

Vortrag über die Bachelorarbeit

angefertigt von

Niklas Schulz

bei

Prof. Dr.-Ing. K. Solbach

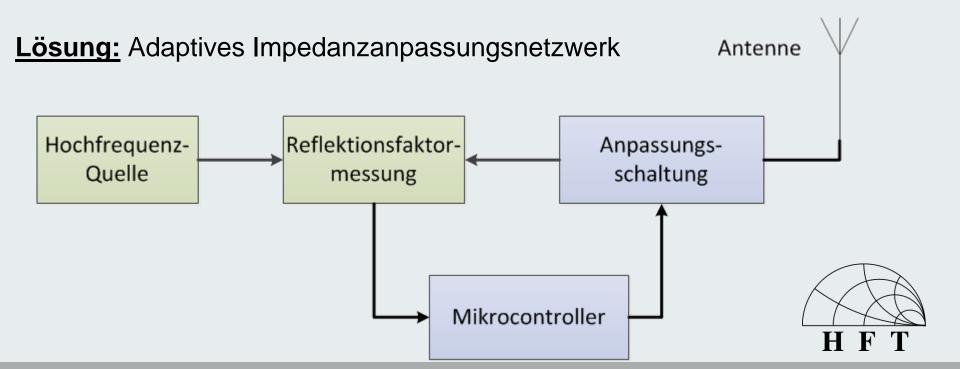
Fachgebiet
Hochfrequenztechnik
an der
Universität Duisburg-Essen

UNIVERSITÄT

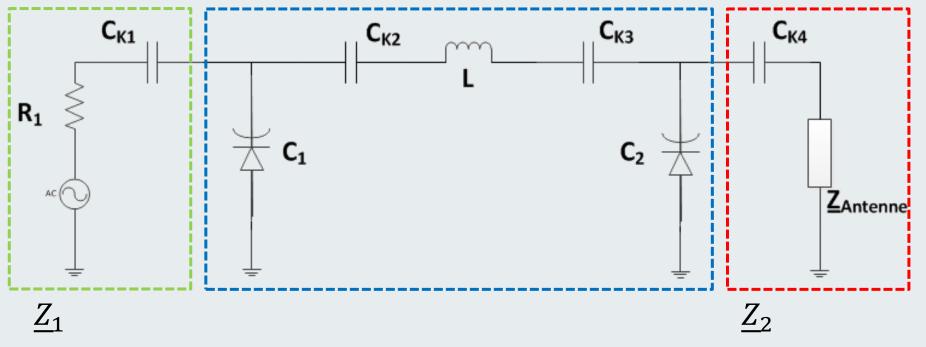
DUSSBURG

Thema:

Control and Matching Circuit for Adaptive Impedance Matching System

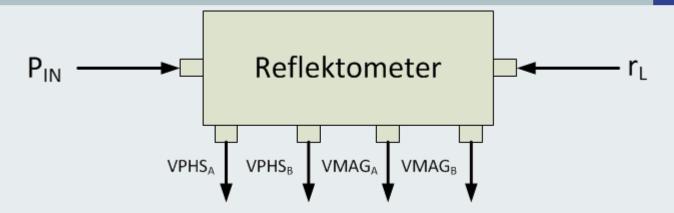

Inhalt

- Problemstellung
- Grundlagen
 - Impedanzanpassungsschaltung
 - Reflektometer
- Berechnung der Parameter der Anpassungsschaltung
- Das Board und der Mikrocontroller
- Schaltplan und Layout der Anpassschaltung
- Messergebnisse
- Zusammenfassung: Aussicht und Fazit



