## LO Signal Generation Circuit for Power Amplifier in a 7 Tesla MRI System

**Yuting Wang** 

Supervised by Prof. Dr.-Ing. Klaus Solbach

Institute of Microwave and RF-Technology

University of Duisburg-Essen

2014-07-31

**Yuting Wang** 

### Background

- MRexcite project for 7-Tesal MRI
- 32-Channel RF transmit power amplifier
  - = RF power amplifier + a Cartesian feedback loop
- Satisfactory LO → robust feedback → precise phase and amplitude



### **Outline**



### **Coupled Output** System overview -10dB RF Input LO signal generation circuit -10dB X Task objective: 52.3Ω 1nF $1nF \pm$ – 1. Design – 2. Test DC current and DC RSS Pin voltage – 3. Check correct coupling 390Ω level of directional coupler **22pF** – 4. Check generated signals at 6.8nH limiting amplifier 1nF – 5. Check LO output signals

RF

Output

AD 8309

1nF

100nF

+5V

390Ω

1nF

1nF

**MAX 2471** 

1nF

LO

### 1. Logarithmic Limiting Amplifier AD8309

- Logarithmic output & two limiter outputs
- Power supply: +2.7V to +6.5V (+5.00V)



### **2. Resonant Filter**

- L-C shunt
- Center frequency: 298MHz

$$f_0 = \frac{1}{2\pi} \cdot \frac{1}{\sqrt{CL}}$$

- (Empirical) Assumption:
   Capacitor from the transistor in ICs = 20pF
- L=6.8nH, C=22pF
- 3dB Bandwidth depends on resistors
- Control bandwidth Buffer amplifier

## **3. Buffer Amplifier MAX2471**

- High input impedance
- Voltage gain: 16V/V
- Power supply:
   +2.7V to +5.5V (+5.00V)



### **PCB** Design



### **PCB Assembly**



### **Testing & Measurement Scenarios**

| Test                                                               | Equipment                                                                        | Result                                                                                                                                |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 1. Current consumption                                             | +5.00V Power Supply<br>Digital Multimeter                                        | 22.95mA                                                                                                                               |
| 2. DC voltage at the power<br>supply, input, output pins<br>of ICs | +5.00V Power Supply<br>Digital Multimeter                                        | Vps1: 4.96V, Vps2: 4.97V<br>Vcc: 4.98V, INHI&INLO: 1.768V<br>LMHI&LMLO: 4.77V<br>IN&IN: 1.616V<br>OUT&OUT: 3.659V                     |
| 3. Correct coupling levels of the directional coupler              | RF Signal Generator<br>-3dB Power Divider<br>Oscilloscope/Network Analyzer       | <ol> <li>The directional coupler is a<br/>linear device.</li> <li>My measurements verify<br/>the function of the couplers.</li> </ol> |
| 4. Generated signals at the limiting amplifier                     | RF Signal Generator<br>+5.00V Power Supply<br>Digital Multimeter                 | My measurements verify the logarithmic function of the AD8309.                                                                        |
| 5. Generated signals at the buffer amplifier (LO output signals)   | RF Signal Generator<br>+5.00V Power Supply<br>-3dB Power Divider<br>Oscilloscope | A balanced distorted sine<br>wave signal with a fixed<br>amplitude                                                                    |

### 3. Checking the Correct Coupling Levels of the Direction Coupling at RF Level of 300MHz

- 3.1. Using Oscilloscope
- 3.1.1. Coupling



### 3. Checking the Correct Coupling Levels of the Direction Coupling at RF Level of 300MHz

- 3.1. Using Oscilloscope
- 3.1.2. Mainline Loss



# 3. Checking the Correct Coupling Levels of the Directional Coupling

- 3.2. Using Network Analyzer
- Matching System
- Coupling, Mainline Loss, Directivity, & Return Loss



Coupled Output 2

# 3. Checking the Correct Coupling Levels of the Directional Coupling

- 3.2.1. Coupling
- 8.8315 ← 8.90 (300MHz, -10dBm) ε=5.2%



### 3. Checking the Correct Coupling Levels of the Directional Coupling

- 3.2.2. Mainline Loss
- 1.1055 + 1.24 (300MHz, -10dBm) ε=10.8%



## 3. Checking the Correct Coupling Levels of the Directional Coupling

- 3.2.3. Directivity
- 18.5125 + 19.20 (300MHz, -10dBm) ε=3.58%



Yuting Wang

## 3. Checking the Correct Coupling Levels of the Directional Coupling

• 3.2.4. Input Return Loss, Output Return Loss,



**Yuting Wang** 

### 4. Checking the Generated Signals at the Limiting Amplifier

### • VLOG at RF level of 300MHz-500MHz



Yuting Wang

### 5. Checking the Generated Signals at the Buffer Amplifier

- Error-Correct Procedure:
- Original Resonant Capacitor as 22pF (Empirical Assumption)

Test the Resonant Frequency 345MHz

**Unfortunately...** 

Change the Capacitor to 30pF

**Retest the Resonant Frequency 300MHz** 



### A balanced distorted sine Signal with a fixed amplitude (300MHz, 0dBm) Good!

**Yuting Wang** 

### 5.1. Checking the Generated Signals at the Buffer Amplifier – How It Comes Out

- Limiter output signal of AD8309 basically square
- Fourier series of an ideal square wave signal

$$x_{square}(t) = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\sin\left(2\pi(2k-1)\,\text{ft}\right)}{2k-1} = \frac{4}{\pi} \left(\sin(2\pi\,\text{ft}) + \frac{1}{3}\sin(6\pi\,\text{ft}) + \frac{1}{5}\sin(10\pi\,\text{ft}) + \cdots\right)$$

Both even and odd harmonic sines would exist here

• Resonant filter – "Restore" signal



Figure 14. Limiter Output at 300 MHz for a Sine Wave Input of –60 dBV (–47 dBm), Using an  $R_{LOAD}$  of 50  $\Omega$  and an  $R_{LIM}$  of 100  $\Omega$ 

**Yuting Wang** 

# 5.2. Checking the Generated Signals at the Buffer Amplifier – at RF Level of 300MHz

- LO output signals Vpk-pk
- 300MHz, -49dBm-20dBm 
   Limiting (0.413V, 0.433V)



# 5.2. Checking the Generated Signals at the Buffer Amplifier – at RF Level of 300MHz

 300MHz, -63dBm (Distorted due to transistor in ICs)





**300MHz, -55dBm (Start)** 

#### **Yuting Wang**

## 5.3. Checking the Generated Signals at the Buffer Amplifier – at RF Level of OdBm

### • 3dB Bandwidth: 287Mhz-307MHz, 20MHz



**Yuting Wang** 

### **Conclusions**

- I: The LO output signal = a balanced local oscillator signal with a fixed
  - amplitude
    - Achieve the Objective
- II: -49dBm − 20dBm → Limiting
- III: 3dB bandwidth → 20MHz.
- IV: VLOG 
   → 15mV/dB Slope , -109dBm Intercept
- V: Power Gain of the RF output and RF input port
   → -2.211dB

### THE END

