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thorough understanding of the structure-soil interaction is the basis for a safe and economic design.
Hence, it is necessary to ensure that the foundation of a structure, e.g. a shallow foundation, does not
fail ensuring a prescribed safety and the displacements are allowable. Because different inconsistent
limit states and serviceability states have to be distinguished, the interaction is usually unprecticalbe (Fig. 1).
With a system law, which describes the relationship between loading up to failure and corresponding
displacements and rotations of the foundation, the distinction between different limit states is no longer
be necessary

The concept of the Single Surface Hardening Model consists of two componentes, a failure condition, which
describes the ultimate bearing capacity of the foundation, and a displacement rule, which describes the
load displacement behaviour from beginning of loading up to  failure of the system.

In analogy to the concept of constitutive laws of plasticity the failure condition consistently describes the ultimate 
bearing capacity of the foundation  similar to a yield condtion. Here the failure condition is formulated  for the case 

The parameters a1,2,3 govern the inclination of the failure surface for small vertical loading where  the limit state 
equations of sliding and overturning previously have been relevant (Fig. 2). The parameter  a controls the position
of the maximum of the failure surface. The quantity F10 represents the resistance of a footing under pure vertical

                

The displacements u and rotations w of the foundation are caused by loading inside the failure surface. Due to the
complex interaction of load components, displacements and rotations the displacement rule has been formulated
using the strain hardening plasicity theory with isotropic hardening:

Flow condition

The parameter A describes the initial stiffness of the load displacement relationship.
In general the factor A is determined with small scale model tests under centric 
vertical loading. Since this is not convenient for practical applications, a procedure
was developed to determine A from soil mechanical standard tests. 

Herein gmax and gmin represent the bulk density at minimum and maximum density. 
The void ratio emax refers to the minimum density of the soil. The relative density D
relates the actual density of the soil to the minimum and maximum denisties. The
exponent m is derived from an oedometer test with an initial density representing
the conditions in the field. 

The simulation of small scale model tests with an eccentric vertical loading using the
SSH-Model is shown in Fig. 6.  As well as the load case before a  significant influence of
the way how the failure load F10 is determined can be observed. 
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Fig. 1: Today’s limit state design
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SINGLE SURFACE HARDENING MODEL

Fig. 2: Interaction Diagram: 
          Limit state equation in loading space
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Displacement rule
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Fig. 3: Failure condition for the basic case (no embedment, no cohesion) : 
          a) vertical eccentric loading                             b) inclined centric loading                                         c) combined loading

Fig. 3, for example, shows the influence of
the side ratio b=b2/b3 on the bearing 
capacity of the foundation for different load 
combinations. 

For these study numerous small scale model
tests conducted at our institute over the past
years have been analysed. Additionally, model
tests described in the literature have been 
considered as far as suitable.
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Fig. 4: Isotropic strain hardening concept
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Fig. 5: Comparison of experimental results 
and theoretical prediction of a small scale
model test under centric vertical loading

Fig. 5 shows the experimental result for some small scale model tests under centric vertical
loading and a simulation of the same tests with the system law. The failure load F10 has been
determined here according to the traditional bearing resistance formula and to the failure
loads measured in the tests as well. These failure loads are obviously larger than the
theoretical values resulting in a steeper load-displacement curve in comparison to the
theoretical results. 

Fig. 6: Simulation of a small scale model test with eccentric loading on dense Essen sand
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Within this model the former isolated failure modes are integrated, so that the failure condition describes the outer
boundary of the resultant and admissible loading which itself is named as failure surface. 

loading which can be calculated using traditional bearing resistance formula.
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of six degrees of freedom (Lesny, 2001):
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