Doubler/Amplifier Building Block for CW-Radar

By: Manar Bakro

Supervisor: Prof. Dr.-Ing. K. Solbach

Universität Duisburg-Essen Hochfrequenztechnik

Outline

- Motivation
- Introduction
- Frequency Doubler
- Amplifier 24GHz
- Measurement Results
- Conclusion

Outline

Motivation

- Introduction
- Frequency Doubler
- Amplifier 24GHz
- Measurement Results
- Conclusion

Motivation

Continuous-Wave (CW) Radar

- Transmit a high-frequency signal continuously.
- CW-Radar systems are used for the measurement of velocity of ,e.g., cars on the street or objects.
- They have no minimum or maximum range and maximize power on a target because they are always broadcasting.

• CW-Radar measures the Doppler-frequency of the microwave radiation.

• One part of the radar system

Outline

- Motivation
- Introduction
- Frequency Doubler
- Amplifier 24GHz
- Measurement Results
- Conclusion

Microstrip Radial Stub (RS)

Many microstrip circuits, such as low-pass filters, mixers, etc. often require the use of Radial Stubs.

UNIVERSITÄT DEUSSEBURG 18-Mar-09

Radial Stub Simulation by ADS

13.0

13.0

S

Connectors

18-Mar-09

UNIVERSITÄT

Testing Super SMA (27GHz)

Model 2.4 mm connector (50GHz)

Duroid RT5870 , $H=0.5,\epsilon = 2.33$

Sub-Miniature Version A Connectors(SMA)

 SMA connectors are manufactured to have excellent performance up to 18 GHz, from Stainless Steel Construction.

Outline

- Motivation
- Introduction
- Frequency Doubler
- Amplifier 24GHz
- Measurement Results
- Conclusion

Frequency Doubler

Unbalanced Doubler

to make the operating point less sensitive to technology variations

Designing in the ADS

Input and the Output in the Harmonic Balance

Balanced Doubler

The balanced doubler is especially attractive due to the high conversion efficiency

The 180 3-dB coupler rat-race hybrid ring

Rat-Race Ring Coupler in ADS

S-Parameters

Design and Simulation By ADS

Harmonics Balance for Input and Output

The Fabrication and Measurement

Spectrum Output for the Frequency Doubler

For input(12GHz) 0dBm, the output(23.9GHz) -14dBm

Measured output power versus input power

Outline

- Motivation
- Introduction
- Frequency Doubler
- Amplifier 24GHz
- Measurement Results
- Conclusion

Amplifier 24 GHz

The steps for nominal optimization

- Running a simulation.
- Comparing results with the goals (10dB>S21>5dB), (-10dB>S11>-20dB).
- Changing the circuit parameters to obtain results that are likely to be closer to the goal.
- Running a simulation again with the new parameter values.

Simulation By ADS

DEUSSENURG 18-Mar-09

UNIVERSITÄT

S11,S22

18-Mar-09

UNIVERSITÄT

The Fabrication and Measurement

S-Parameters

H F T

18-Mar-09

DEUSISEBURG

UNIVERSITÄT

Measurement Results

Spectrum of the output

Outline

- Motivation
- Introduction
- Frequency Doubler
- Amplifier 24GHz
- Measurement Results
- Conclusion

Conclusion

- In this thesis, a block consists of the frequency doubler and the amplifier at the output is designed for the CWradar system has been developed.
- The frequency doubler by using the coupler and the HEMT transistor, and the amplifier at 24 GHz with gain 7.5dB are designed.
- The simulation results show that, for high frequency and after the fabrication with RT/Duroid 5870 substrate of 0.25 mm and 0.5 mm, found substrate of 0.25 mm is correspondingly used.

Thank you for your attention!

Н

F

Š

Appendix A

Transmission Coefficient S-Parameter from the measurement MGF 4961B RT/Duroid 5870 ,0.5 mm ,2.33

Frequency	<i>S</i> ₁₁	<i>S</i> ₁₂	<i>S</i> ₂₁	<i>S</i> ₂₂
15.0 GHz	0.62 / 38.51	0.07 / 126	3.06 / 113	0.54 / 58.09
15.5 GHz	0.57 / -6.35	0.07 / 94.68	3.33 / 75.30	0.52 / 15.44
16.0 GHz	0.53 / -63.00	0.07 / 60.61	3.26 / 29.28	0.48 / -32.83
16.5 GHz	0.51 / -124	0.08 / 18.07	3.46 / 3.54	0.42 / -87.14

17.0 GHz	0.52 / 180	0.08 / -13.86	3.80 / -44.78	0.37 / -149
17.5 GHz	0.56 / 120	0.07 / -52.87	3.39 / -90.34	0.37 / 147
18.0 GHz	0.60 / 63.75	0.07 / -89.63	3.12 / -128	0.40 / 89.21
18.5 GHz	0.64 / 24.49	0.07 / -121	2.86 / -166	0.45 / 33.84
19.0 GHz	0.67 / -17.84	0.06 / -159	2.91 / 155	0.49 / -4.99
19.5 GHz	0.68 / -58.83	0.05 / 166	2.77 / 116	0.52 / -47.70
20.0 GHz	0.66 / -105	0.05 / 129	2.74 / 73.20	0.55 / -91.48
20.5 GHz	0.62 / -146	0.05 / 97.35	2.45 / 34.03	0.57 / -132

21 GHz	0.57 / 174	0.06 / 57.40	2.40 / -2.60	0.58 / -172
21.5 GHz	0.53 / 131	0.06 / 18.25	2.44 / -39.38	0.58 / 147
22 GHz	0.49 / 85.68	0.06 / -34.29	2.72 / -82.85	0.57 / 103
22.5 GHz	0.45 / 33.74	0.06 / -83.91	2.61 / -125	0.54 / 55.49
23 GHz	0.42 / -24.95	0.06 / -130	2.46 / -165	0.49 / 2.04
23.5 GHz	0.43 / -86.64	0.07 / 173	2.31 / 152	0.44 / -57.03
24 GHz	0.51 / -146	0.08 / 111	1.89 / 115	0.44 / -124
24.5 GHz	0.64 / 157	0.08 / 46.42	2.05 / 81.10	0.48 / 166
25 GHz	0.71 / 97.39	0.06 / -12.00	1.89 / 24.60	0.55 / 98.41
25.5 GHz	0.75 / 50.97	0.05 / -50.87	1.50 / -8.82	0.60 / 46.75
26 GHz	0.75 / 6.20	0.04 / -84.78	1.54 / -39.38	0.63 / 0.47