Model-free extraction of refractive index from measured optical data

A Tool for Refractive InDex Simulation

Martina Schmid*, Guanchao Yin, Phillip Manley

Helmholtz-Zentrum Berlin,
Nanooptical concepts for photovoltaics

* Universität Duisburg-Essen, MultioptiX

Thin film optics
having to deal with multiple reflections

and requiring refractive indices
often only rely on optical measurements.

- Basic Principles
- Transfer Matrix Method
- Multilayer Stack
- Comparison to Experiment
- Advanced Features
- Surface Roughness
- Inhomogeneous Layers
- Effective Medium
- User Interface
- Outlook

Propagation through mediums at normal incidence
one wave with positive direction(E^{+})
Superposition of electric field $\left\{\right.$ one wave with negative direction(E^{-})

Propagating through an interface:

$$
\begin{gathered}
{\left[\begin{array}{c}
E_{i}^{+} \\
E_{i}
\end{array}\right]=\frac{1}{t_{i, j}}\left[\begin{array}{cc}
1 & r_{i, j} \\
r_{i, j} & 1
\end{array}\right]\left[\begin{array}{l}
E_{j}^{+} \\
E_{j}^{-}
\end{array}\right]} \\
r_{i, j}=-r_{j, i}=\frac{N_{i}-N_{j}}{N_{i}+N_{j}}, \quad t_{i, j}=\frac{2 N_{i}}{N_{i}+N_{j}}, t_{j, i}=\frac{2 N_{j}}{N_{i}+N_{j}} ;
\end{gathered}
$$

r, t are, respectively, the complex amplitude reflection and transmission Fresnel coefficients; N is the complex refractive index of the layer

Propagating within a layer:

$$
\left[\begin{array}{c}
E_{i}^{+} \\
E_{i}^{+}
\end{array}\right]=\left[\begin{array}{cc}
\Phi^{-1} & o \\
o & \Phi
\end{array}\right]\left[\begin{array}{l}
E_{i}^{+} \\
E_{i}^{-}
\end{array}\right] \quad \Phi=e^{-i \frac{2 \pi}{\lambda} N_{i} d}
$$

Where d is the thickness of medium, ω is the frequency of the propagating light and c is the speed of light

At interface

P polarization:

$$
\begin{aligned}
r_{i, j} & =\frac{N_{j} \cos \boldsymbol{\theta}_{i}-N_{i} \cos \boldsymbol{\theta}_{j}}{N_{j} \cos \boldsymbol{\theta}_{i}+N_{i} \cos \boldsymbol{\theta}_{j}} \\
t_{i, j} & =\frac{2 N_{i} \cos \boldsymbol{\theta}_{i}}{N_{j} \cos \boldsymbol{\theta}_{i}+N_{i} \cos \boldsymbol{\theta}_{j}}
\end{aligned}
$$

S polarization:

$r_{i, j}=\frac{N_{i} \cos \boldsymbol{\theta}_{i}-N_{j} \cos \boldsymbol{\theta}_{j}}{N_{i} \cos \boldsymbol{\theta}_{i}+N_{j} \cos \boldsymbol{\theta}_{j}}$
$t_{i, j}=\frac{2 N_{i} \cos \boldsymbol{\theta}_{i}}{N_{i} \cos \boldsymbol{\theta}_{i}+N_{j} \cos \boldsymbol{\theta}_{j}}$

Fresnel coefficiencts for oblique incidence

Within the layer
$\Phi=e^{-i \frac{2 \pi}{\lambda} N_{m} d / \cos \boldsymbol{\theta}_{j}}$

Phase difference between transmission orders:

$$
\delta=\left(\frac{2 \pi}{\lambda}\right) 2 n d \cos \theta
$$

When $\delta=2 m \pi, m \in \mathbb{N}$ there will be constructive interference in T

Validity condition:

Phase relationships between interior reflections is destroyed therefore there is no interference