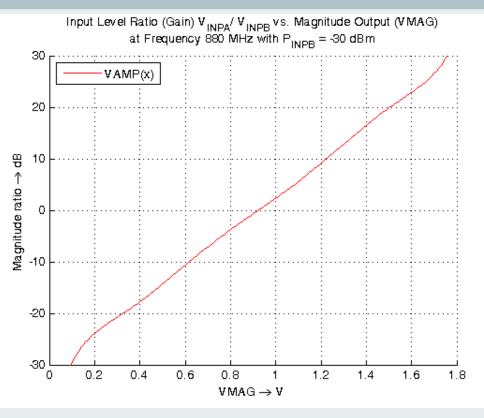
Problemstellung

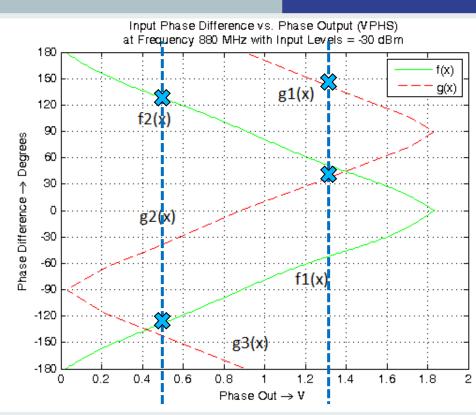
- Fehlanpassung einer Antenne durch Kontakt mit einem menschlichen Körper
- Einfluss auf die Qualität der Messung
- Anforderung an das System:
 - Frequenz von 880 MHz
 - Betrag des Reflektionsfaktors der Antenne kleiner -20 dB


Grundlagen - Anpassungsschaltung

- Pi-Filter zur Transformation der Antennenimpedanz in Generatorimpedanz
 - Einsatz von Kapazitätsdioden
 - Feste Spule
- Bekannte Generatorimpedanz Z₁
- Unbekannte Antennenimpedanz Z₂
- Koppelkondensatoren gegen Gleichspannungs-Einflüsse aufgrund der Kapazitätsdioden

Grundlagen - Reflektometer


- Ausgangsspannungen VPHS und VMAG geben Auskunft über den nicht kalibrierten Reflektionsfaktor der Last
- Auswertung der Spannungen getrennt über zwei approximierte Kurven
- Normalisierung des Reflektionsfaktors über die Messung eines Kurzschlusses


$$GMC = \frac{GM \cdot e^{j \cdot 180^{\circ}}}{GMS}$$

Grundlagen - Reflektometer

Berechnung des Betrags und der Phase

UNIVERSITÄT
DUISBURG

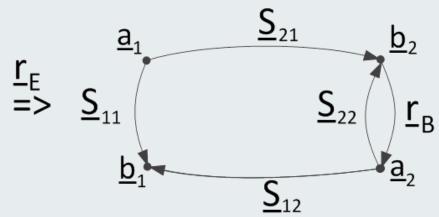
Betrag des Reflektionsfaktors vor der Normalisierung:

$$|\vec{r}| = 10^{\frac{ratio[dB]}{20}}$$

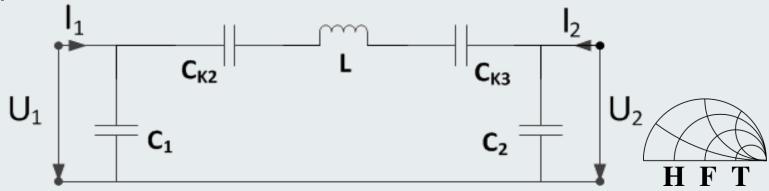
 $VPHS_A = 0.5 V VPHS_B = 1.3 V$

Φ ~ 125°

H F T

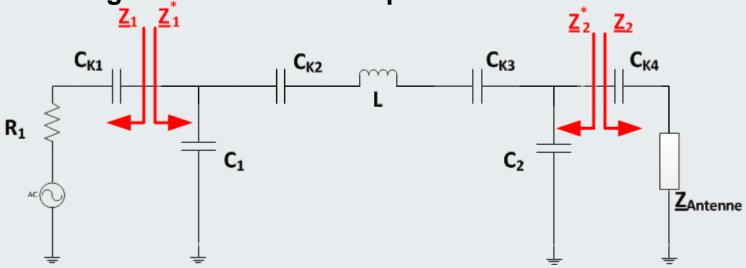

Reflektionsfaktor der Antenne

Eingangsreflektionsfaktor der Schaltung durch Reflektometer


bekannt

 Darstellung des Pi-Filters in Streuparametern

$$\underline{\vec{r}}_B = \frac{\underline{\vec{r}}_E - \underline{S}_{11}}{\underline{S}_{12} \cdot \underline{S}_{21} + \underline{\vec{r}}_E \cdot \underline{S}_{22} - \underline{S}_{11} \cdot \underline{S}_{22}}$$



