

Open-Minded

Model-free extraction of refractive index from measured optical data

A Tool for Refractive InDex Simulation

Martina Schmid^{*}, Guanchao Yin, Phillip Manley

Helmholtz-Zentrum Berlin, Nanooptical concepts for photovoltaics

* Universität Duisburg-Essen, MultioptiX

- Basic Principles
 - Transfer Matrix Method
 - Multilayer Stack
 - Comparison to Experiment
- Advanced Features
 - Surface Roughness
 - Inhomogeneous Layers
 - Effective Medium
- User Interface
- Outlook

Basic Principles: Transfer Matrix Method

Advanced Features

User Interface

Propagation through mediums at <u>normal incidence</u> Superposition of electric field

one wave with positive direction(E⁺)

one wave with negative direction(E⁻)

Propagating through an interface:

$$\begin{bmatrix} E_{i}^{+} \\ E_{i}^{-} \end{bmatrix} = \frac{1}{t_{i,j}} \begin{bmatrix} 1 & r_{i,j} \\ r_{i,j} & 1 \end{bmatrix} \begin{bmatrix} E_{j}^{+} \\ E_{j}^{-} \end{bmatrix}$$
$$r_{i,j} = -r_{j,i} = \frac{N_{i} - N_{j}}{N_{i} + N_{j}}, \qquad t_{i,j} = \frac{2N_{i}}{N_{i} + N_{j}}, \quad t_{j,i} = \frac{2N_{j}}{N_{i} + N_{j}};$$

r, t are, respectively, the complex amplitude reflection and transmission Fresnel coefficients; N is the complex refractive index of the layer

Propagating within a layer:

$$\begin{bmatrix} E_i^{+} \\ E_i^{-} \end{bmatrix} = \begin{bmatrix} \Phi^{-1} & o \\ o & \Phi \end{bmatrix} \begin{bmatrix} E_i^{+} \\ E_i^{-} \end{bmatrix} \quad \Phi = e^{-i\frac{2\pi}{\lambda}N_i d}$$

Where *d* is the thickness of medium, ω is the frequency of the propagating light and c is the speed of light

Oblique incidence

Basic Principles: Transfer Matrix Method

Coherent Layers – Interference Effects

Basic Principles: Multilayer Stack

Advanced Features

User Interface

T - Incoherent

R - Incoherent

1750 2000

1500

Incoherent Layers & Substrate Layers

Basic Principles: Multilayer Stack

Advanced Features

Multilayer Stack

Basic Principles: Multilayer Stack

Advanced Features

- 9 Total layers implemented in RefDex
- Combine coherent and incoherent layers in any order
- For R,T calculation, d, n and k must be known for all layers

Input Spectrum – R and T

Basic Principles: Comparison to Experiment

Comparison to Experiment

Basic Principles: Comparison to Experiment

Basic Principles: Comparison to Experiment

$$\left| R_{cal}(n(\lambda), k(\lambda)) - R_{exp}(\lambda) \right| = 0$$
$$\left| T_{cal}(n(\lambda), k(\lambda)) - T_{exp}(\lambda) \right| = 0$$

Choose the (n,k) values which minimise the difference between our model and experiment

$$F[n,k] = |R_{cal}(n(\lambda), k(\lambda)) - R_{exp}(\lambda)| + |T_{cal}(n(\lambda), k(\lambda)) - T_{exp}(\lambda)|$$

Adding these equations together we get a function *F* which takes n and k as input

$$F[n',k'] = F[n'',k''] = 0$$

One Physically Meaningful Solution Many Unphysical Solutions

Problems arise because two different (n,k) input pairs can both equal zero!

Problem of Uniqueness – Physical Picture

Basic Principles: Comparison to Experiment

Advanced Features

Take the configuration of CIGSe/TCO/glass substrate as an example:

G. Yin et al., Influence of substrate and its temperature on the optical constants of $Culn_{1-x}Ga_xSe_2$ thin films, J. Phys. D: Appl. Phys., **47** 135101 (2014)

Surface Roughness – Effect on R and T

Basic Principles

Advanced Features: Surface Roughness

User Interface

Absorbing Region

- Reflection Strongly Reduced
- Transmission Slightly Reduced

Transparent Region

R and T reduced
 prefferentially at
 coherency peaks

Rough Interface

Scalar Scattering Theory

$$r_{i,j}' = r_{i,j} exp[-2(2\pi\sigma/\lambda)^2 n_i^2]$$

$$r'_{j,i} = r_{j,i} exp\left[-2(2\pi\sigma/\lambda)^2 n_j^2\right]$$
$$t'_{i,j} = t_{i,j} exp\left[-\left(\frac{2\pi\sigma}{\lambda}\right)^2 (n_i - n_j)^2/2\right]$$
$$t'_{j,i} = t_{j,i} exp\left[-\left(\frac{2\pi\sigma}{\lambda}\right)^2 (n_j - n_i)^2/2\right]$$

- σ is the interface roughness
- Gives us the loss of <u>specular beam</u> intensity due to interface roughness

Modified Transfer Matrix Method - Examples

Basic Principles

Advanced Features: Surface Roughness

Inhomogeneous Layers – Effect on R and T

Basic Principles

Advanced Features: Inhomogeneous Layers

User Interface

Absorbing Region

 Small reduction in R and T

Transparent Region

- Coherency reduced for both R and T
- Transmission strongly reduced

Inhomogeneous Layers – Coherent / Incoherent Decomposition

Basic Principles

Advanced Features: Inhomog

- a) 2D slice through the 3D inhomogeneous film
- b) Overlay a rectangular grid
- c) The resulting discretised representation of the film
- d) Layers containing voids can be modelled incoherently allowing the use of average layer thicknesses
- e) This reduces the number of transfer matrix calculations to 4