To removed coherency, calculate the Intensity instead of the Electric Field

$$
I=E^{*} E=\left|E_{0}\right|^{2} \underbrace{e^{i k \tilde{n}^{*} d} e^{-i k \tilde{n} d}}_{\text {phase information }}=\left|E_{0}\right|^{2}
$$

$$
\frac{t}{\Delta \lambda_{\text {Coherence }}} \gg 1
$$

Coherent Stack

- Includes interference
- Typical thickness 0 ~ 2000 nm

Incoherent Layer

- Interference "turned off"
- Typical thickness 1 mm
- 9 Total layers implemented in RefDex
- Combine coherent and incoherent layers in any order
- For R,T calculation, d, n and k must be known for all layers

Absorbing Region

- Reflection loses coherency peaks
- Transmission drops to zero due to absorption

Transparent Region

- R and T both show coherency peaks
- R does not drop to 0 due to reflection from glass substrate

An example:

$$
\begin{array}{|ll}
\left|R_{\text {cal }}(n(\lambda), k(\lambda))-R_{\text {exp }}(\lambda)\right|=0 & \begin{array}{l}
\text { Choose the }(\mathrm{n}, \mathrm{k}) \text { values } \\
\text { which minimise the }
\end{array} \\
\hline\left|T_{\text {cal }}(n(\lambda), k(\lambda))-T_{\text {exp }}(\lambda)\right|=0 & \begin{array}{l}
\text { difference between our } \\
\text { model and experiment }
\end{array}
\end{array}
$$

$$
\begin{aligned}
F[n, k]= & \left|R_{\text {cal }}(n(\lambda), k(\lambda))-R_{\text {exp }}(\lambda)\right| \\
& +\left|T_{\text {cal }}(n(\lambda), k(\lambda))-T_{\text {exp }}(\lambda)\right|
\end{aligned}
$$

Adding these equations together we get a function F which takes n and k as input

Problems arise because two different (n, k) input pairs can both equal zero!

One Physically Meaningful Solution

Many Unphysical
Solutions

Take the configuration of CIGSe/TCO/glass substrate as an example:

G. Yin et al., Influence of substrate and its temperature on the optical constants of Culn $1_{1-x} \mathrm{Ga}_{x} \mathrm{Se}_{2}$ thin films, J. Phys. D: Appl. Phys., 47135101 (2014)

Absorbing Region

- Reflection Strongly Reduced
- Transmission Slightly Reduced

Transparent Region

- R and T reduced prefferentially at coherency peaks

Rough Interface

$$
r_{i, j}^{\prime}=r_{i, j} \exp \left[-2(2 \pi \sigma / \lambda)^{2} n_{i}^{2}\right]
$$

$$
\begin{aligned}
& r_{j, i}^{\prime}=r_{j, i} \exp \left[-2(2 \pi \sigma / \lambda)^{2} n_{j}^{2}\right] \\
& t_{i, j}^{\prime}=t_{i, j} \exp \left[-\left(\frac{2 \pi \sigma}{\lambda}\right)^{2}\left(n_{i}-n_{j}\right)^{2} / 2\right] \\
& t_{j, i}^{\prime}=t_{j, i} \exp \left[-\left(\frac{2 \pi \sigma}{\lambda}\right)^{2}\left(n_{j}-n_{i}\right)^{2} / 2\right]
\end{aligned}
$$

Scalar Scattering Theory

- σ is the interface roughness
- Gives us the loss of specular beam intensity due to interface roughness

Determination of optical constants

G. Yin et al., The effect of surface roughness on the determination of optical constants of CulnSe 2 and CuGaSe 2 thin films, J. Appl. Phys., 133, 213510 (2013)

Absorbing Region

- Small reduction in R and T

Transparent Region

- Coherency reduced for both R and T
- Transmission strongly reduced

b)

d)

$$
\square \begin{aligned}
& \mathrm{t}_{3}=<\mathrm{t}_{3}> \\
& \mathrm{t}_{4}=<\mathrm{t}_{4}>
\end{aligned}
$$

2
4
0.03

$$
\begin{aligned}
& \mathrm{t}_{0}=\left\langle\mathrm{t}_{0}\right\rangle \\
& \mathrm{t}_{1}=\left\langle\mathrm{t}_{1}\right\rangle \\
& \mathrm{t}_{2}=\left\langle\mathrm{t}_{2}\right\rangle \\
& \mathrm{t}_{3}=\left\langle\mathrm{t}_{3}\right\rangle \\
& \mathrm{t}_{4}=\left\langle\mathrm{t}_{4}\right\rangle
\end{aligned}
$$