 Berechnung der S-Parameter aus den Z-Parametern des Zweitors (Pi-Filter)

Berechnung der unbekannten Kapazitäten

Impedanzanpassung an \underline{Z}_1 und \underline{Z}_2 :

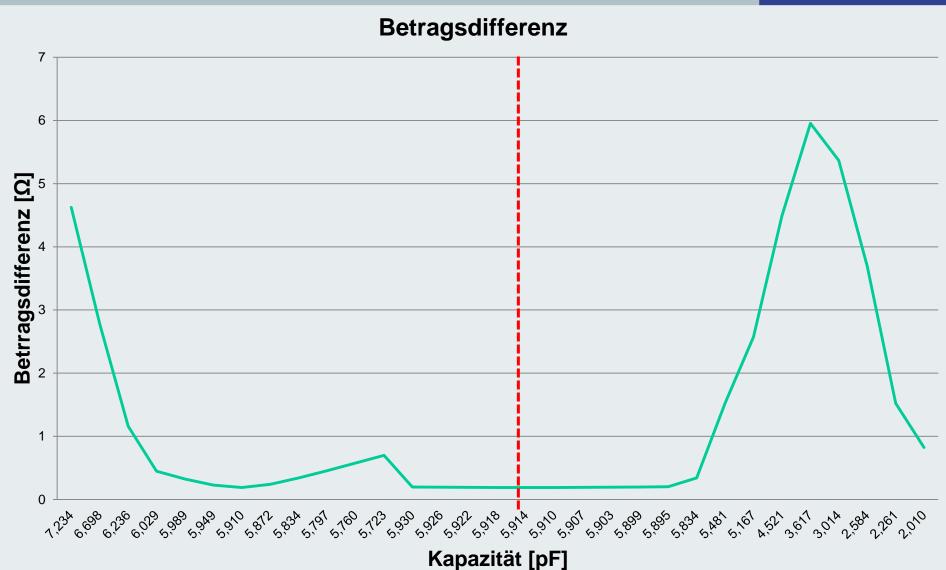
$$\begin{aligned} \underline{Z}^*_{1} &= [(\underline{Z}_2||(j \cdot X_{C2})) + j \cdot X_{L1}]||(j \cdot X_{C1}) \\ \underline{Z}^*_{2} &= [(\underline{Z}_1||(j \cdot X_{C1})) + j \cdot X_{L1}]||(j \cdot X_{C2}) \end{aligned}$$

Herleitung des Zusammenhangs:

$$X_{C2} = f(X_{C1}, \underline{Z}_1, \underline{Z}_2)$$

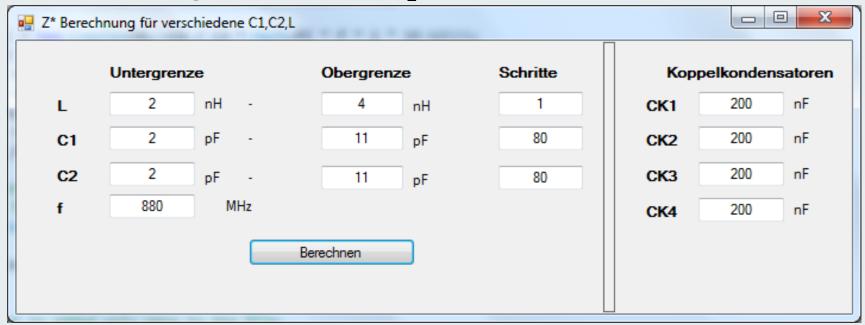
Einsetzen in Gleichung:

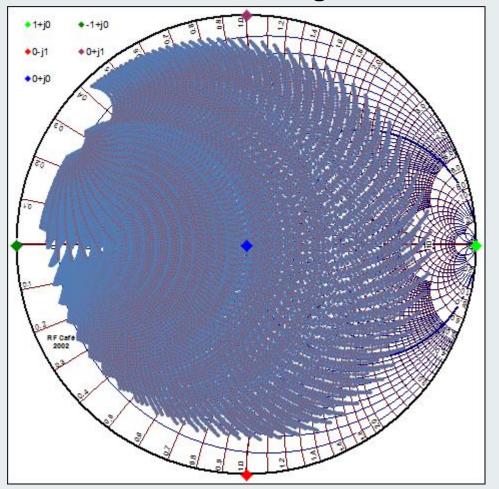
$$\left[\left(\underline{Z}_{2}|\left|\left(j\cdot X_{C2}(X_{C1},\underline{Z_{1}},\underline{Z_{2}})\right)\right)+j\cdot X_{L1}\right]\right|\left|\left(j\cdot X_{C1}\right)-\underline{Z}^{*}\right|_{2}=0$$


