Aufbau und dosimetrische Charakterisierung einer "in vitro"-Expositionseinrichtung

cand.-Ing. Christian Adami

Übersicht

- Einleitung
- Normung
- Messaufbau zur Bestimmung der Impulsantworten der Retina
- Expositionseinrichtung
- Integration des Messaufbaus in die Expositionseinrichtung
- Numerische Berechnungen
- Simulationsergebnisse
- Charakterisierung
- Zusammenfassung

Einleitung

- Öffentliche Diskussion über Einflüsse elektromagnetischer Strahlung von Mobiltelefonen und funkbasierten Technologien auf Mensch und Umwelt
- In einem Projekt des Bundesamtes f
 ür Strahlenschutz (BfS) im Rahmen des Mobilfunkforschungsprogramms: Kl
 ärung des Einflusses von hochfrequenten elektromagnetischen Mobilfunkfeldern auf Retinazellen
- In dieser Arbeit: Aufbau einer Expositionseinrichtung
- Integration eines existierenden Messaufbaus zur Messung von Impulsantworten von Retinazellen in eine Expositionseinrichtung
- Messung der Aktivität der Ganglienzellen durch Multielektrodenarray bei bestimmten SAR-Intensitäten
- Genaue Bestimmung der SAR in der Retina

Normung

Basisgrenzwerte: <u>Spezifische Absorptionsrate</u>

$$SAR = c\frac{dT}{dt} = \frac{\sigma E^2}{\rho}$$

Übersicht über die gültigen Personenschutzgrenzwerte:

Standart	Status	Basisgrenzwert
ICNIRP 1998	Richtlinie	SAR _{10g} = 2,0 W/kg
ANSI C95.1	Norm	SAR _{1g} = 1,6 W/kg

Messaufbau zur Bestimmung der Impulsantworten der Retina

Messaufbau zur Bestimmung der Impulsantworten der Retina

Messaufbau mit Multielektrodenarray Probenhalter ohne Exposition

Messaufbau zur Bestimmung der Impulsantworten der Retina

NF-Ersatzschaltbild für eine Elektrode des Elektrodenarrays

Expositionseinrichtung

Anforderungen [Hansen 1997]

- Biologische Anforderungen, wie z.B. konstante Temperatur der Probe, einfache Zugänglichkeit der Probe
- Technische Anforderungen, wie z.B. Analyse der Feldverteilung, HF-Abschirmung
- Testsignale: GSM, UMTS

Expositionseinrichtung

Stand der Technik

Hohlleiterexpositionseinrichtungen [Streckert 1998, Bitz 2003]

- Für "patch clamp"-Technik
- Elektrode als elektrolytgefüllte Glaspipette ausgeführt
- Variation der SAR-Verteilung: ± 1dB
- Schlechter Wirkungsgrad (SAR < 2 W/kg bei 1 W Leistung)
- Prinzip ist f
 ür dieses Projekt nicht geeignet

Expositionseinrichtung

Stand der Technik

Hohlleiterresonator [Schuderer 2004]

- Für 1800 MHz
- Exposition von sechs Proben in den H-Feld-Maxima
- Hoher Wirkungsgrad (> 20 W/kg bei 1 W Leistung)
- Variation der SAR-Verteilung: ±1,6 dB
- Prinzip ist f
 ür dieses Projekt geeignet

Integration des Probenhalters in die Expositionseinrichtung

- Verwendung von Hohlraumresonatoren zur Erreichung hoher SAR-Werte (20 W/kg)
- Betriebsfrequenzen: 900 MHz, 1750 MHz, 1966 MHz
- Integration des Messaufbaus mit Multielektrodenarray in den Resonator
- <u>Versuchsdurchführung</u>: Messungen mit verschiedenen Intensitäten von 0,02
 W/kg bis 20 W/kg; Elektrodenarray verbleibt vor und während der Exposition für Messreihen in der Retina

Numerische Berechnungen

Feldverteilung im Resonator, H₁₀₂-Mode

Elektrisches Feld

Magnetisches Feld

Numerische Berechnungen

Numerisches Modell des Probenhalters für die Expositionseinrichtung

Numerische Berechnungen

Positionen des Probenhalters im Resonator

Auswertung für drei Konfigurationen pro Position

a) Ohne Elektrodenarray b) Mit Elektrodenarray Mit Elektrodenarray und Zuleitungen

C)

Auswertung:

- Auswertebereich unterhalb des Elektrodenarrays, 2 mm * 2 mm * 120 μm
- SAR-Werte auf H_{max}² bezogen
- mittlere SAR/ H_{max}² und Standardabweichung
- Darstellung der SAR-Verteilung in Histogrammen

Beispiel einer Auswertung anhand der Position 5 bei 1966 MHz: Probenhalter im H-Feld Maximum

Beispiel Position 5: Probenhalter im H-Feld Maximum

SAR-Verteilung in der Nährlösung:

SAR-Verteilung in der Retina:

Häufigkeitsverteilung innerhalb des Auswertebereichs (Position 5)

Ergebnisse Position 5

Konfiguration	gemittelte SAR [mW/g/A ² /m ²] [*]	Abweichung [%]
a)	28,65	1,9
b)	40,87	6,1
c)	61,37	145,72

 * SAR bezogen auf ${H_{max}}^{2}$

 Große SAR-Dynamik durch das Elektrodenarray mit Zuleitungen auf die lokale SAR-Verteilung