1
0.06
0.22
incoherent
a) 2D slice through the 3D inhomogeneous film
b) Overlay a rectangular grid
c) The resulting discretised representation of the film
d) Layers containing voids can be modelled incoherently allowing the use of average layer thicknesses
e) This reduces the number of transfer matrix calculations to 4

$$
R_{\text {calc }}(n, k)=w_{C} R_{C}+w_{I} R_{I} \quad \begin{gathered}
\text { (Same equations for T } \\
\text { not shown here) }
\end{gathered}
$$

Standard Calculation

Replace propagation operator inside inhomogeneous layer with:

$$
\begin{array}{r}
\widehat{\boldsymbol{P}}_{i}=\left\{\prod_{m=1}^{M} \widehat{\boldsymbol{P}}_{m}^{n(m)} \widehat{\boldsymbol{D}}_{m, m-1}^{n(m), n(m-1)}\right\} \widehat{\boldsymbol{P}}_{0}^{n(0)}, n(m)=\left\{\begin{array}{c}
n(0), m=\text { even, } m \neq 0 \\
\neg n(0), m=\text { odd }
\end{array}\right. \\
n(0)=n_{i}^{*} \quad \text { or } \quad n(0)=n_{v}^{*}
\end{array}
$$

- Void scattering as from a rough surface. (Slide 13)
- Requires statistical knowledge of 3D void distribution as input

- Measurement of real 2D surface used to generate 3D distribution
- From 3D distribution we obtain inputs for the RefDex calculation

(n, k) data from an inhomogeneous CISe_{2} film is in good agreement to the (n, k) data from a homogeneous film using the inhomogeneous layer feature.
P. Manley et al., A method for calculating the complex refractive index of inhomogeneous thin films, J. Phys. D: Appl. Phys., 47205301 (2014)

$$
\begin{aligned}
& n_{e f f}=w_{h} n_{h}+w_{i} n_{i} \\
& k_{e f f}=w_{h} k_{h}+w_{i} k_{i}
\end{aligned}
$$

$$
\left(\frac{\varepsilon_{e f f}-\varepsilon_{h}}{\varepsilon_{e f f}+2 \varepsilon_{h}}\right)=w_{i}\left(\frac{\varepsilon_{i}-\varepsilon_{h}}{\varepsilon_{i}+2 \varepsilon_{h}}\right)
$$

$$
w_{h}\left(\frac{\varepsilon_{h}-\varepsilon_{e f f}}{\varepsilon_{h}+2 \varepsilon_{e f f}}\right)=-w_{i}\left(\frac{\varepsilon_{i}-\varepsilon_{e f f}}{\varepsilon_{i}+2 \varepsilon_{e f f}}\right)
$$

Volume Fraction Approximation

- Direct mixing of the two materials via the volume fraction
- Does not consider polarisation effects arrising due to mixing

Maxwell Garnett Approximation

- Based on elementary electrostatics
- Assumes spatially separated polarisable particles

Bruggeman Approximation

- Assumes two kinds of spherical particles randomly arranged.
- Spatial separation between particles should be small (i.e. w_{i} is large)

ELLIPSOMETRY MODE

$\frac{r_{\boldsymbol{p}}}{r_{\boldsymbol{s}}}=\tan \Psi e^{i \Delta}$

- Ellipsometric parameters Ψ and Δ simulated by RefDex
- Useful for highly absorbing substrates
- Currently incompatable with roughness and inhomogeneity advanced features
n k Data from Ellipsometry - Example of Mo film

- Interactive fitting process
- Place nodes which are automatically connected by a smooth function
- User selects physically meaningful solutions from multiply degenerate solution space

RefDex

- calculates T, R (n,k) for a multilayer stack
\rightarrow extracts n, k from (T, R)
- considers surface roughness
- applies to inhomogeneous layers
- has also basic features for ellipsometry
- is freely available from
https://www.uni-due.de/ag-schmid/refdex.php