 Einsetzen der einstellbaren Kapazitäten von C₁ und Bestimmung des kleinsten Betrags der Differenz

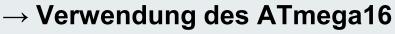
Parameter	Wert / Intervall
C ₁	[2pF;15pF]
C_2	[2pF;15pF]
L, Z ₁ und Z ₂	Fest vorgegeben

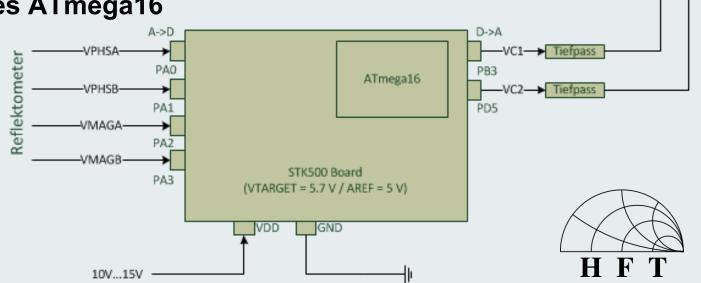
• Je genauer der Schrittabstand zwischen zwei eingesetzten Kapazitäten, desto genauer ist die Anpassung




- Welche Impedanzen können angepasst werden?
- Vorgabe der einstellbaren Kapazitäten und der Induktivität
 - \rightarrow Berechnung der Impedanz \mathbb{Z}_2

Anpassbereiche im Smith-Chart dargestelltbar:


Das Board und der Mikrocontroller



Varactor-Dioden

- Verwendung des STK500-Boards
 - 8 LEDs und 8 Schalter
 - RS232-Schnittstelle zum Programmieren des Microcontrollers mit dem AVR Studio 4
- Ansprüche an den Microcontroller
 - 4 Analog-Digital-Eingänge
 - 2 Pulsweitenmodulationen zur Ansteuerung der Kapazitätsdioden

1 Timer zur Steuerung der verschiedenen Prozesse

Das Board und der Mikrocontroller Register

Register Allgemein:

- Speicher mit geringer Kapazität und kurzer Zugriffszeit.
- Werden hauptsächlich für CPU-Befehle genutzt (z.B. Addition).

Special Function Register (SFR)

- Dient zur Steuerung der Funktionen und Module des Mikrocontrollers (z.B. Timer).
- Werden über andere Befehle als die normalen Register angesprochen.

Beispiel eines Timer-Registers: Timer/Counter Interrupt Mask

Bit	7	6	5	4	3	2	1	0	_
	OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	OCIE0	TOIE0	TIMSK
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initialwert	0	0	0	0	0	0	0	0	

Das Board und der Mikrocontroller

Auf dem ATmega16 befinden sich 3 Timer:

Timer	Art	Verwendung
0	8-Bit	Digital-Analog-Wandler
1	16-Bit	Digital-Analog-Wandler
2	8-Bit	Überprüfung der Prozesse jede 0.5 Sekunden

- Ein 8-Bit Timer führt bei einem Takt von 1 MHz jede $1\mu s$ · $2^8 = 256\mu s$ einen Overflow-Interrupt aus
- Für einen Funktionsaufruf alle 0.5 Sekunden ergibt sich somit folgender Zusammenhang: $\frac{0.5 s}{256 \, \mu s} = 1954$ Overflow Interrupts