Inhomogeneous Layers – Coherent / Incoherent Decomposition

Advanced Features: Inhomogeneous Layers

User Interface

Basic Principles

Replace propagation operator inside inhomogeneous layer with:

$$\widehat{P}_{i} = \left\{ \prod_{m=1}^{M} \widehat{P}_{m}^{n(m)} \widehat{D}_{m,m-1}^{n(m),n(m-1)} \right\} \widehat{P}_{0}^{n(0)}, \quad n(m) = \begin{cases} n(0), m = even, m \neq 0\\ \neg n(0), m = odd \end{cases}$$
$$n(0) = n_{i}^{*} \quad \text{or} \quad n(0) = n_{v}^{*}$$

- Void scattering as from a rough surface. (Slide 13)
- Requires statistical knowledge of 3D void distribution as input

Inhomogeneous Layers – Modelling Distribution of Voids

Basic Principles

Ivanced Features: Inhomogeneous Layers

- Measurement of real 2D surface used to generate 3D distribution
- From 3D distribution we obtain inputs for the RefDex calculation

Inhomogeneous Layers – Recalculating n and k

Basic Principles

Advanced Features: Inhomogeneous Layers

User Interface

(n,k) data from an inhomogeneous $CISe_2$ film is in good agreement to the (n,k) data from a homogeneous film using the inhomogeneous layer feature.

P. Manley et al., A method for calculating the complex refractive index of inhomogeneous thin films, J. Phys. D: Appl. Phys., **47** 205301 (2014)

$$n_{eff} = w_h n_h + w_i n_i$$

$$k_{eff} = w_h k_h + w_i k_i$$

$$\left(\frac{\varepsilon_{eff} - \varepsilon_h}{\varepsilon_{eff} + 2\varepsilon_h}\right) = w_i \left(\frac{\varepsilon_i - \varepsilon_h}{\varepsilon_i + 2\varepsilon_h}\right)$$

Volume Fraction Approximation

- Direct mixing of the two materials via the volume fraction
- Does not consider polarisation effects arrising due to mixing

Maxwell Garnett Approximation

- Based on elementary electrostatics
- Assumes spatially separated polarisable particles

$$w_h\left(\frac{\varepsilon_h - \varepsilon_{eff}}{\varepsilon_h + 2\varepsilon_{eff}}\right) = -w_i\left(\frac{\varepsilon_i - \varepsilon_{eff}}{\varepsilon_i + 2\varepsilon_{eff}}\right)$$

Bruggeman Approximation

- Assumes two kinds of spherical particles randomly arranged.
- Spatial separation between particles should be small (i.e. w_i is large)

$$\frac{r_p}{r_s} = \tan \Psi e^{i\Delta}$$

- Ellipsometric parameters Ψ and Δ simulated by RefDex
- Useful for highly absorbing substrates
- Currently incompatable with roughness and inhomogeneity advanced features

n k Data from Ellipsometry – Example of Mo film

Main Interface

Basic Principles

RefDex			- • ×
File Edit Advanced			ער
Experimental Method Photometry Ellipsometry Optical Data	Stack Data Back	Thickness (nm) Roughness (nm)	Calculation Layer
Wavelength Minimum (nm) 300 💿 s polarisation	Constant Value 💌 1 0	100 Substrate 0	o
Wavelength Step (nm) 10 p polarisation Wavelength Maximum (nm) 2000	2 From File D: \Glass nk data.txt	·· 1e6 V Substrate 0	o
Incident Angle (Deg)	3 Constant Value 1 0	450 Substrate 10	۲
R Data (Percentage) T Data (Percentage) D:\Reflection.txt D:\Transmission.txt	4 Constant Value 1 0	100 Substrate 0	©
nk Calculator Settings			
2 Lower Bound n 0 Lower Bound k 0.5 Step Size n 0.0 Step Size k	6		©
4.5 Upper Bound n 0.0 Upper Bound k	7		©
Calculate n k Select Data	8		©
R T Calculator Settings	9		O
Calculate Absorption Calculate R T Compare to Experiment	Front		

Advanced options

Basic Principles

	Inhomogeneous_Layer	
	File Advanced	3
	Calculation Layer	Inhomogenius Exit
J Effective	- Inhomogineity Distribution	3D Simulation
	Normal	х у г
Use Effective Medium	Parameter Input 💌	Sample (nm) 1000 1000 1000
Volume Fra 💌	Statistical Distribution	Grid Spacing (nm) 50 50 50
Path to Material Data		Directional 1 1 1
path Volume Fraction	μ σ 1.0 1.0	Shape Ellipsoidal
0 Exit	1000 Min Void (nm ²)	Void Fraction Void n,k Data
	3000 Max Void (nm ²)	0.0
	Area	Calculate 3D Distribution
	View Statistical Distribution	View 3D Distribution

Advanced Features

Data Extraction Process

User Interface

 Interactive fitting process

Basic Principles

- Place nodes which are automatically connected by a smooth function
- User selects physically meaningful solutions from multiply degenerate solution space

Summary and Outlook

RefDex

• calculates T, R (n,k) for a multilayer stack

 \rightarrow extracts n, k from (T, R)

- considers surface roughness
- applies to inhomogeneous layers
- has also basic features for ellipsometry
- . . .
- is freely available from

https://www.uni-due.de/ag-schmid/refdex.php

