Large-Eddy Simulation von reaktiven Multiphasenströmungen

A. Rittler, M. Rabaçal, A. Kempf | Lehrstuhl Fluiddynamik Institut für Verbrennung und Gasdynamik, Universität Duisburg-Essen

UNIVERSITÄT DUISBURG ESSEN

Motivation

Reaktive Multiphasenströmungen sind in verschiedensten Anwendungen von Bedeutung z.B.

- Gasturbinen
- Diesel-Motoren
- Kohlenstaubkraftwerke
- Nanopartikel Reaktoren

- Turbulente Aceton /Ethanol Spray Flamme
- Vorgemischte Pilot Flamme zur Stabilisation der

Darstellung der Mehrphasenströmung

Turbulente Flamme des Cambridge geschichteten Abb. 1: Brenners, Darstellung des Iso-Volumens des Reaktionsquellterms, eingefärbt mit dem reziproken Verbrennungsluftverhältnisses (F. Proch)

Problemstellung und Ziel

Das Projekt hat das Ziel einen Beitrag zum Verständnis reaktiver Mehrphasenströmungen zu liefern. Dafür werden Partikeltransport- und Chemie-Modelle entwickelt und diese in den in-house LES Code PsiPhi implementiert. Die entwickelten Modelle werden anhand verschiedener Experimente validiert.

- Spray-Flamme
- Experimente durchgeführt von Masri et al., Universität Sydney [1]

Betriebsbedingungen

- Gas Phase
- Mittlere Geschwindigkeit Jet
- Mittlere Geschwindigkeit Pilot
- Mittler Geschwindigkeit Coflow

Flüssige Phase

- Mittlere Geschwindigkeit
- Massenstrom
- Spray-Jet Dichte
- Spray-Jet Viskosität
- Luft-Brennstoff-Verhältnis

Simulationsergebnisse

Abb. 4: Simulationsergebnisse, Momentaufnahme von a) Partikelverteilung nicht reaktiver Fall, b) Mischungsbruch c) normierte Fortschrittsvariable und d) Temperatur

(Re=18.000) U_J=24m/s $m_L=23.4g/min$ $\rho_{\rm J}$ =1.33kg/m³ μ_J=1.86 10⁻⁵Pas $\phi_{\rm J} = 0.8$

(Re=17.000)

U_J=24m/s

 $U_{P}=1.5$ m/s

 $U_{P}=4.5$ m/s

Abb. 2: Skizze einer Mehrphasenströmung, Darstellung des Massentransfers, Wärmetransfers und der Kräfte die auf den Partikel bzw. vom ausgeübt werden.

Das Simulationsprogramm

- LES In-house Code
- Favre-gefilterte Erhaltungsgleichungen in 3D
- Finite Volumen Methode
- Strukturierte und äquidistante Zellen
- Räumliche Diskretisierung der Impuls Gleichungen mittels zweiter Ordnung Zentral Differenzen Verfahren (CDS)
- Und zweiter Ordnung TVD Verfahren für Dichte und Skalare
- Dritte Ordnung Runge-Kutta Verfahren für Zeitintegration

Partikel-Transport Methode

- Euler-Lagrange Methode für Gas-Partikel Phasen
- Partikel Bewegung gemäß:

$$\frac{\mathrm{d}x_{p,i}}{\mathrm{d}t} = u_{p,i} \quad , \quad \frac{\mathrm{d}u_{p,i}}{\mathrm{d}t} = a_{p,i} \quad , \quad a_{i,p} = \frac{1}{\tau_p}\left(\tilde{u}_i - u_{p,i}\right) + \left(1 - \frac{\overline{\rho}}{\rho_p}\right)g_i$$

Mit der Partikel Relaxations-Zeit

$$\tau_p = \frac{\rho_p d_p^2}{18\mu \left(1 + \frac{3}{20} R e_p^{0.687}\right)}$$

Die Partikelverdampfung erfolgt nach dem d²-Gesetz:

 $\frac{\mathrm{d}d_p^2}{\mathrm{d}t} = -4\frac{\overline{\rho}}{D}\ln\left(B_M + 1\right)Nu_p$

Abb. 5: Simulationsergebnisse gemittelte axiale Partikelgeschwindigkeiten, reaktiver Fall.

The IST Large-scale Laboratory Furnace

Fully turbulent flow and significant thermal radiation transfer

• Multi-fuel burner: gaseous, solid, liquid fuels

Abb. 6: Simulationsergebnisse Fluktuationen der axialen Partikelgeschwindigkeiten, reaktiver Fall.

Preliminary Results

x/D

Abb. 8: Preliminary results for the natural gas test case a) Instantaneous axial velocity. Note the recirculation zone, in a bubble-like structure, due to swirl. Particles are entrained in this area, increasing combustion residence time within poor combustion conditions inhibiting fuel-NO_x pollutant mechanism. b) Instantaneous flame sensor, based on the normalised progress variable C. Combsution takes place in the interface between inflow jets and the recircularion zone. Walls are depicted with a black line.

Abb. 7: Experimental setup for a natural gas test case.

Operating conditions for preliminary flow studies

9.6 kg/h

4.9 kg/h

150 kg/h

750

6500

75600

• Total thermal input 130 kW 10 % Excess air

Particle devolatilization (Coal/Biomass) Complex kinetics using CPD, FLASHCHAIN.

Char combustion - $C + O_2 \rightarrow CO_2$

 $R_c = S_a \mu_e \gamma \rho_{p,A} k_i$

 S_a specific internal surface area, μ_e effectiveness factor, characteristic size, $\rho_{p,A}$ apparent density

 κ_i intrinsic chemical rate

Literatur

- [1] Gounder, J. D., Kourmatzis, A., and A. R. Masri; Turbulent piloted dilute spray flames: Flow fields and droplet dynamics; Combustion and Flame, 159 (2012) 3372-3397.
- [2] Franchetti, B.M., Cavallo Marincola, F., Navarro-Martinez, S, Kempf, A.M, Large Eddy Simulation of a Pulverised Coal Jet Flame, Proc. Combust. Inst. 34 (2013) 2419-2426.
- [3] Kempf, A.M., Geurts, B.J., Oefelein, J., Error Analysis of Large-Eddy Simulation of the Turbulent Non-premixed Sydney Bluff-Body Flame, Combust. Flame 158 (2011) 2408-2419.
- [4] Pettit, M.W., Coriton, B., Gomez, A., Kempf, A.M., LES and Experiments on Non-Premixed Highly Turbulent 'Opposed Jet' Flows, Proc. Combust. Inst. 33 (2011) 1391-1399.

- Natural gas mass flow rate
- Primary air mass flow rate
- Secondary air mass flow rate
- Secondary air swirl number
- Natural gas Re
- Primary air Re
- Secondary air Re

Zukünftige Arbeiten

Folgende Themen sollen in der Fortsetzung untersucht werden:

- Untersuchung weiterer Fälle des Sydney Spray Burners
- Untersuchungen bei hohen Partikeldichten
- Implementierung eines Stochastischen Modelles zur Beschreibung der Partikeltransport-Prozesse
- Simulation von Nanopartikel Spray Reaktoren
- Implementation of devolatilization and char combustion models
- Construction of a chemistry table for volatile combustion
- Inclusion of convective and radiative heat transfer
- Investigation of interaction of biomass and coal particles during co-firing