

Center for Computational Sciences and Simulation

Offen im Denken

Three-dimensional self-learning kinetic Monte Carlo model A. Latz, L. Brendel and D.E. Wolf

Faculty of Physics, University Duisburg-Essen, and Center for Nanointegration Duisburg-Essen (CENIDE), D-47057 Duisburg, Germany

Kinetic Monte Carlo (KMC)

- Dynamical evolution by thermally activated hopping processes.
- **Hopping rates:** $v = v_0 \exp(-E_a / k_B T)$ E_a = activation energy
- Next process is chosen proportional to its hopping rate.

Activation energy pre-calculation

- Number of occurring configurations can be tremendous.
- **Diffusion of monolayer island on Ag(111):**

- Reliability of KMC simulations depends on accurate transition rates.

Self-learning kinetic Monte Carlo

SLKMC method [1]:

- Activation energies calculated on-the-fly and stored in a database.
- The local environment is used to identify processes.
- **Two dimensional lattice model:** $2^{36} \approx 7 \times 10^{10}$ local environments

First three-dimensional SLKMC model [2]:

- Three dimensional lattice model: $2^{72} \approx 5 \times 10^{19}$ local environments.
- One E_a calculation approximately 1–10 s on one CPU core.
- On-the-fly E_a calculations reduced by setting up an initial database with likely processes in parallel.
- Atoms restricted to single atom hops between fcc-sites.
- **The occupation of the 1st and 2nd neighbor shells of the initial plus final hopping** sites define the local environment.

- **Initial database:**
 - Likely processes gathered with simpler model [3].
 - "Exact" E_a s precalculated in parallel.

Applications

Homoepitaxial film growth on Ag(111)

Atoms are deposited with a constant rate (F = 10 ML/s) on a 50x50 nm² Ag(111) substrate.

■ Configuration encoded in integers: site *i* occupied → bit *i* = 1

Example: Diffusion along step

E_a calculated with Drag method, using TB-SM potential.

T = 150 K, 0.2 ML

T = 230 K, 0.4 ML

T = 300 K, 0.4 ML

- Dendritic islands at T = 150 K
- With increasing temperature, periphery diffusion becomes fast enough that dense islands can form.
- **Quantitative agreement with experiments [4] emergent from a correct** microscopic treatment.

Electromigration-induced void and island drift anisotropy

- Electromigration: Directed motion of atoms driven by high electric fields.
- **Effective force:** $\vec{F}_{EM} = Z^* |e| \vec{E} = Z^* |e| \rho \vec{j} = const$
- *E*_a variation: $\Delta E_{\rm EM} = -\vec{F}_{\rm EM} \cdot \vec{x}_{\rm is}$
- Monolayer islands and voids on Ag(111)
 - $F_{\rm EM} = 0.002 \text{ eV/nm} \triangleq j = 5 \times 10^8 \text{ A/cm}^2$
 - **T** = 350 K: facetted, hexagonal shape
 - Threefold symmetry (A- and B-steps)
- Measured quantities: $|\underline{v}_{D}|$ and angle α between $\underline{v}_{\rm D}$ and $\pm \underline{F}_{\rm EM}$
- $|\underline{v}_{D}|$ and α averaged over 20+ trajectories.

References

- [1] O. Trushin *et al.*, *Phys. Rev.* B 72, 115401 (2005)
- [2] A. Latz, L. Brendel and D.E. Wolf, *J. Phys.: Condens. Matter* 24, 485005 (2012)
- [3] A. Latz, S. Sindermann *et al.*, *Phys. Rev.* B 85, 035449 (2012)
- [4] E. Cox et al., Phys. Rev. B 71, 115414 (2005)
- [5] S. P. Sindermann *et al.*, *J. Appl. Phys.* 113, 134505 (2013)
- [6] P. Kuhn et al., Phys. Rev. Lett. 94, 166105 (2005)

- **Periphery diffusion**
- Island and Void (111):
 - |<u>v</u>_D| largest in B-step direction.
 - $\alpha > 0$, preferred drift in B-step direction

