Concept Creation and Design of a Parameterizable, fast-locking 65 nm CMOS CDR-PLL for Gigabit

Serial Chip-to-Chip Communication in Mobile Devices

by

Milan Forcan

Prof. Dr.-Ing. Klaus Solbach

University of Duisburg-Essen Department of Microwave and RF-Technology

Reimund WittmannMarkus MüllerRalf KakerowNokia Research Center Bochum

Prof. Dr.-Ing. Werner Schardein University of Applied Sciences Dortmund

Contents

- Introduction
- Clock and Data Recovery Architectures
 - Clock and Data Recovery PLL
 - Oversampling CDR
- Analysis of Clock and Data Recovery Circuits
 - Simulation Environment
 - Hogge PD vs. Alexander PD
- CDR-PLL Implementation
 - Generic Engineering Model
 - CDR-PLL Building Blocks

Introduction

• Basic structure of a serial data link:

- Serial data transmission with embedded clock
- How to determine which bit is sent?
- Solution: Clock and Data Recovery Circuit
 - Extract the clock signal and align it to data
 - Resample the noisy analog data signal
- Challenges:
 - Extremely fast locking time compared to conservative CDR

- Sufficient jitter performance

Contents

- Introduction
- Clock and Data Recovery Architectures
 - Clock and Data Recovery PLL
 - Oversampling CDR
- Analysis of Clock and Data Recovery Circuits
 - Simulation Environment
 - Hogge PD vs. Alexander PD
- CDR-PLL Implementation
 - Generic Engineering Model
 - CDR-PLL Building Blocks

Clock and Data Recovery PLL I

First approach: Phase-Locked Loop (PLL)

- Phase Detector: Generates an output signal in relation to the phase difference of both inputs
- Charge-Pump: Output pulses of PD are converted to current
- Low-Pass Filter: Integrates the output of the charge pump and produces the control voltage
- Voltage Controlled Oscillator: Generates a periodic output whose frequency depends on the control voltage

Clock and Data Recovery PLL II

Hogge Phase Detector (Linear PD):

- Path Y produces *proportional pulses* in relation to phase difference
- Path X produces T_{ck}/2 wide *reference pulses*
- Under locked condition Y & X show pulses with equal width

Clock and Data Recovery PLL III

Hogge Phase Detector (Linear PD):

• Benefits:

- Linear dependence between output and phase difference
- Wide frequency acquisition range
- Linear behaviour enables loop parameters calculation

• Drawback:

- "Triwaves" are produced, resulting in noise on oscillator line
- Clock skew due to internal delays

Clock and Data Recovery PLL IV

Alexander Phase Detector (Bang-Bang PD):

- Data is sampled at 3 equidistant points A, B and C
- XOR gates combine nodes A, B ad C:

X = A xor B and Y = B xor C

Performs an early-late detection

Clock is early: Y = LowClock is late: Y = High and X = Low

Clock and Data Recovery PLL V

Alexander Phase Detector (Bang-Bang PD):

- In steady state clock is aligned in the middle of the data eye
- Drawback:
 - Small frequency capture range

Contents

- Introduction
- Clock and Data Recovery Architectures
 - Clock and Data Recovery PLL
 - Oversampling CDR
- Analysis of Clock and Data Recovery Circuits
 - Simulation Environment
 - Hogge PD vs. Alexander PD
- CDR-PLL Implementation
 - Generic Engineering Model
 - CDR-PLL Building Blocks

Oversampling CDR

Second approach: Oversampling CDR

- 1. Sample data at equidistant points
- 2. Detect data transition occurrence
- 3. Select clock phase to resample the data
- Benefits:
 - Digital implementation
 - Very fast acquisition
- Drawbacks:
 - Design complexity increases with frequency and jitter requirements
 - Additional multiphase VCO/PLL needed

NCK

Contents

- Introduction
- Clock and Data Recovery Architectures
 - Clock and Data Recovery PLL
 - Oversampling CDR
- Analysis of Clock and Data Recovery Circuits
 - Simulation Environment
 - Hogge PD vs. Alexander PD
- CDR-PLL Implementation
 - Generator Driven Generic Engineering Model
 - CDR-PLL Building Blocks

Simulation Environment

- Implementation of appropriate models for first comparison of Hogge PD and Alexander PD
- SKILL code generates data stream:
 - 1.25 Gb/s *(1UI = 800ps)*
 - Pseudo-random
 - Adjustable Jitter
 - 8B10B-coding
- Verilog-A models:
 - Charge-Pump
 - Voltage Controlled Oscillator

Simulation Environment

1.75

1.5

(2H2) (CH2)

1.0

.750

(TC)(net6") "rising" ?xName "time" ?mode "auto" ?threshold 0.0 ?histoDisplay nil ?noOfHistoBin:

400.0

time (ns)