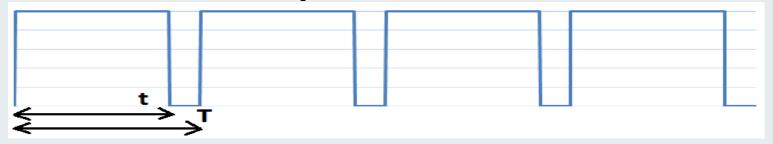
Das Board und der Mikrocontroller

Analog-Digital-Wandler

UNIVERSITÄT
DUISBURG

Datenblatt

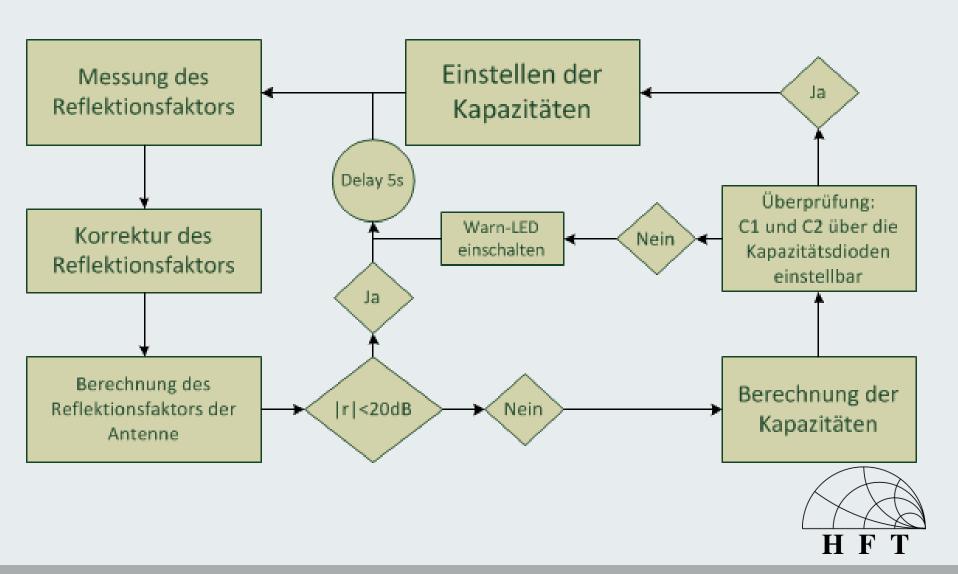
Acht Analog/Digital-Pins


Auflösung von 10-Bit

- Einlesen der Spannungen des Reflektometers
 - → Umwandlung in digitalen Wert
- Konfiguration des ADCs:
 - Externe Spannung als Referenzspannung AREF
 - Single-Conversion-Mode
 - Interrupt Enable
- Jeden Durchlauf der Hauptfunktion werden die vier Spannungen des Reflektometers eingelesen
- Bei einer AREF-Spannung von 4 V und einer Auflösung von 10-Bit ergibt sich ein Ziffernschritt von: $\frac{4V}{1024} = 3.9 \, mV$

Digital-Analog-Wandler

- Kein direkter Digital-Analog-Wandler auf dem ATmega16
 → Pulsweitenmodulation mit Timer0 und Timer1
- An- und Ausschalten der Ausgangsspannung führt zu einer ausgegeben Leistung $\frac{t}{\tau} \cdot 100\%$ der Gesamtleistung

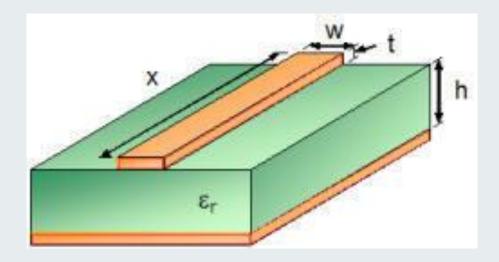


- Beide Timer haben unterschiedliche Auflösungen bei der Ausgangsspannung
 - → Einfluss auf die Genauigkeit der Kapazitäten
- Filterung des Ausgangssignal mit einem Tiefpass 2. Ordnung