Zusammenfassung Ergebnisse für die Positionen 1 bis 4 des Probenhalters im Resonator

Position	Konfiguration	gemittelte SAR [W/kg/(A/m) ²]	Abweichung [%]
	a)	0,257	3,44
1)	b)	0,455	33,15
	c)	4843,75	82,75
2)	a)	7,49	1,9
	b)	7,04	2,0
	c)	36,61	210,9
3)	a)	13,36	5,38
	b)	12,76	5,51
	c)	10,54	15,05
4)	a)	90,1	1,08
	b)	94,9	1,11
	c)	79,4	45,19

Vergleich der Ergebnisse der Positionen 3, 4, und 5 des Probenhalters im Resonator bei 900 MHz

Konfiguration	Position	gemittelte SAR [W/kg/A ² /m ²] [*]	Abweichung [%]
Ohne Elektrodenarray	3)	0,99	14,25
	4)	1,09	1,71
	5)	0,69	2,16
Mit Elektrodenarray und Zuleitungen	3)	1,01	14,06
	4)	0,91	76,12
	5)	3,77	46,21

Diskussion der Simulationsergebnisse

- Hohe Dynamik der lokalen SAR bei allen Positionen des Probenhalters mit Elektrodenarray und Zuleitungen
- Metallspitzen sind nicht im Detail auflösbar
 - hohe zusätzliche Dynamik durch Spitzeneffekte in den betroffenen Ganglienzellen können im Detail nicht erfasst werden
- Forderung nach definierter Feldverteilung in der Retina/ Probenhalter ist mit Elektrodenarray und Zuleitungen nicht erfüllt

→ Exposition ist mit Elektrodenarray nicht geeignet!

Diskussion der Simulationsergebnisse

Exposition nur mit alternativem Versuchsdesign möglich:

- Hier: Exposition erfolgt ohne Elektrodenarray, Messungen in der Retina nach Exposition
- Nachteil: Messergebnisse sind in einem statistischen Zusammenhang zu bringen

Resonator 1966 MHz

Kurzschlussschieber

Koax. Anregung

Hohlraumresonatoren für 900 MHz und 1966 MHz

Messsystem DASY

Messergebnisse für Reflexionsfaktor s₁₁

Resonator 1966 MHz

Resonator 900 MHz

I M S

E- und H-Feldmessungen im Resonator für 900 MHz und 1966 MHz

Resonator	Frequenz [MHz]	E [V/m] [*]	H [A/m] [*]
leer	900	2042,83	3,79
	1966	3636,62	9,93
mit 5 ml Nährlösung	900	2003,94	3,18
	1966	1837,28	3,29

^{*} bezogen auf 1 W Leistung (CW)

Vortrag Diplomarbeit

Bestimmung der Eingangsleistung für 20 W/kg für Positionen im H-Feld-Maximum

Position des Probenhalters	Frequenz [MHz]	SAR _s /H _{max,s} ² [W/kg/(A/m) ²] [*]	SAR _M [W/kg] ^{**}	P [W] für 20 W/kg
3)	900	0,99	10,01	2,00
	1966	13,36	144,61	0,138
4)	900	1,09	11,02	1,81
	1966	92,70	1003,39	0,02
5)	900	0,69	6,98	2,86
	1966	28,65	310,11	0,065

^{*} Ergebnisse der Simulationen, bezogen auf H_{max,s}²

** Ergebnisse der SAR bei 1 W Leistung (CW)

Zusammenfassung

- Expositionseinrichtung nur mit Hohlraumresonatoren f
 ür geforderte SAR von 20 W/kg sinnvoll
- Hohe SAR-Effizienz im H-Feld-Maximum
- Versuchsdurchführung mit Elektrodenarray während der Exposition führt zu großer Dynamik der lokalen SAR-Verteilung in der Retina mit Elektrodenarray und Zuleitungen
 - → Versuchsdurchführung nicht geeignet!
- Alternative Versuchsdurchführung mit Exposition ohne Elektrodenarray
 - ➔ Nachteil: Nur statistische Zusammenhänge, wodurch mehr Präparate notwendig sind

Literatur

[Bitz 2003]	A. Bitz: Numerische Feldberechnung im biologischen Gewebe: Exposi-tion von Personen, Tieren und isolierten biologischen Systemen in elektromagnetischen Feldern. Dissertation, Bergische Universität Wup-pertal, 2003.
[Hansen 1997]	V. Hansen: Leitfaden für Experimente zur Untersuchung der Wirkung hochfrequenter elektromagnetischer Felder auf biologische Systeme – Hochfrequenztechnische Aspekte. Newsletter Edition Wissenschaft der Forschungsgemeinschaft Funk e.V., Nr. 11, September 1996.
[Schuderer 2004]	J. Schuderer, T. Samaras, W. Oesch, D. Spät, N. Kuster: <i>High Peak SAR Exposure Unit With Tight Exposure and Environmental Control for In Vitro Experiments at 1800 MHz</i> . IEEE Trans. Microwave Theory and Tech., Vol. 52, No.8, 2004, 2057-2066.
[Streckert 1998]	J. Streckert: Anwendung feldtheoretischer Verfahren auf Untersuchungen zur Wirkung hochfrequenter elektromagnetischer Felder auf Mensch und Umwelt. Dissertation, Bergische Universität Wuppertal, 1998.