600.0

200.0

800.0

1000

- Implementation of appropriate models for first comparison of Hogge PD and Alexander PD
- SKILL code generates data stream:
 - 1.25 Gb/s *(1UI = 800ps)*
 - Pseudo-random
 - Adjustable Jitter
 - 8B10B-coding
- Verilog-A models:
 - Charge-Pump
 - Voltage Controlled Oscillator

Hogge PD vs. Alexander PD I

Hogge PD simulation results:

• Pro:

- Wide frequency acquisition range
- Linear behaviour
- Fast locking time of 500 ns (625 UI)
- Contra:
 - Triwaves on the oscillator line
 - Systematic clock skew of 150 ps (0.18 UI)

Hogge PD vs. Alexander PD I

934.0 934.45ns 498.19mV **1** 934.697ns 498.19mV

Hogge PD simulation results:

• Pro:

- Wide frequency acquisition range
- Linear behaviour
- Fast locking time of 500 ns (625 UI)
- Contra:
 - Triwaves on the oscillator line
 - Systematic clock skew of 150 ps (0.18 UI)

935.0 dx|dy 247.304ps

0.0V \$

Hogge PD vs. Alexander PD II

Alexander PD simulation results:

- Pro:
 - Successful phase lock
- Contra:
 - Higher noise on oscillator line
 - Frequency acquisition range < 100 MHz!
 - Additional frequency detection required

Circuit Selection

- Hogge PD:
 - Wide frequency acquisition range
 - Fast acquisition time
 - Acceptable output clock jitter
 - Triwaves and clock skew
- Alexander PD:
 - Successful lock
 - Narrow frequency acquisition range requires frequency detection
- Oversampling CDR approach:
 - Very fast acquisition time
 - High design efforts
 - More than 6 phases required for reasonable jitter performance

Circuit Selection

- Hogge PD:
 - Wide frequency acquisition range
 - Fast acquisition time
 - Acceptable output clock jitter
 - Triwaves and clock skew

Implementation of CDR-PLL using:

- Hogge PD
- Charge pump and LPF
- Voltage Controlled Oscillator

Contents

- Introduction
- Clock and Data Recovery Architectures
 - Clock and Data Recovery PLL
 - Oversampling CDR
- Analysis of Clock and Data Recovery Circuits
 - Simulation Environment
 - Hogge PD vs. Alexander PD
- CDR-PLL Implementation
 - Generic Engineering Model
 - CDR-PLL Building Blocks

Generic Engineering Model (GEM)

- C-like description generates schematic, layout and testbench
- Variables define technology dependent design rules
- Create instances, wires and contacts using functions
- Benefits:
 - Reusable circuit generators
 - Generator parameters allow fast modification of implemented circuit
 - Technology independent
 - Adaptable on common CAD systems (e.g. Mentor, Cadence)

CDR-PLL Building Blocks I

Modifications on Hogge PD:

Correct clock skew using first delay

 Eliminate Triwaves using second delay Modifications on LPF:

- Capacitances C1 = 100 fF C2 = 1.9 pF
- Resistor R1 = 8.3 kOhms
- Loop transfer function:
 - Bandwidth $f_{0dB} = 50.5$ MHz
 - Phase margin PM = 65 °
 - Overshoot = 1.29 dB

£ (H+

NDK

CDR-PLL Building Blocks I

Modifications on Hogge PD:

- Correct clock skew using first delay
- Eliminate Triwaves using second delay Modifications on LPF:
 - Capacitances C1 = 100 fF C2 = 1.9 pF
 - Resistor R1 = 8.3 kOhms
 - Loop transfer function:
 - Bandwidth $f_{0dB} = 50.5 \text{ MHz}$
 - Phase margin PM = 65 °
 - Overshoot = 1.29 dB

CDR-PLL Building Blocks II

Current-Starved Voltage Controlled Oscillator:

CDR-PLL Building Blocks III

VCO specifications:

Data stream

UNIVERSITÄT

RG

- Operating point: 1.25 GHz at 0.65V
- Limited linear range
- Tuning range:
 1.17 GHz 1.42 GHz
- VCO slope: 400 MHz/V
- Parameter verification with layout simulation required

Hogge PD

VCO frequency characteristic:

CDR-PLL Building Blocks IV

Current steering Charge Pump:

CDR-PLL Building Blocks V

Charge pump specifications:

Charge pump DC characteristic:

Simulation Results

- Locking time:
- Input jitter tolerance:
- Clock output jitter:
- Power consumption:
- CDR core dimensions:

55 ns ≈ 70 UI (up to 10x faster than conservative CDR-PLL)

0.39 UI at 1.25 GB/s verified (SATA compliant)

0.26 UI at 0.39 UI data jitter

0.615 mW at 1V

100 µm x 100 µm

Thank you for your attention!

VCO layout

Charge pump layout

 Oversampling CDR (*input stage*): Oversampling CDR (*transition detection*):

 Oversampling CDR (USEA signal stage): Oversampling CDR (USEC signal stage):

Oversampling CDR (SELA signal stage):

 Oversampling CDR (phase switching stage):

NOKIA

