Master Thesis

Development of a Broadband Circular Polarised Antenna for Over-The-Air Performance Test Applications

Saeed Arafat

Universität Duisburg-Essen Hochfrequenztechnik **Prof. Dr.-Ing. K. Solbach** IMST GmbH : **Dipl.-Ing. A. Winkelmann**

Arafat Jan 2008 1 UNIVERSITÄT DUISBURG ESSEN

<u>Outline</u>

- Motivation
- Introduction
- Frequency Independent Antenna
- Planar Spiral Antenna
- Simulation Results
- Measurement Results
- Conclusion
- Future Work

Motivation

Introduction

Frequency Independent Antenna

The antenna characteristics are invariant to change of the physical size of antenna.

•Frequency Independent Antenna Principles:

- •Angle principle
- Truncation principle
- •Periodic principle

 $Z_1 = Z_2 = 188.5\Omega$

URG

SSEN

Arafat

Jan 2008

$$Z_{1}*Z_{2} = \left(\frac{Z_{0}}{2}\right)^{2} = (188.5)^{2} (\Omega)$$

Selection Process

	Planner Spiral	Conical Spiral	Cross Log Periodic
Lower Frequency Limit	$\frac{\lambda_{LF}}{2\pi}$ extend in 2D Small	$\frac{\lambda_{LF}}{2\pi}$ extend in 3D Medium	$\frac{\lambda_{LF}}{2}$ extend in 3D Large
Higher Frequency Limit	$\frac{\lambda_{\rm HF}}{2\pi}$	$\frac{\lambda_{\rm HF}}{2\pi}$	$\frac{\lambda_{HF}}{2}$
Polarization	 -RHCP or LHCP. -Reverse winding or external feeding. -Direct result of physical shape. 	 -RHCP or LHCP. -Reverse winding or external feeding. -Direct result of physical shape. 	-H,V,RHCP,LHCP -Switching circuit -Orthogonal elements
Power handling	SMA connector coaxial cable	SMA connector coaxial cable	SMA connector coaxial cable
BW limit	Upper frequency limit depend on how fine is the feeding	Upper frequency limit depend on how fine is the feeding	Dependent on the antenna physical size

MPT

Selection Process (Cont.)

 \wedge

		Planner Spiral	Conical Spiral	Cross Log Periodic	
	Balun	Balanced	Balanced	Balanced	
	Dalun	need Balun	need Balun	need Balun	
	Feeding Circuit	Simple feeding	Simple feeding	If the element is well aligned no need for hybrid.	
	Phase center	Stable	Change with Frequency	Change with Frequency	
	Gain over the total BW	Low	Medium	High	
	Coverage	Need cavity for unidirectional	Unidirectional	Unidirectional	
	Weight	Light	Medium	Heavy	
	Reproducibility	Easy	Medium	Complicate	
	Ranked	1	2	3	
Jan 2008 6					

G

Planar Spiral

How Radiation happen

Jan 2008 7

ESSEN

<u>Circular Polarized Radiation</u>

UNIVERSITÄT

ESSEN

1

DИ

SBURG

Spiral Antenna System

Consist from 3 Units

- Feeding circuit (Balun)
- Archimedean Spiral
 PCB
- Absorber loaded
 Cavity

Arafat Jan 2008 9 UNIVERSITÄT

S

ESSEN

BURG

Feeding Circuit (Balun)

Balun will provide

- Balanced feeding
- Impedance transformation

Baluns type

- Linear Tapered Balun
- Infinite Balun
- Marchand balun

Arafat

Jan 2008

10

SBURG

ESSEN

Balun Simulation and Measurement

Measurement and Simulation results for Single balun

Arafat Jan 2008 11 UNIVERSITÄT DUISBURG ESSEN

Measurement Verification

Arafat Jan 2008 12

Antenna Parameters and Simulation

Arafat

Jan 2008

13

SS

EN

RG

<u>3D Far-Field pattern Simulation</u>

RHCP far field radiation pattern (Simulation)

Arafat Jan 2008 14

Current Distribution Simulation

Antenna Measurement

<u>Cavity</u>

Unloaded cavity

- •When high gain need
- •Narrow bandwidth

Absorber loaded cavity

- •Gain reduction not critical
- •Wide bandwidth

Cavity Dimension

- •Depth λ /4 at lower frequency
- •Diameter 1.05 spiral diameter
- Absorber material

$$\mu_r = \mu'_r - j \,\mu''_r = \varepsilon_r = \varepsilon'_r - j \,\varepsilon_r$$

Jan 2008

17

ESS

U

ΕN

RG

Antenna Measurement In Anechoic Chamber

From 0.4 up to 64 GHz

Gain Measurement

Gain Transfer method

Polarization Measurement

Polarization Pattern Method

UNIVERSITÄT

ESSEN

1

ם ם

SBURG

Arafat Jan 2008 18

Sp5 and Sp7 Measurement Results

Measurement with Cavity

ESSEN

20

Measurement with Resistance Termination

Far-Field Measurement For Final Version

Cross-Polarization

Omnidirectional Pattern

3D Far-Field Radiation Pattern Measurement

RHCP far field radiation pattern (Measurement)

Arafat Jan 2008 24

Conclusion

- RHCP antenna worked (0.6 < f/GHz < 13)
- Two arms Archimedean spiral antenna was shown many desirable characteristic.
- Microstrip tapered balun provides a balance feeding and impedance transformation
- An unidirectional pattern achieved using absorber loaded cavity.
- The numerical results were confirmed by measurements.

Arafat

Jan 2008

25

RG

ESSEN

• As a result the developed antenna worked well for OTA measurement test.

<u>Future Work</u>

Reduce the spiral size using slow wave techniques or absorber painting at the open end of spiral.

- Improve and reduce balun size.
- Decrease the cavity depth by thinner absorber loading
- Benefit of the new MetaFerrite material for reducing the antenna size.

Arafat Jan 2008 26 UNIVERSITÄT DUISBURG ESSEN

Arafat Jan 2008 27

Arafat Jan 2008 28

Arafat Jan 2008 29