UNIVERSITÄT

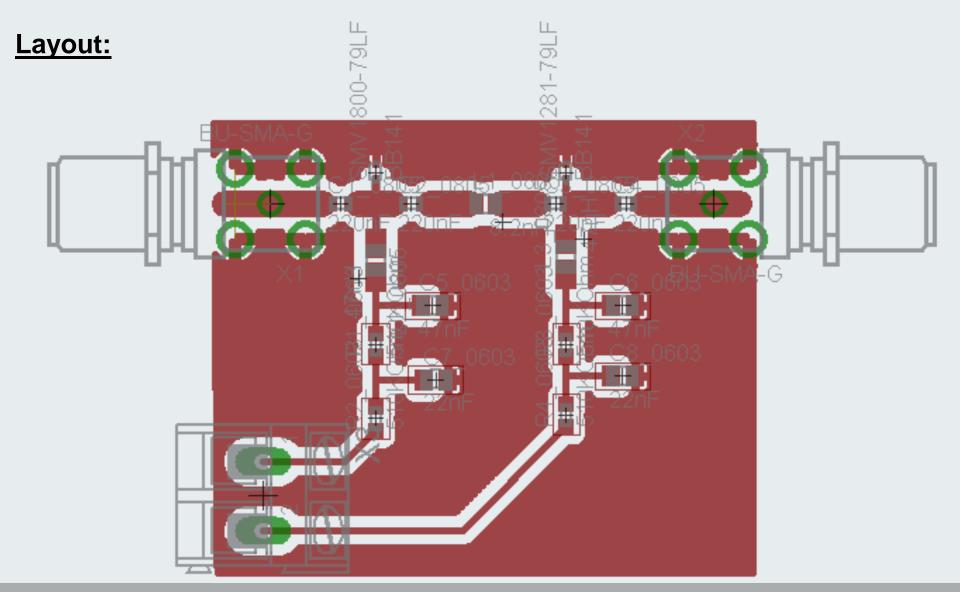
Das Board und der Mikrocontroller

C-Programmcode


Layout der Anpassschaltung

Erstellung unter EAGLE

- Bauelemente der SMD-Technologie in der Dimension 0603 und 0805
- Leitung mit einer 50 Ohm Wellenimpedanz


Mikrostreifentechnik

- Substrat RO4003C mit:
 - elektr. Permitivität $\varepsilon_r=3.55$
 - Dicke h = 0.833 mm
- Breite der Leitung w = 1.88 mm

Layout der Anpassschaltung

Reflektometer

UNIVERSITÄT

DUISBURG

Vergleich Reflektometer und Network Analyzer:

Gemessener Reflektionsfaktor des Kurzschlusses für die Normalisierung:

$$GMS = 7.6559 \cdot e^{j.45.95^{\circ}}$$

Parameter	Einstellung
Spannung Reflek.	5 V
V_{REF}	1.8 V
RF-Quelle	
Frequenz	880 MHz
Power Level	5 dBm

Messergebnisse:

$ \vec{r} $ Norm.	$<\vec{r}$ Norm.	∆ Betrag	∆ Phase	$ ec{r} $ Fehler	$<\!ec{r}$ Fehler
0.3122	168.47°	0.01275	3.27°	3.92 %	0.91 %
0.2491	166.66°	0.00982	3.16 °	3.79 %	0.88 %
0.1286	161.39°	0.00067	2.99 °	0.53 %	0.83 %
0.3284	-100.66°	0.0084	0.06 °	2.65 %	0.02 %
0.2612	-101.03°	0.0162	0.57 °	6.62 %	0.16 %
0.1350	-100.29°	0.0150	3.71 °	12.54 %	1.03 %

Mikrocontroller

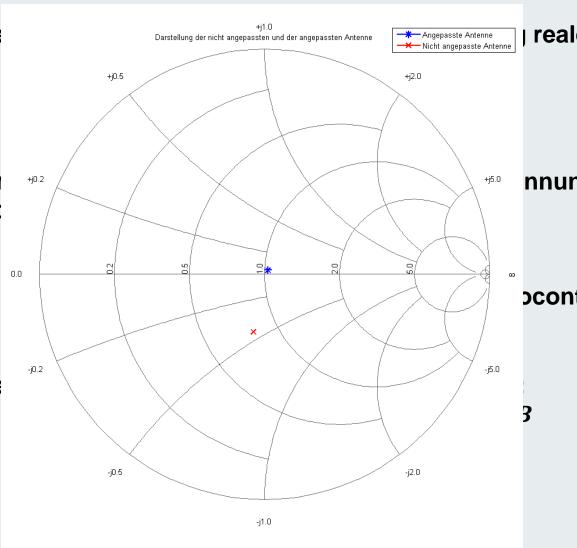
Vermessung der einzelnen Schritte des Mikrocontrollers und Vergleich mit berechneten Werten mit Matlab:

