10	-29.97	14.97				
-20	-40.51	20.51	-38.52	18.52	-35.10	15.10				
-25	-45.70	20.70	-43.00	18.00	-39.03	14.03				

• Mixer Products (Spectrum Analyzer)

UNIVERSITÄT

DUISBURG ESSEN

• Mixer Products (Oscilloscope) without C_2

		RF Signal [dBm]								
LO Signal [dBm]		-10								
		Open[mV]	50Ω[mV]	Impedance[Ω]		Output Power[dBm]				
	-2	68	40		35.00		-23.98			
	0	98	60		31.66		-20.46			
	2	104	64		31.25		-19.89			

• Mixer Products (Oscilloscope) with C_2

	RF Signal [dBm]									
LO Signal [dBm]	-10									
	Open[mV]	50Ω [mV]	Impedance[Ω]	Output Power[dBm]						
-2	35	20	37.50	-30.00						
0	52	31	33.87	-26.19						
2	70	42	33.33	-23.55						

• Calculation of Impedance in Imagine Part

Impedance[Ω] Measured without C_2	Impedance[Ω] Measured with C_2	$\begin{array}{c} \textbf{Impedance}[\boldsymbol{\Omega}] \\ \textbf{of } C_2 \end{array}$
35.00	37.50	13.46
31.66	33.87	12.03
31.25	33.33	11.58

Design and Measurement of 10 GHz Self-Mixing Amplifier

<u>– Measurement</u>

Conversion Loss

LO Signal[dBm]	Conversion Loss[dB]
-2	13.98
0	10.46
2	9.89

Conclusion

■ Larger LO Signal → Larger Output Signal Lower Output Impedance

■ The LO Signal depends on 1 dB-compression point

Feasibility of Self-Mixing Amplifier

Thank You for Your Attention