Development of a 24GHz fully integrated VCO

Saeid Ghassemi

Supervisors:

Dipl.-Ing. Uwe Stehr (IMST GmbH) Prof. Dr. - Ing K. Solbach Chair of Department of High Frequency Technique

University Duisburg - Essen

University of Duisburg-Essen

Wireless Communication

Cellular Telephones

wireless LAN's

GPS/satellite

Receivers

small size low-cost

small form

UNIVERSITÄT DEUSISEBNURG

Development of a 24GHz fully integrated VCO

UNIVERSITÄT

RG

Voltage Controlled Oscillators

Applications

Base Station Cell Phone Telecommunication GPS & Navigation Satellite Communication LAN/WAN Military

UNIVERSITÄT DUISBURG ESSEN

Development of a 24GHz fully integrated VCO

UNIVERSITÄT

DU

- I - S

в

URG

Design Goals

- Design integrated on-chip inductor optimized for low phase noise
- VCO Core
- Stable on-chip power amplifier
- The matching between the core and PA and PA and load

Target Design Specifications

- Frequency 23.9- 24.35 GHz
- Out put Power 6 dBm
- Supply Voltage 3.2V to 3.4V
- Supply Current <50mA</p>
- Phase Noise <-70 dBc/Hz @ 100 KHz offset</p>
- Tuning Voltage Range 0.4 to 2.8 V
- Temperature Range -40° C to 105° C
- Layout < $1 mm^2$

Some Theories

MST

Development of a 24GHz fully integrated VCO

UNIVERSITÄT

DU

1 S

В

URG

Development of a 24GHz fully integrated VCO

UNIVERSITÄT

RG

Practical Oscillator Spectrum

UNIVERSITÄT DEULSEBURG

Phase Noise

UNIVERSITÄT DEUSISEBURG

Leeson's Model

Q is the quality factor of the tank *Ps* is the average power dissipated in the tank

How to reduce Phase Noise

- The average power dissipated in the tank resistance
- Quality factor with the Power 2
- Low Noise Power Supply and Tuning Voltage
- Grounding HF and DC
- Connections to the tuning port: short, screened, shielded, decoupled
- Capacitor Bank

Design Process flow for Analog Integrated Circuits

The applied technology

B7HF200_8 200 GHz Bipolar technology 200 GHz SiGe /(silicon-germanium) bipolar process with copper metallization for mixed analogue / digital HF applications High speed and ultra high speed npn Transistors Varactors MIM capacitors 3 kind of Resistors **No Inductor**

Inductors

On-chip spiral inductors

Very non ideal behaviour

Rather low Q

Size depends on the current Width< 15 um

Symmetric, Differential L=70pH Q=15

n

Losses in Integrated Inductors

metal & via resistance constant

low frequencies,

M3

Q proportional to Frequency and affected bye the substrate.

higher frequencies

Q directly proportional to frequency skin effect

Q is proportional to square root of Frequency.

UNIVERSITÄT DEUSSENURG

UNIVERSITÄT

UNIVERSITÄT

URG

Negative Resistance Circuit

Advantages :

- Simple topology
- Good for feeding differential circuits
- Good phase noise performance can be achieved, it can reject common mode noise,
- Has better power supply noise rejection,
- Easier to bias on-chip without any ideal ground available.

2.bias current

UNIVERSITÄT

3.transistor size

URG

Gm is the large signal transconductance value

cādence™

UNIVERSITÄT

RG

Simulation Results

Fourier analysis of the Current wave form

$$I_{n} = \int_{-\frac{\alpha}{2}}^{\frac{\alpha}{2}} \frac{I_{max}}{1 - \cos(\frac{\alpha}{2})} \left[\cos(\theta) - \cos(\frac{\alpha}{2}) \right] \cos(n\theta) d\theta$$

$$20 \text{Log V} = 6 \text{dBm},$$

$$V = 0.44$$

$$Ac \text{ denn } 0.44 \times 1.4 =$$

$$0.63 \text{ v Amplitude}$$

$$10 \text{Log}(P) = 6 \text{dBm}$$

$$p = 4 \text{mW}$$

$$P_{dc} = V_{dc} \times I_{dc}$$

$$P_{1} = \frac{V_{dc}}{\sqrt{2}} \frac{I_{1}}{\sqrt{2}}$$

$$P = \text{R} \times I^{2} \text{ I} = 9 \text{mA}$$

UNIVERSITÄT DEUISEBURG ESSEN

Stability Calculations

Stability Circles

- Drawing the locus of the source and load terminations on the Smith Chart
- for Source stability Circle $|\Gamma_{out}|=1$

$$r_{s} = \frac{|S_{12}S_{21}|}{S_{11}^{2} - \Delta^{2}} \qquad C_{s} = \frac{(S_{11}\Delta S_{22}^{*})^{*}}{S_{11}^{2} - \Delta^{2}} = |C_{s}| \measuredangle \theta$$

For Load stability Circle $|L^{W}| = 1$

$$r_{L} = \frac{|S_{12}S_{21}|}{S_{22}^{2} - \Delta^{2}} \qquad C_{L} = \frac{(S_{22}\Delta S_{11}^{*})^{*}}{S_{22}^{2} - \Delta^{2}} = |C_{L}| \measuredangle \theta$$

RG

How to make an Amplifier Stable?

Development of a 24GHz fully integrated VCO

UNIVERSITÄT

U

RG

UNIVERSITÄT

URG

Simulation Results

cādence[®] Simulation Results

UNIVERSITÄT

Lavout

UNIVERSITÄT

Development of a 24GHz fully integrated VCO

I M S T

Thanks for the attention