- Testlauf 1: Leitungsstück 2, Leitung 4, Dämpfung 4 dB
- Testlauf 2: Leitungsstück 2, Leitung 5, Dämpfung 5 dB

	Testlauf 1 Mikrocontroller	Berechnung	Testlauf 2 Mikrocontroller	Berechnung
Phase Reflek.	167 °	168.47 °	-101 °	-101.03 °
Betrag Reflek.	0.315	0.3122	0.2625	0.2612
Impedanz Antenne	$(34 + 78 \cdot j)\Omega$	$(34.1943 + 78.46 \cdot j)\Omega$	$(79 + 83 \cdot j)\Omega$	$(80.0466 + 83.98 \cdot j)\Omega$
C ₁	11.5 pF	11.53 pF	10.4 pF	10.46 pF
C_2	7.7 pF	7.7 pF	7.05 pF	7.05 pF

Gesamtnetzwerk

UNIVERSITÄT DUISBURG


- Kapazitätsdioden werden mit einer
 Spannung von 5 V initialisiert
 → C = 3.76 pF
- Für die angeschlossene Last berechnete Impedanz: $Z = (46.4 + 68.08 \cdot j) \Omega$
- Starke Abweichung von der gemessenen Last mit dem Network Analyzer:

$$\underline{Z} = (36.78 - 25.78 \cdot j) \Omega$$

Parameter	Einstellung
Betriebspannung Board	12 V
int. Spannung	5.1 V
Kapazitätsdiode	SMV1800-79LF
Reaktanz Spule	45.339 Ω
Frequenz	880 MHz
Leitungsstück	2
Leitung	5
Dämpfung	5 dB

- Der Reflektionsfaktor vor und nach der Anpassung durch den Mikrocontroller
 - Vorher: $\vec{r} = 0.63 \cdot e^{j \cdot -126.42^{\circ}}$
 - Nachher: $\vec{r} = 0.92 \cdot e^{j \cdot 138.31^{\circ}}$
- Anpassung des Mikrocontrollers auf Grund der nicht mit einzuberechnenden parasitären Effekte nicht möglich.

- Simulation de
- Der Reflektio
- Der Mikrocon Kapazitätsdic
- Der Reflektio
 - Nachher:
- Der Betrag de

realer Parameter

nnungen an die

ocontroller:

Fehlerquellen

- Einzelmessungen der Spule mit dem Network Analyzer zeigen einen starken Einfluss auf den Reflektionsfaktor
 - Dieser Einfluss kann in der Simulation unter ADS nicht nachgestellt werden.
 - Die Spule wird nicht oberhalb der Resonanz betrieben.
- Der Koaxialstecker hat einen geringen Einfluss auf die Phase und Betrag des Reflektionsfaktors
- Beim Layout ist keine Durchkontaktierung der Massefläche durchgeführt worden
 - → Dies kann zu einem Einfluss auf den Reflektionsfaktor der Anpassschaltung führen
- Zu viele einzelne Störungen, die in der Berechnung des Mikrocontrollers nicht berücksichtigt werden können

Zusammenfassung

Aussicht

- Neuberechnung der Werte für die approxmierten Kurven des Reflektometers
- Verwendung einer neuen Mikrocontrollergeneration zur Verbesserung der Leistung und des Speichers
- Verwendung eines neuen Layouts mit Durchkontaktierung der Massefläche
- Kommunikation mit externe Peripherie
- Höhere Anzahl von Impedanzen anpassbar durch einstellbare Spule: $\frac{\lambda}{4}$ -Leitung mit Kapazitätsdiode
- Anderes Verfahren zur Einstellung der Kapazitätsdioden (kontinuierliches Anpassen)

Zusammenfassung

Fazit

- Passende Anpassungsschaltung mit Kapazitätsdioden ausgewählt
- Einlesen und Umrechnen des Reflektionsfaktors durch den Mikrocontroller wurde realisiert

- Vorgestellte Verfahren zur Berechnung der Kapazitäten konnte im Mikrocontroller umgesetzt werden
- Anpassungsschaltung zu parasitär belastet
 - → Anderes Verfahren zur Anpassung oder Verbesserung des Layouts

Danke für Ihre Aufmerksamkeit!

